
A Fast implementation of quasi-Newton LMS
algorithm using FFT

Mohammad Shukri Salman
Electrical and Electronic Engineering Dept.

Mevlana (Rumi) University, Selcuklu
Konya, Turkey

Email: mssalman@mevlana.edu.tr

Osman Kukrer and Aykut Hocanin
Electrical and Electronic Engineering Dept.

Eastern Mediterranean University, Famagusta
TRNC, Mersin 10, Turkey

Email:{osman.kukrer,aykut.hocanin}@emu.edu.tr

Abstract—In this paper, a new efficient adaptive filtering
algorithm belonging to the Quasi-Newton (QN) family is pro-
posed. In the new algorithm, the autocorrelation matrix is
assumed to be Toeplitz. Due to this assumption, the algorithm
can be implemented in the frequency domain using the fast
Fourier transform (FFT). The proposed algorithm turns out
to be particularly suitable for adaptive channel equalization in
wireless burst transmission systems. The algorithm exhibits a
faster convergence rate and less computational complexity, as
compared with other Newton-type algorithms. The performance
of the proposed algorithm is compared to that of the QN-LMS
algorithm in noise cancellation and channel equalization settings.

I. INTRODUCTION

Adaptive filtering has been an active research area over
the few decades due to its wide applicability and robustness
in many signal processing and communications applications.
Designing and adaptive filter requires several important fac-
tors, such as rate of convergence, computational complexity,
tracking abilities and accuracy of steady-state solution, to be
taken into account [1], [2]. In general, in real-time applica-
tions, the computational complexity and rate of convergence
play a critical role and much efforts have been directed
toward deriving adaptive filtering algorithms with relatively
low computational cost and fast convergence rate without
sacrificing performance.

Among the efficient algorithms of particular interest are
those that could be implemented in the frequency domain
[1], [3]. In fact, due to their computational efficiency and
their good convergence properties, frequency domain adaptive
filtering algorithms tend to perform well in many situations,
[4]. It is interesting to note that very little effort has been
spent towards developing frequency domain implementations
of Quasi-Newton (QN) algorithms.

The QN family of algorithms lies between the least mean
square (LMS) and recursive least squares (RLS) algorithms.
In other words, the QN algorithms usually exhibit faster
convergence rate than the LMS and lower complexity than
the RLS algorithms. The main difficulty in deriving frequency
domain adaptive algorithms of the QN type stems from the
fact that the standard form of the inverse autocorrelation
matrix does not allow convolutional operations in the resulting
updating recursions.

In this paper, we propose a new approximate inverse
quasi-Newton (AIQN) algorithm that replaces the inverse of
the input-signal autocorrelation matrix by an approximate
one, provided that the input-signal autocorrelation matrix is
Toeplitz. This assumption allows replacing the update of the
inverse autocorrelation matrix by the update of the autocorrela-
tion matrix itself, and performing the multiplication of R−1x
in the update equation by using the Fourier transform. It is
expected that this will increase the rate of convergence of
the algorithm, in one hand, and decrease its computational
complexity, on the other. The number of computations needed
in the update equation at one iteration become much less than
those needed in the QN-LMS algorithm. The performance of
the proposed algorithm is compared to that of the QN-LMS
algorithm in different settings.

This paper is organized as follows. In section II, an overview
of the Newton-LMS adaptive filter is presented. In section
III the proposed Quasi-Newton LMS algorithm is derived. In
section IV, the implementation of the approximate inversion
technique and in section V, simulation results are provided.
Finally, the conclusions are drawn.

II. NEWTON LMS ALGORITHM

In this section, an overview of the Newton-LMS adaptive
filter is given. Consider the Wiener-Hopf equation at time-step
k,

R(k)w(k) = p(k) (1)

where R(k) is the instantaneous estimate of the autocorrelation
matrix, w(k) is the filter weights vector and p(k) is the
instantaneous estimate of the cross-correlation between the
desired signal and the input vector. The correlations are
estimated recursively as

R(k) = βR(k − 1) + x(k)xT (k) (2)

p(k) = βp(k − 1) + d(k)x(k) (3)

where β < 1 is the forgetting factor and is usually chosen
very close to unity. Substituting (2) and (3) in (1) and using
the matrix inversion lemma [5], after simplification, it gives
the update equation of the Newton-LMS algorithm [2]:
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w(k) = w(k − 1) + μ(k)R−1(k − 1)x(k)e(k) (4)

where e(k) is the a-priori estimation error given by (5) and
μ(k) is the variable step-size which may be required to
stabilize the recursion in the update equation. The value of
μ(k) is given in (6)

e(k) = d(k)− xT (k)w(k − 1) (5)

μ(k) =
1

β + xT (k)R−1(k − 1)x(k)
(6)

III. A NEW QUASI-NEWTON LMS ALGORITHM

Newton-LMS in its original form is computationally very
complex as it requires inversion of the autocorrelation matrix
at every time step. We propose to replace the inverse by an
approximate one, obtained from the Toeplitz approximation of
R(k − 1). Assuming that the approximate inverse satisfies

P(k − 1)R(k − 1) = U(k − 1) (7)

where U(k−1) is a matrix having eigenvalues in the unit disc
when the eigenvalue spread of R(k − 1) is less than some
certain value. The weight update equation of the proposed
algorithm would be

w(k) = w(k − 1) + μ(k)P(k − 1)x(k)e(k) (8)

which, by making use of (7), can be written as

w(k) = w(k − 1) + μ(k)U(k − 1)R−1(k − 1)x(k)e(k) (9)

Following a similar procedure for the original Newton-LMS
we get

w̄(k) =
[
I− μ(k)α−1U(k − 1)

]
w̄(k − 1)

+ μ(k)α−1U(k − 1)wopt (10)

where wopt is the optimum solution and hence, for conver-
gence, it is sufficient that 0 < μ < 1

λmax(U(k−1))

IV. IMPLEMENTATION OF THE APPROXIMATE INVERSION

TECHNIQUE

In this section, implementing the multiplication of R−1(k−
1)x(k), or equivalently P(k−1)x(k), using the DFT method is
described in detail. The main idea is to obtain an approximate
inversion of R(k−1) and apply transform techniques to carry
out the multiplication P(k − 1)x(k) in the update equation.

Given a Toeplitz autocorrelation matrix (R) corresponding
to the autocorrelation sequence (ACS) of a stationary process:

r(n) = E {x(k)x∗(k + n)} , n = −(N − 1), . . . , (N − 1)
(11)

where r(−n) = r∗(n). The matrix R can be written as:

⎡
⎢⎢⎢⎣

r(0) r(−1) . . . r (−(N − 1))
r(1) r(0) . . . r (−(N − 2))

...
...

. . .
...

r(N − 1) r(N − 2) . . . r(0)

⎤
⎥⎥⎥⎦ (12)

The power spectrum of the signal corresponding to the trun-
cated ACS is,

S(ω) =

N−1∑
n=−(N−1)

r(n)e−jnω . (13)

Where the inverse of R can be approximated using the inverse
power spectrum defined as:

Q(ω) =
1

S(ω)
=

N−1∑
n=−(N−1)

q(n)e−jnω . (14)

Where P = Toep {q(n)} generated by the sequence
{q(n); n = −(N − 1), . . . , (N − 1)}.

Now, considering the sequence {q(n); n = −(N −
1), . . . , (N − 1)}, the symmetric sequence gq(k) can be
constructed as:

gq(k)=

{
qi, 0 ≤ i ≤ (N − 1)
q∗i , −(N − 1) ≤ i < 0

(15)

where q∗i = qi.
The nth element of the vector pf (k) = P(k)x(k) can be
written as:

pf,n(k) =

N∑
m=1

qn,mxm−1(k), n = 1, 2, . . . , N. (16)

Rewriting (16) in terms of the sequence in (15) gives

pf,n(k) =

N−1∑
m=0

gn−m−1xm(k), n = 1, 2, . . . , N, (17)

Equation (17) represents the convolution sum. Now, taking
(2N − 1)-point DFT of both sides of (17) at time k

Pfe(l) = G(l)Xe(l), l = 1, 2, . . . , 2N − 1, (18)

where Pfe(l) is the DFT of the zero-padded sequence
{pfe,n(k); n = 1, 2, . . . , 2N − 1}:

pfe,n(k)=

{
pf,n(k), n = 1, 2, . . . , N
0, n = N + 1, . . . , 2N − 1,

(19)

and Xe(l) is the DFT of xe(k) = [x(k) 0
¯
] where 0

¯
is an (N−

1)-dimensional zero vector. The sequence {pf,n(k); n =
1, 2, . . . , N} can now be recovered from the inverse DFT of
Pfe(l).

By applying this method, the computational complexity of
the QN-LMS algorithm will be significantly reduced as shown
in Table I.
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Fig. 1. Block diagram of the adaptive noise cancellation model.

V. SIMULATION RESULTS

The performance of the algorithm has been compared with
that of the QN-LMS algorithm in noise cancellation and
channel equalization settings under additive white Gaussian
noise (AWGN).

TABLE I
COMPUTATIONAL COMPLEXITY OF AIQN-LMS AND QN-LMS

ALGORITHMS

AIQN-LMS QN-LMS
Mul./Div. 0.5N2 +N [5 + 3log2(N)] 6N2 + 3N + 2
Add./Sub. 0.5N2 +N [1.5 + 9log2(N)] 5N2 + 3N + 3

A. Adaptive Noise Cancellation

A block diagram of the noise cancellation setting used is
shown in Fig. 1. The input signal is assumed to be white
Gaussian with zero mean and unity variance (x(k) ∼ G(0, 1)).
The noise model is assumed to be AWGN with zero mean and
variance (σ2

v = 4× 10−4).
Both algorithms were implemented with the parameters:

filter length of N = 12 taps and β = 0.992. Fig. 2 shows that
both algorithms converge to the same mean-square-error (mse)
(mse=-37dB). However, the proposed AIQN-LMS algorithm
converges faster than the QN-LMS algorithm (AIQN-LMS
converges after 520 iterations where the QN-LMS converges
after 750 iterations) with a significant reduction in the compu-
tational complexity of the proposed algorithm. Table I shows
the computational complexity of both algorithms.

B. Adaptive Channel Equalization

The performance of the proposed algorithm becomes more
prominent if the eigenvalue spread of the autocorrelation
matrix is relatively low. To show this, we show the perfor-
mance in the channel equalization setting described in [1]. The
block diagram of the channel equalization model, used in this
experiment, is depicted in Fig. 3. The two random-number
generators (1 and 2) in the model are used to generate the
transmitted signal xn and the additive noise at the receiver
input, respectively. The sequence xn is a Bernoulli sequence
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Fig. 2. Ensemble mse for AIQN-LMS and QN-LMS algorithms in AWGN
for noise cancellation setting.
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Fig. 3. Block diagram of the adaptive equalization model.

with xn = ±1; the random variable xn has a zero mean and
variance 1, and v(n) is a white Gaussian with zero mean and
variance dependent on the desired SNR. The impulse response
of the channel is defined by: [1]

h(n)=

{
1
2

[
1 + cos

(
2π
W (n− 2)

)]
, n = 1, 2, 3,

0, otherwise
(20)

where W controls the eigenvalue spread of the autocorrelation
matrix.

The performance of the proposed AIQN-LMS algorithm is
again compared to that of the QN-LMS [1] algorithm. The
algorithms were implemented with the parameters: filter length
of N = 11 taps, signal-to-noise ratio (SNR) = 30dB, W = 2.9
or equivalently the eigenvalue spread of the autocorrelation
matrix (χ(R) = 6.0782), and a delay of Δ = 7. For the
proposed AIQN and QN-LMS β was selected to be unity.
Fig. 4 shows that all the algorithms converge to the same
mean-square-error (mse) (mse=-28dB). However, the proposed
AIQN algorithm converges faster than the QN-LMS algorithm
(AIQN-LMS converges after 120 iterations where the QN-
LMS converges after 250 iterations) with reduced computa-
tional complexity.
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Fig. 4. Ensemble mse for AIQN-LMS and QN-LMS algorithms in AWGN
for channel equalization setting.

VI. CONCLUSIONS

In this paper, a new quasi-Newton LMS algorithm is pro-
posed. The proposed AIQN-LMS algorithm replaces the in-
verse of the input-signal autocorrelation matrix by an approxi-
mate one, assuming that the input-signal autocorrelation matrix
is Toeplitz. The algorithm takes advantage of the FFT which
in turn leads to a significant reduction in the computational
complexity without sacrificing performance. The performance
of the proposed AIQN-LMS algorithm is compared to that
of the QN-LMS algorithm in noise cancellation and channel
equalization settings. The proposed AIQN-LMS algorithm has
lower computational complexity than that of the QN-LMS
algorithms with higher and/or the same performance in terms
of mse and convergence rate.
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