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Abstract—When hypervolume is used as part of the selection or
archiving process in a multiobjective evolutionary algorithm, it is
necessary to determine which solutions contribute the least hyper-
volume to a front. Little focus has been placed on algorithms that
quickly determine these solutions and there are no fast algorithms
designed specifically for this purpose. We describe an algorithm,
IHSO, that quickly determines a solution’s contribution. Further-
more, we describe and analyse heuristics that reorder objectives to
minimize the work required for IHSO to calculate a solution’s con-
tribution. Lastly, we describe and analyze search techniques that
reduce the amount of work required for solutions other than the
least contributing one. Combined, these techniques allow multiob-
jective evolutionary algorithms to calculate hypervolume inline in
increasingly complex and large fronts in many objectives.

Index Terms—Diversity, evolutionary computation, hyper-
volume, multiobjective optimization, performance metrics.

I. INTRODUCTION

H
YPERVOLUME [1], also known as the S-metric [2] or

the Lebesgue measure [3], [4], has recently been finding

favor as a metric for comparing the performance of multiob-

jective evolutionary algorithms (MOEAs). The hypervolume of

a set of solutions measures the size of the portion of objective

space that is dominated by those solutions collectively. Gen-

erally, hypervolume is favored because it captures in a single

scalar both the closeness of the solutions to the optimal set

and, to some extent, the spread of the solutions across objective

space. Hypervolume also has nicer mathematical properties than

many other metrics: Zitzler et al. [5] state that hypervolume is

the only unary metric of which they are aware that is capable of

detecting that a set of solutions is not worse than another set

, and Fleischer [6] has proved that hypervolume is maximized

if and only if the set of solutions contains only Pareto optima.

Hypervolume has some nonideal properties too: it is sensitive

to the relative scaling of the objectives, and to the presence or

absence of extremal points in a front.

A fast algorithm for calculating hypervolume exactly is the

hypervolume by slicing objectives algorithm (HSO) [7]–[9].

HSO works by processing the objectives in a front, rather than

the points. It divides the D-hypervolume to be measured into

separate D-slices through one of the objectives, then it

calculates the hypervolume of each slice and sums these values

to derive the total. In the worst case, HSO is exponential in

the number of objectives, but until recently, it had better com-

plexity than other algorithms. In addition, While et al. [10] have

described good heuristics that optimize the order in which the
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objectives should be processed for a given front by estimating

the “worst-case work” required to process the slices remaining

after eliminating each objective. These heuristics reduce the

running time of HSO for representative data by 25%–98%.

Algorithms from the computational geometry field have re-

cently been applied to hypervolume calculation by Beume and

Rudolph and separately by Fonseca et al. Beume and Rudolph

[11] adapt the Overmars and Yap [12] algorithm for solving the

Klee’s measure problem to instead calculate the hypervolume

of a front. Similarly, Fonseca et al. [13] apply the Overmars

and Yap algorithm for the 3-D base case in order to provide a

performance boost to HSO. Beume and Rudolph’s adaptation

boasts an impressive improvement in worst-case complexity,

from to , however, as of yet there

are no performance comparisons between their algorithm and

HSO with heuristics.

Hypervolume is also used inline in some evolutionary algo-

rithms, as part of a diversity mechanism [14], as part of an

archiving mechanism [15], or recently as part of the selection

mechanism [16], [17]. The requirement in such cases is to com-

pare the exclusive hypervolume contributed by different points,

i.e., the amount by which each point increases the hypervolume

of the set. Clearly, if hypervolume calculations are incorporated

into the execution of an algorithm (as opposed to hypervolume

used as a metric after execution is completed), there is a much

stronger requirement for those calculations to be efficient. The

ideal for such uses is an incremental algorithm that minimizes

the expense of repeated invocations.

The principal contributions of this paper are a version of HSO

which is customized for inline incremental hypervolume cal-

culations, and queueing techniques and heuristics that improve

performance for hypervolume algorithms used within a MOEA.

The customized algorithm has two parts.

• The algorithm incremental HSO (IHSO) calculates the ex-

clusive hypervolume of a point relative to a set of points

. The principal optimizations in IHSO are minimizing the

number of slices that have to be processed, and ordering the

objectives intelligently.

• The algorithm performs point selection for diver-

sity, archiving, or fitness. works by repeated appli-

cation of IHSO to calculate the exclusive hypervolume for

each point in a set. The principal optimizations in

are ordering the points intelligently, and calculating as little

hypervolume as possible for each point.

will provide a substantial performance improvement

for evolutionary algorithms that perform inline incremental

hypervolume calculations. We note that although Beume and

Rudolph’s recent work [11] does improve the complexity of

hypervolume algorithms for metric calculations, customized

algorithms are not yet available for incremental hypervolume

calculations.
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The rest of this paper is structured as follows. Section II de-

fines the concepts and notation used in multiobjective optimiza-

tion and throughout this paper. Section III describes HSO and

the heuristics used to optimize its performance. Section IV de-

scribes how HSO can be customized into IHSO and to

calculate exclusive hypervolume efficiently. Section V reports

on some experiments to determine the fastest incremental al-

gorithm, and to explore some important issues for users of the

algorithm. Section VI concludes this paper and discusses some

possibilities for future work.

II. DEFINITIONS

In a multiobjective optimization problem, we aim to find the
set of optimal tradeoff solutions known as the Pareto optimal
set. Pareto optimality is defined with respect to the concept of
nondomination between points in objective space. Given two
objective vectors and , dominates iff is at least as good
as in all objectives, and better in at least one. A vector is
nondominated with respect to a set of solutions iff there is no
vector in that dominates . is a nondominated set iff all
vectors in are mutually nondominating. Such a set of objec-
tive vectors is sometimes called a nondominated front.

A vector is Pareto optimal iff is nondominated with re-
spect to the set of all possible vectors. Pareto optimal vectors are
characterized by the fact that improvement in any one objective
means worsening at least one other objective. The Pareto op-

timal set is the set of all possible Pareto optimal vectors. The
goal in a multiobjective problem is to find the Pareto optimal
set, although for continuous problems a representative subset
will usually suffice.

Given a set of solutions returned by an algorithm, the ques-
tion arises how good the set is, i.e., how well it approximates
the Pareto optimal set. One metric used for comparing sets of
solutions is to measure the hypervolume of each set. The hyper-
volume of is the total size of the space that is dominated by
the solutions in . The hypervolume of a set is measured rela-
tive to a reference point, usually the anti-optimal point or “worst
possible” point in space. (We do not address here the problem
of choosing a reference point, if the anti-optimal point is not
known or does not exist: one suggestion is to take, in each ob-
jective, the worst value from any of the fronts being compared.)
If a set has a greater hypervolume than a set , then is
taken to be a better set of solutions than .

Precise definitions of these terms can be found in [18].

III. HYPERVOLUME BY SLICING OBJECTIVES

Given a set of mutually nondominating points in objectives,
HSO is based on the idea of processing the points one objective

at a time.
Initially, the points are sorted by their values in the first objec-

tive to be processed. These values are then used to cut cross-sec-
tional “slices” through the hypervolume: each slice will itself
be an -objective hypervolume in the remaining objectives.
The -objective hypervolume in each slice is calculated and
each slice is multiplied by its depth in the first objective, then
these -objective values are summed to obtain the total hyper-
volume. Each slice through the hypervolume will contain a dif-
ferent subset of the original points. The th slice from the top
can contain only the points with the best values in the first

Fig. 1. One step in HSO for the four three-objective points shown. Objective �
is processed, leaving four two-objective shapes in � and �. Points are marked by
circles and labeled with letters: unfilled circles represent points that are domi-
nated in � and �. Slices are labeled with numbers, and are separated on the main
picture by dashed lines. (Figure reproduced from [9].)

objective. However, not all points “contained” by a slice will
contribute volume to that slice: some points may be dominated
in the remaining objectives and will contribute nothing. After
each step, the number of objectives is reduced by one, the points
are resorted in the next objective, and newly dominated points
within each slice are discarded.

Fig. 1 shows the operation of one step in HSO, including the
slicing of the hypervolume, the allocation of points to each slice,
and the elimination of newly dominated points.

The natural base case for HSO is when only one objective
remains, when there can be only one nondominated point left
in each slice. The value of this point is then the one-objective
hypervolume of its slice. However, in practice, for efficiency
reasons, HSO terminates when two objectives remain, which is
an easy and fast special case.

Fig. 2 gives pseudocode for HSO.

A. The Complexity and Performance of HSO

The following recurrence relation captures the worst-case
complexity of HSO [9]:

(1)

(2)

The summation in (2) represents the fact that each slicing action
generates slices that are processed independently to derive the
hypervolume of the front.

Solving this recurrence relation gives the following [9]:

(3)

Thus, HSO is exponential in the number of objectives , in the
worst case (we assume that ).

The “worst case” in this context means we assume that no
(partial) point is ever dominated during the execution of HSO,
thus maximizing the number of points in each slice that is pro-
cessed. However, this is unlikely to be true for real-world fronts.
The amount of time required to process a given front depends
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Fig. 2. Pseudocode for HSO. (Code reproduced from [10].)

Fig. 3. A pathological example for HSO. This pattern describes sets of five
points in � objectives, � � �. All columns except the last are identical. The
pattern can be generalized for other numbers of points. (Example reproduced
from [10].)

crucially on how many points are dominated at each stage and,
in addition, on how early in the process points dominate other
points.

From this fact, we can infer that the time to process a given
front varies with the order in which the objectives are processed.
A simple example illustrates how. Consider the set of points in
Fig. 3, in a maximization problem.

If we process the first objective (or, in fact, any objective ex-
cept the last), no point dominates any other point in the list in
the remaining objectives. Thus, we do indeed have the

worst case for HSO, generating slices containing, respec-
tively, points.

If we process the last objective, each point dominates all sub-
sequent points in the list in the remaining objectives. Then,
we generate slices each containing only one point. Specifi-
cally, the top slice (corresponding to the highest value in the
last objective) contains only the point , the second slice
contains only the point , all the way down to the bottom
slice, which contains only the point . This is of course
the best case for HSO, and the hypervolume is calculated much
more quickly.

Note that, in general, there is a continuum of performance
improvement available: for example, for the points in Fig. 3, the
earlier the last objective is processed, the faster the hypervolume
will be calculated. Thus, enhancing HSO with a mechanism to
identify a good order in which to process the objectives in a
given front can make a substantial difference to its performance.

B. Optimizing the Performance of HSO

While et al. describe and evaluate two heuristics for choosing
the order in which the objectives should be processed for a given
front [10]. They characterize the better heuristic as “minimizing
the amount of worst-case work” (MWW). For each objective,
MWW:

• calculates the number of nondominated partial points that
will be in each slice;

• estimates the worst-case amount of work required to
process each slice, using (3);

• and sums these values to estimate the amount of work re-
quired if HSO processes this objective first.

Then, HSO processes the objective that represents the least
work. MWW is applied at each iteration of HSO until only four
objectives remain.

An empirical comparison of HSO versus HSO+MWW on
randomly generated fronts and on fronts from the well-known
DTLZ test suite [19] shows that MWW can reduce the time to
process fronts in 5–9 objectives by 25%–98%.

IV. RUNNING HSO INCREMENTALLY

Hypervolume is used inline in an evolutionary algorithm in

three ways:

• as part of a diversity mechanism;

• as part of an archiving mechanism;

• as part of the selection mechanism.

In all three contexts, the requirement is to calculate the ex-

clusive hypervolume contributed by a point relative to a set

of points , i.e., how much additional hypervolume we get by

adding to . This can be defined as

(4)

For example, the exclusive hypervolume contributed by Point b

in Fig. 1 is the cuboid bounded by b and by the point (5, 0, 4),

i.e., the long thin cuboid on which b sits. Note that exclusive hy-

pervolumes usually have a much more complicated shape than

this: consider as an example Point c in Fig. 1.

A typical requirement when hypervolume is used in this way

is to calculate the exclusive hypervolume contributed by each of

a set of points , then to discard the point in that contributes
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Fig. 4. Pseudocode for IHSO. Other functions are defined in Fig. 2. The re-
ordering of the objectives is not shown.

the least exclusive hypervolume. Thus, we return the subset of

of cardinality that has the largest hypervolume. This idea

can be extended to situations where we need to discard multiple

points from [20], [21], but we do not deal with this issue here.

Obviously, we can calculate the exclusive hypervolume con-

tributed by each point in by applications of HSO: one to

itself, and one to each subset of size . However, we can

do far better than this performance-wise by customizing HSO

to calculate exclusive hypervolumes directly. We define a new

algorithm IHSO that takes a point and a set of mutually non-

dominating points and returns . We customize

HSO in three ways to derive IHSO.

1) Disregarding “higher” slices: will not contribute to any

slice above itself in the current objective, therefore, the

hypervolumes of these slices need not be calculated. For

example, in Fig. 1, Point b contributes nothing to Slice 1.

2) Disregarding some “lower” slices: if is dominated by a

point in in the objectives after the current one, then

will not contribute to any slice containing (or any point

that dominates ), and the hypervolumes of these slices

need not be calculated. For example, in Fig. 1, Point b

contributes nothing to Slices 3 or 4, because it is dominated

by Point c in and .

3) Processing the objectives in the right order: as with HSO,

we can optimize the performance of IHSO by selecting a

good order in which to process the objectives.

Fig. 4 gives pseudocode for IHSO. The code assumes that

none of the points in dominates , although the converse is

not true: may dominate one or more points in . The principal

differences from HSO in Fig. 2 are in the function .

• A slice is added to only if it is below in the current

objective, i.e., below .

Fig. 5. Outline of the point-ordering scheme in ���� .

• If at any time is dominated in the remaining objectives,

no more slices are added to .

Given IHSO, we can define an algorithm to iden-

tify the point in a set that contributes the least exclusive hy-

pervolume to . We use applications of IHSO to calculate

for each point in , then simply return

the point with the smallest value. Within , it is useful to

order the calculations so that small points are likely processed

first. This enables early termination for subsequent points: if the

exclusive hypervolume for is known, then as soon as the exclu-

sive hypervolume for is known to be bigger, we can eliminate

from consideration as the smallest contributor. Note also that

the order in which the objectives are processed can be different

for different points in .

Thus, there are two questions to be answered in order to derive

an efficient implementation of IHSO and .

A. How Do We Order the Objectives When Calculating

in IHSO?

We have tried several heuristics that can be used to order the

objectives for a point .

1) Rank: process first the objective in which is best, so that

it is more likely to be dominated early.

2) Reverse rank: process first the objective in which is worst,

so that there are fewer slices to calculate.

3) Dominated: find the point that beats in the most ob-

jectives, and first process the slices in which beats .

This method partitions the objectives between those where

beats , and those where beats . Within these parti-

tions, order objectives by the rank heuristic.

4) MWW: as defined in Section III-B.

While these heuristics can be used to reorder objectives for all

calculations [10], we find experimentally that it is more effec-

tive to reorder the objectives for each individual slice recursively

calculated by IHSO. Although this comes at additional cost, sav-

ings are made on slices that are expensive to calculate, for ex-

ample, a slice with a difficult shape, or one with many points or

objectives. One example of where savings are made using this

approach is for the dominated heuristic, where the point used

to reorder the objectives may not even exist in a given slice.

B. How Do We Order the Points When Calculating Their

Exclusive Hypervolumes in ?

We have devised two schemes to improve the performance

of when used to find the worst contributing point. The

first scheme reorders the points with the aim of calculating the

worst point early. Unnecessary calculations are then saved on

subsequent points. This scheme is outlined in Fig. 5.
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Fig. 6. Outline of the best-first queueing scheme in ���� .

We have defined two measures that can be used to order the

points. Each point can be assessed by the following.

1) Rank: the sum of the number of points that beat in each

objective. Points are sorted in descending order.

2) Volume: the “inclusive hypervolume” of : the product of

its objectives. Points are sorted in ascending order.

The point with the least hypervolume contribution to the set

is more likely to have a large rank value and to have a small

inclusive hypervolume.

We have also defined an alternative “best-first” queueing

(BFQ) scheme that processes the points “concurrently,” to

avoid the question of ordering. This scheme is outlined in

Fig. 6. The principal parameter in the queueing scheme is the

definition of “a bit,” i.e., the granularity of the concurrency. If

the granularity is too coarse, the algorithm will do more calcu-

lation than necessary: if it is too fine, the overhead of managing

the queue will become significant. At present, we use a simple

granularity scheme based on specifying the dimensionality of a

hypervolume to be calculated in each iteration of the loop. A

granularity of means that one slice in objectives is calculated

in each iteration. This dimensionality is set according to (5)

(5)

The application of in (5) means that for low dimension-

alities, we abandon the queueing scheme and just calculate the

complete exclusive hypervolume of each point. This system

works well for the limited range of dimensionalities studied so

far, but it is likely to need updating in the future.

We have implemented the BFQ scheme using a heap based

priority queue. Note that this approach requires the algo-

rithm to be modified to update the overall hypervolume contri-

bution of points whenever a slice is calculated in dimensions.

Section V describes an empirical comparison of the perfor-

mance of these methods.

V. EXPERIMENTS AND EVALUATION

We performed a series of experiments to explore issues with

IHSO and , and to determine the combination of heuris-

tics that offers the best performance. We used two types of data

in the experiments.

• We used randomly generated fronts, initialized by gener-

ating points with random values , , in all

objectives. In order to guarantee mutual nondomination,

we initialized and added each point to only if

would be mutually nondominating.

• We used the discontinuous and spherical fronts from the

DTLZ test suite [19]. For each front, we generated math-

ematically a representative set of 10 000 points from the

(known) Pareto optimal set: then to form a front of a given

size, we sampled this set randomly. We omit the linear front

from DTLZ because it gives very similar performance to

the spherical front, and we omit the degenerate front be-

cause it can be processed in polynomial time [9], [10], and

it is somewhat unrealistic anyway.

The DTLZ fronts may not realistically represent real-world

data, and therefore we believe that random fronts provide a

better performance baseline for most problems. As it is hard to

give performance comparisons for all front shapes and types,

random data may provide a better approximation of ’s

performance on these fronts than specific DTLZ fronts.

The data used in the experiments are available [22]. Source

code for our optimized algorithm is available from the same

site. All timings were performed on a dedicated 2.8 GHz Pen-

tium IV machine with 512 Mb of RAM, running Red Hat En-

terprise Linux 3.0. All algorithms were implemented in C and

compiled with gcc -O3. All times include the costs of calcu-

lating the heuristics, where appropriate.

A. Does Point-Ordering Matter?

We performed a series of experiments to establish whether the

time needed to identify the least-contributing point in a front de-

pends on the order in which the points in the front are processed.

Each graph in Fig. 7 shows five lines, each of which corresponds

to one front with 30 points in nine objectives. Each line plots

a continuous cumulative histogram of the distribution of times

needed to determine the least-contributing point for 50 000 ran-

domly generated point-orderings of that front. No objective-re-

ordering is applied.

Fig. 7 shows clearly that evaluating points in the right order

can make a huge difference to the performance of the algorithm.

The raw data show that typically the best order is processed

300–6000 times faster than the worst order, and 60–200 times

faster than the median order.

Thus, point-ordering will play an important role in optimizing

the performance of .

B. What Is the Best Algorithm?

We performed a series of experiments to identify a good com-

bination of heuristics to use in IHSO and . Each graph in

Figs. 8–10 shows the performance for varying front-sizes of the

six combinations of the following heuristics from Section IV.

• Point-ordering: Rank, volume, and the best-first queueing

scheme.

• Objective-ordering: Rank and dominated.

Other heuristics discussed in Section IV performed consis-

tently worse than those illustrated in the figures. The graphs

plot fronts up to 1000 points that can be processed in 1.5 s: this

should be a reasonable amount of time for an incremental hy-

pervolume calculation for most applications. Figs. 8–10 show

that using the BFQ approach gives the best results other than

in five objectives. Although BFQ loses slightly in five objec-

tives, this is probably as a result of the overhead caused by the

priority queue. If point reordering algorithms make perfect deci-

sions, they will always outperform the BFQ approach. However,

the savings made for more complex fronts outweigh the cost of

maintaining the queue as can be observed for all front types in

8 and 11 objectives. Additionally, using a point-ordering algo-

rithm rather than BFQ introduces a greater uncertainty in the
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Fig. 7. Variation in processing time for ���� for different point-orderings.
The five lines on each graph each plot a continuous cumulative histogram of
the (log-scale) processing times for 50 000 distinct orderings for one front.
(a) Random fronts: 30 points in nine objectives. (b) Discontinuous fronts: 30
points in nine objectives. (c) Spherical fronts: 30 points in nine objectives.

results. A bad point-ordering decision can, in the worst case,

require the calculation of every point’s entire exclusive hyper-

volume. This effect is evident when comparing the BFQ/rank

algorithm to the rank/rank algorithm for random fronts, shown

in Fig. 9(a). While the results are reasonably close for most of

the data points, large fluctuations are observed.

Fig. 8. Comparison of the performance of ���� with various heuristic com-
binations. Each line plots the average processing time for 200 distinct fronts in
five objectives. The legend on the middle graph applies for all three. (a) Random
fronts in five objectives. (b) Discontinuous fronts in five objectives. (c) Spher-
ical fronts in five objectives.

For all discontinuous and random data, BFQ/rank compares

favorably to or beats all other objective heuristic and point-or-

dering techniques. This dominance increases with the number

of objectives.

For spherical data, the dominated heuristic performs ex-

tremely well. However, we believe spherical data is being

especially exploited by this heuristic. Examination of the data
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Fig. 9. Comparison of the performance of ���� with various heuristic
combinations. Each line plots the average processing time for 200 distinct
fronts in eight objectives. The legend on the middle graph applies for all
three. (a) Random fronts in eight objectives. (b) Discontinuous fronts in eight
objectives. (c) Spherical fronts in eight objectives.

reveals that a large proportion of the points are dominated early

if two particular objectives are processed first. As such, we be-

lieve that spherical data does not very well represent real-world

data. However, the dominated heuristic will, due to its nature,

provide better results for exploitable real-world fronts, where

many of the points contribute in only a small proportion of

Fig. 10. Comparison of the performance of ���� with various heuristic com-
binations. Each line plots the average processing time for 200 distinct fronts in
11 objectives. The legend on the middle graph applies for all three. (a) Random
fronts in 11 objectives. (b) Discontinuous fronts in 11 objectives. (c) Spherical
fronts in 11 objectives.

objectives. Additionally, the spherical data does point out a

reason why the BFQ approach is superior to point-ordering

heuristics. In all cases, BFQ commands a massive lead over

the point heuristics which demonstrates the sensitivity of our

point-ordering heuristics to front shapes. We take this as further

evidence that the BFQ technique is more robust than point-or-

dering techniques.
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TABLE I
TYPICAL SIZES OF FRONTS IN VARIOUS NUMBERS OF OBJECTIVES THAT

���� CAN PROCESS IN 1 S

Table I shows what size of front optimized (rank

heuristic and BFQ) can process in 1 s, on average, for each

front-type. Average processing time is the most important

consideration, as IHSO will be called many times in a typical

MOEA run.

C. How Does Performance Vary With the Data?

Figs. 8–10 only plot the average performance of the various

algorithms as front size increases. We also performed a series

of experiments to investigate how the performance of optimized

varies for a given front with the nature of a front.

Each graph in Fig. 11 plots a histogram showing the distribu-

tion of times needed to process 50 000 different fronts of the rel-

evant type, and also the cumulative proportions of those fronts

that are processed within a given time.

While the great majority of fronts are processed very quickly,

there are cases where finding the least contributing point takes a

disproportionate amount of time. Such outliers could be due to

several factors. As the fronts become large, in some cases there

are many points that contribute similar hypervolumes and their

contribution may be difficult to calculate. For example, in the

case where every point contributes the same hypervolume, nei-

ther the point-ordering nor BFQ techniques help performance.

Thus, while the average performance of is extremely

good, this performance cannot be guaranteed for complex

fronts.

D. Does the Choice of Reference Point Affect Performance?

and Does Scaling Objective Values Affect Performance?

Choice of reference point can significantly affect perfor-

mance for the BFQ scheme. Fig. 12 illustrates these effects.

Each graph in Fig. 12 shows the performance of optimized

at points in 9-D for the relevant front type, with two

lines: the first plots time to determine the smallest point versus

reference point offset, averaged over 200 fronts, and the second

plots the same with all objectives scaled to . Keep in mind

that reference point offsets are relatively “larger” for the scaled

fronts, for example, compare point with reference point

of to a point with reference point . There-

fore, scaled and unscaled fronts are not necessarily comparable

for a given offset value.

The graphs show the observed results are due to several ef-

fects that result from a change in reference point. First, the

choice of reference point influences which point has the smallest

contribution. Second, regardless of whether a change in refer-

ence point changes which point is the smallest, a change in a

Fig. 11. Variation in processing time for optimized ���� for different fronts.
Each graph plots a histogram of the (log-scale) processing times for 50 000 dis-
tinct fronts, and also the proportion of the fronts that were processed within a
given time. (a) Random fronts: 650 points in nine objectives. (b) Discontinuous
fronts: 65 points in nine objectives. (c) Spherical fronts: 30 points in nine ob-
jectives.

point’s contribution may also require further calculation of other

points to prove that it is the smallest. Similar effects are caused

by scaling objectives.

Although the reference point should not be chosen for perfor-

mance criteria and rather so that the “best” points are retained,
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Fig. 12. Variation in processing time for optimized ���� for different ref-
erence points. Each graph plots the average (log-scale) processing time for 200
distinct fronts against the offset of the reference point from the worst value in
each objective. The graphs show ���� applied to raw data, and to data scaled
to ��� in each objective. The legend on the middle graph applies for all three.
(a) Random fronts: 650 points in nine objectives. (b) Discontinuous fronts: 65
points in nine objectives. (c) Spherical fronts: 30 points in nine objectives.

the resulting effect on performance should be kept in mind when

evaluating on difficult fronts.

VI. CONCLUSION AND FUTURE WORK

We have described a new algorithm for the calculation of

incremental hypervolume when used within evolutionary algo-

rithms, and techniques to apply this algorithm that minimize its

cost. By applying heuristics to reorder objectives, we are able to

increase the size of the fronts we are able to process. Addition-

ally, by applying a best-first queueing approach we are able to

calculate only as much of a point’s hypervolume as is necessary

to prove that it is not the smallest. We have demonstrated that,

in general, this approach is superior to processing points using

point reordering heuristics.

Through the combination of these techniques, we have de-

scribed a method to effectively deal with very large numbers of

points in many objectives within an EA. In doing so, the use

of hypervolume should be computationally practical in tackling

most complex real-world multiobjective problems. We recom-

mend the BFQ strategy and the rank objective heuristic as a

combination that performs well on a range of problems. How-

ever, better objective heuristics may exist for some particular

front types.

Given the introduction of recent work on hypervolume for

metric calculations, future work will look at adapting solutions

to the Klee’s measure problem to incremental hypervolume

calculations. This would involve an adaptation of ideas from the

Overmars and Yap algorithm to quickly perform incremental

hypervolume calculations, and the application of our BFQ

strategy for worst-point search. This new algorithm may also

benefit from objective reordering heuristics similar to those

described. Ideally, the combination of these works would allow

the use of hypervolume within EA optimization to be not only

practical but relatively inexpensive for all but the most difficult

problems.
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