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A Fast Iterative Nearest Point Algorithm for Support
Vector Machine Classifier Design

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy

Abstract—In this paper we give a new fast iterative algorithm
for support vector machine (SVM) classifier design. The basic
problem treated is one that does not allow classification violations.
The problem is converted to a problem of computing the nearest
point between two convex polytopes. The suitability of two
classical nearest point algorithms, due to Gilbert, and Mitchell
et al., is studied. Ideas from both these algorithms are combined
and modified to derive our fast algorithm. For problems which
require classification violations to be allowed, the violations are
quadratically penalized and an idea due to Cortes and Vapnik
and Frieß is used to convert it to a problem in which there are no
classification violations. Comparative computational evaluation
of our algorithm against powerful SVM methods such as Platt's
sequential minimal optimization shows that our algorithm is very
competitive.

Index Terms—Classification, nearest point algorithm, quadratic
programming, support vector machine.

I. INTRODUCTION

T
HE last few years have seen the rise of support vector

machines (SVM’s) [27] as powerful tools for solving

classification and regression problems [5]. A variety of algo-

rithms for solving these problems has emerged. Traditional

quadratic programming algorithms [13] and modifications such

as the chunking algorithm [26] that make use of the fact that

the number of support vectors is usually a small percentage of

the total training set have been tried. These algorithms require

enormous matrix storage and do expensive matrix operations.

To overcome these problems, recently fast iterative algorithms

that are also easy to implement have been suggested [20], [12],

[19], [8], [23]; Platt's SMO algorithm [20] is an important

example. Such algorithms are bound to widely increase the

popularity of SVM’s among practitioners. This paper makes

another contribution in this direction. Transforming a particular

SVM classification problem formulation into a problem of

computing the nearest point between two convex polytopes in

the hidden feature space, we give a fast iterative nearest point

algorithm for SVM classifier design that is competitive with

the SMO algorithm. Like SMO, our algorithm also is quite

straightforward to implement. A pseudocode for our algorithm

can be found in [14]. Using this pseudocode an actual running
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code can be developed in short time. A Fortran code can be

obtained free from the authors for any noncommercial purpose.

The basic problem addressed in this paper is the two category

classification problem. Throughout this paper we will use to

denote the input vector of the support vector machine and

to denote the feature space vector which is related to by a

transformation, . As in all SVM designs, we do not

assume to be known; all computations will be done using only

the Kernel function, , where “ ” denotes

inner product in the space.

The simplest SVM formulation is one which does not allow

classification violations. Let be a training set of input

vectors. Let the index set for class 1 and the index set

for class 2. We assume , , and

. Let us define . The SVM design problem

without violations is

s.t.

(SVM-NV)

Let us make the following assumption.

Assumption A1: There exists a pair for which the con-

straints of SVM-NV are satisfied.

If this assumption holds then SVM-NV has an optimal solu-

tion, which turns out to be unique. Let

and , the bounding hyperplanes sep-

arating the two classes. , the margin between them is given

by . Thus SVM-NV consists of finding the pair of

parallel hyperplanes that has the maximum margin among all

pairs that separate the two classes.

To deal with data which are linearly inseparable in the

-space, and also for the purpose of improving generalization,

there is a need to have a problem formulation in which clas-

sification violations are allowed. The popular approach for

doing this is to to allow violations in the satisfaction of the

constraints in SVM-NV, and penalize such violations linearly

in the objective function

s.t.

(SVM-VL)

(Throughout, we will use and/or whenever the indexes run

over all elements of .) Here is a positive, inverse reg-

ularization constant that is chosen to give the correct relative

1045–9227/00$10.00 © 2000 IEEE
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weighting between margin maximization and classification vi-

olation. Using the Wolfe duality theory [5], [7] SVM-VL can be

transformed to the following equivalent dual problem:

s.t.

(SVM-VL-DUAL)

where and . It is computationally

easy to handle this problem since it is directly based on

(kernel) calculations. Platt's SMO algorithm, as well as others

are ways of solving SVM-VL-DUAL. SMO is particularly very

simple and, at the same time, impressively fast. In very simple

terms, it is an iterative scheme in which only two (appropriately

chosen) variables are adjusted at any given time so as to im-

prove the value of the objective function. The need for adjusting

at least two variables at a time is caused by the presence of the

equality constraint.

Remark 1: It is useful to point out that the Wolfe dual of

SVM-NV is same as SVM-VL-DUAL, with set to . There-

fore, any algorithm designed for solving SVM-VL-DUAL can

be easily used to solve the dual of SVM-NV, and thereby solve

SVM-NV.

Using a suggestion made by Cortes and Vapnik [6], in a re-

cent paper Frieß [9] has explored the use of a sum of squared

violations in the cost function

s.t.

(SVM-VQ)

Preliminary experiments by Frieß have shown this formulation

to be promising. Unlike SVM-VL, here there is no need to in-

clude nonnegativity constraints on for the following reason.

Suppose, at the optimal solution of SVM-VQ, is negative for

some . Then, by resetting , we can remain feasible and

also strictly decrease the cost. Thus, negative values of cannot

occur at the optimal solution.

Remark 2: As pointed out by Frieß [9], a very nice property

of SVM-VQ is that by doing a simple transformation it can be

converted into an instance of SVM-NV. Let denote the

dimensional vector in which the th component is one and all

other components are zero. Define

(1)

Then it is easy to see that SVM-VQ transforms to an instance

of SVM-NV. (Use , , instead of , , .) Note that, because

of the presence of variables, SVM-VQ's feasible space is al-

ways nonempty and so the resulting SVM-NV is automatically

feasible. Also note that, if denotes the Kernel function in the

SVM-VQ problem, then , the Kernel function for the trans-

formed SVM-NV problem is given by

where is one if and zero otherwise. Thus, for any

pair of training vectors the modified kernel function is

easily computed.

Our main aim in this paper is to give a fast algorithm for

solving SVM-NV. The main idea consists of transforming

SVM-NV into a problem of computing the nearest point be-

tween two convex polytopes and then using a carefully chosen

nearest point algorithm to solve it. Because of Remark 2,

our algorithm can also be easily used to solve SVM-VQ. By

Remark 1, algorithms such as SMO can also be used to solve

SVM-VQ. In empirical testing however, we have found that

our algorithm is more efficient for solving SVM-VQ, than

SMO used in this way. Even when the “typical” computational

cost of solving SVM-VL by SMO is compared with that of

solving SVM-VQ by our algorithm, we find that our algorithm

is competitive.

Frieß et al. [8] (deriving inspiration from the Adatron algo-

rithm given by Anlauf and Biehl [1] for designing Hopfield nets)

and, later, Mangasarian and Musicant [19] (using a successive

overrelaxation idea) suggested the inclusion of the extra term

in the objective functions of the various formulations. This

is done with computational simplicity in mind. When is

added to the objective functions of the primal SVM problems,

i.e., SVM-NV, SVM-VL and SVM-VQ, it turns out that the only

equality constraint in the dual problems, i.e., , gets

eliminated. Therefore, it is easy to give an iterative algorithm

for improving the dual objective function simply by adjusting

a single at a time, as opposed to the adjustment of two such

variables required by SMO. Frieß et al. [8] applied their kernel

Adatron algorithm to solve SVM-NV, Frieß [9] applied the same

to SVM-VQ, while Mangasarian and Musicant [19] applied the

successive overrelaxation scheme to solve SVM-VL. The basic

algorithmic ideas used by them is as follows: choose one , de-

termine a unconstrained step size for as if there are no bounds

on , and then clip the step size so that the updated satisfies

all its bounds.

If the term is included in the objective functions of

SVM-VQ and SVM-NV, then these problems can be easily

transformed to a problem of computing the nearest point of a

single convex polytope from the origin, a problem that is much

simpler than finding the nearest distance between two convex

polytopes. Our nearest point algorithm mentioned earlier sim-

plifies considerably for this simpler problem [14]. Our testing,

described in [14] shows that these simplified algorithms do not

perform as well as algorithms which solve problems without

the term. However, for problems where the entire kernel

matrix can be computed and stored in memory they can still be

very useful.

This paper is organized as follows. In Section II we refor-

mulate SVM-NV as a problem of computing the nearest point

between two convex polytopes. In Section III we discuss op-

timality criteria for this nearest point problem. Section IV de-

rives a simple check for stopping nearest point algorithms so
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as to get guaranteed accuracy for the solution of SVM-NV. The

main algorithm of the paper is derived in Sections V and VI.

Two classical algorithms for doing nearest point solution, due

to Gilbert [10] and Mitchell et al. [18], are combined and mod-

ified to derive our fast algorithm. A comparative computational

testing of our algorithm against Platt's SMO algorithm is taken

up in Section VII. We conclude with some closing remarks in

Section VIII.

II. REFORMULATION OF SVM-NV AS A NEAREST POINT

PROBLEM

Given a set we use to denote the convex hull of , i.e.,

is the set of all convex combinations of elements of

Let and where

and are as in the definition of SVM-NV. Since and

are finite sets, and are convex polytopes. Consider the

following generic problem of computing the minimum distance

between and

s.t. (NPP)

It can be easily noted that the solution of NPP may not be unique.

We can rewrite the constraints of NPP algebraically as

(2)

The equivalence of the problems SVM-NV and NPP can be

easily understood by studying the geometry shown in Fig. 1. As-

sumption A1 is equivalent to assuming that and are nonin-

tersecting. Thus A1 implies that the optimal cost of NPP is pos-

itive. If denotes the solution of SVM-NV and

denotes a solution of NPP, then by using the facts that maximum

margin and for some

, we can easily derive the following relationship between the

solutions of SVM-NV and NPP:

(3)

The following theorem states this relationship formally.

Theorem 1: solves SVM-NV if and only if there

exist and such that solves NPP and

(3) holds.

A direct, geometrically intuitive proof is given by Sancheti

and Keerthi [22] with reference to a geometrical problem in

robotics. Later, Bennett [3] proved a somewhat close result in

the context of learning algorithms. Here we only give a dis-

cussion that follows the traditional Wolfe–Dual approach em-

ployed in the SVM literature. The main reason for doing this is

Fig. 1. Among all pairs of parallel hyperplanes that separate the two classes,
the pair with the largest margin is the one which has (u � v ) as the normal
direction, where (u ; v ) is a pair of closest points ofU and V . Note thatw =
�(u � v ) for � chosen such that ku � v k = 2=kw k.

to show the relationships of NPP and the variables in it with the

Wolfe–Dual of SVM-NV and the variables there.

Using Wolfe duality theory [5], [7] we first transform

SVM-NV to the following equivalent dual problem:

s.t. (SVM-NV-DUAL)

where, as before, and . Since

implies that , we can in-

troduce a new variable, and rewrite as two

constraints

If we also define

(4)

then SVM-NV-DUAL can be rewritten as

s.t. (5)

In this formulation it is convenient to first optimize keeping

constant, and then optimize on the outer loop. Optimizing

with respect to yields

(6)
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Substituting this in (5) and simplifying, we see that (5) becomes

equivalent to

s.t. (7)

This problem is equivalent to the problem

s.t. (8)

If we define a matrix whose columns are

then it is easy to note that

If satisfies the constraints of (8), then where

and . Thus (8) is equivalent to NPP.

Wolfe duality theory [5] actually yields

Using this, (4) and (6) we can immediately verify the expression

for in (3). The expression for can be easily understood

from geometry.

Remark 3: The above discussion also points out an impor-

tant fact: there is a simple redundancy in the SVM-NV-DUAL

formulation which gets removed in the NPP formulation. Note

that NPP has two equality constraints and SVM-NV-DUAL has

only one, while both have the same number of variables. There-

fore, when quadratic programming algorithms are applied to

SVM-NV-DUALandNPPseparatelytheyworkquitedifferently,

evenwhenstartedfromthesame“equivalent”startingpoints.

III. OPTIMALITY CRITERIA FOR NPP

First let us give some definitions concerning support prop-

erties of a convex polytope. For a given compact set , let us

define the support function, , by

(9)

See Fig. 2. We use to denote any one solution of (9), i.e.,

satisfies

and (10)

Now consider the case where is a convex polytope:

and . It is well known [16] that the max-

imum of a linear function over a convex polytope is attained by

an extreme point. This means that and .

Therefore and can be determined by a simple enumera-

tion of inner products

where (11)

Fig. 2. Definition of support properties. s (�) is the extreme vertex of P in
the direction �. The distance between the hyperplanes, H and H is equal to
g (�; p)=k�k.

Thus (11) provides a simple procedure for evaluating the sup-

port properties of the convex polytope, . Let us also

define the function, by

By (9) it follows that

(12)

We now adapt these general definitions to derive an opti-

mality criterion for NPP. A simple geometrical analysis shows

that a pair, solves NPP if and only if

and

where ; in other words, solves NPP if and only

if and . Equivalently, is optimal

if and only if

and (13)

Let us define the function, by

(14)

Since and are nonnegative functions, it also follows that

is optimal if and only if . The following the-

orem states the above results (and related ones) formally.

Theorem 2: Suppose and . Then

the following hold. 1) . 2) if is a point that

satisfies , then there is a point on the line segment,

such that . 3) if is a point that

satisfies , then there is a point on the line segment,

such that . 4) solves NPP if

and only if .

Proof: a) This follows from (12) and (14).

b) Define a real variable and a function,

. describes the variation of as a generic point

varies from to over the line segment joining them. Since

, the result follows.

c) The proof is along similar lines as that of b).

d) First let . Let . Since

and , we have and



128 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 1, JANUARY 2000

Fig. 3. A situation satisfying (15). Here: a = s (�ẑ); b = s (ẑ); H : ẑ �
z = �h (�ẑ);H : ẑ �z = h (ẑ); andH : ẑ�z = 0:5(h (ẑ)�h (�ẑ)):

. Subtracting the two inequalities we get

where . Now

and hence is optimal for NPP. On the other hand, if

is optimal for NPP, we can set , and use

results a) and b) to show that .

IV. STOPPING CRITERIA FOR NPP ALGORITHMS

When a numerical algorithm is employed to solve any of the

problems mentioned earlier, approximate stopping criteria need

to be employed. In SVM design a dual formulation (such as

SVM-NV-DUAL and NPP) is solved instead of the primal (such

as SVM-NV) because of computational ease. However, it has to

be kept in mind that it is the primal solution that is of final in-

terest and that care is needed to ensure that the numerical algo-

rithm has reached an approximate primal solution with a guar-

anteed specified closeness to the optimal primal solution. It is

easy to give an example [14] to show that simply stopping when

the dual approximate solution has reached the dual optimal so-

lution within a good accuracy can be dangerous, as far as the

solution of SVM-NV is concerned.

Suppose we have an algorithm for NPP that iteratively im-

proves its approximate solution, , in such a way

that and , where is a solution of NPP.

Recall the function defined in (14). By part (d) of Theorem

2 and the fact that is a continuous function .

Also, where and .

By assumption A1, . Thus we also have

. Suppose is a specified accuracy parameter

satisfying , and that it is desired to stop the algorithm

when we have found a pair that is feasible to SVM-NV

and where is the optimal solution

of SVM-NV. We will show that this is possible if we stop the

dual algorithm when satisfies

(15)

Fig. 3 geometrically depicts the situation. Let be the

margin corresponding to the direction, . Clearly

(16)

Note that, since ,

we have

(17)

Thus, . The determination of that is

consistent with the feasibility of SVM-NV can be easily found

by setting

(18)

and choosing such that . Using (16) we get

(19)

Since the equation of the central separating hyperplane, has

to be of the form, , we can also easily get the

expression for as

(20)

Using (16) and (17) and the fact that , we get

To derive a bound for , note that

. Then

Thus we have proved the following important result.

Theorem 3: Let be a solution of NPP, ,

and be the optimal solution of SVM-NV. Let

. Suppose , , and (15) holds. Then

as defined by (18)–(20) is feasible for SVM-NV and

If one is particularly interested in getting a bound on the cost

function of SVM-NV then it can be easily obtained

A similar bound can be obtained for .

All these discussions point to the important fact that (15)

can be used to effectively terminate a numerical algorithm for

solving NPP.

V. ITERATIVE ALGORITHMS FOR NPP

NPP has been well studied in the literature, and a number

of good algorithms have been given for it [10], [18], [29], [2],

[15]. Best general-purpose algorithms for NPP such as Wolfe's

algorithm [29] terminate within a finite number of steps; how-

ever they require expensive matrix storage and matrix opera-

tions in each step that makes them unsuitable for use in large
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SVM design. (It is interesting to point out that the active set

method used by Kaufman [13] to solve SVM’s is identical to

Wolfe's algorithm when both are used to solve SVM-NV.) Iter-

ative algorithms that need minimal memory (i.e., memory size

needed is linear in , the number of training vectors), but which

only reach the solution asymptotically as the number of itera-

tions goes to infinity, seem to be better suited for SVM design.

In this section we will take up some such algorithms for inves-

tigation.

A. Gilbert's Algorithm

Gilbert's algorithm [10] was one of the first algorithms sug-

gested for solving NPP. It was originally devised to solve certain

optimal control problems. Later its modifications have found

good use in pattern recognition and robotics [29], [11]. In this

section we briefly describe the algorithm and point to how it can

be adapted for SVM classifier design.

Let , , , , and be as in the definition of NPP. Let

denote the Minkowski set difference of and [16], i.e.,

Clearly, NPP is equivalent to the following minimum norm

problem:

(MNP)

Unlike NPP this problem has a unique solution. MNP is very

much like NPP and seems like a simpler problem than NPP, but

it is only superficially so. is the convex polytope, ,

where

(21)

a set with points . To see this, take

two general points, and with the representation

Then write as

and note the fact that

. In general it is possible for to have

vertices. Since can become very large, it is

definitely not a good idea to form and then define using it.

Gilbert's algorithm is a method of solving MNP that does not

require the explicit formation of . Its steps require only the

evaluations of the support properties, and . Fortunately

these functions can be computed efficiently

(22)

(23)

Thus, for a given the computation of and requires

only time.

An optimality criterion for MNP can be easily derived as in

Section III. This is stated in the following theorem. We will

omit its proof since it is very much along the lines of proof of

Theorem 2. The function of (12), as applied to plays a key

role.

Theorem 4: Suppose . Then the following hold. 1)

. 2) If is any point in such that

, there is a point in the line segment, satisfying

. (c) solves MNP if and only if .

Gilbert's algorithm is based on the results in the above the-

orem. Suppose we start with some . If then

, the solution of MNP. On the other hand, if

, then satisfies . By part 2) of the

theorem, then, searching on the line segment connecting to

yields a point whose norm is smaller than . These observa-

tions yield Gilbert's algorithm.

Gilbert's Algorithm for Solving MNP

0) Choose .

1) Compute and . If stop

with ; else, set .

2) Compute , the point on the line segment joining and

which has least norm, set and go back to Step 1).

An efficient algorithm for computing the point of least norm

on the line segment joining two points is given in the Appendix.

Gilbert showed that, if the algorithm does not stop with at

Step 1) within a finite number of iterations, then asymp-

totically, as the number of iterations goes to infinity.

To adapt Gilbert's algorithm for SVM design it is important to

note that can be represented as , where

and , i.e., has the form

. Hence only and need to be stored and

maintained in order to represent . Maintaining and updating

cache for the inner products, and improves

efficiency. More details are given in [14].

We implemented Gilbert's algorithm and tested its perfor-

mance on a variety of classification problems. While the algo-

rithm always makes rapid movement toward the solution during

its initial iterations, on many problems it was very slow as it ap-

proached the final solution. Also, suppose there is a which

gets picked up by the algorithm during its initial stages, but

which is not needed at all in representing the final solution (i.e.,

), then the algorithm is slow in driving the

corresponding to zero. Because of these reasons, Gilbert's al-

gorithm, by itself, is not very efficient for solving the NPP’s that

arise in SVM classifier design.
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Fig. 4. Definition of �. Here: A = w ; B = s (�z); and �(z) =
(�z � B) � (�z � A).

B. Mitchell–Dem'yanov–Malozemov Algorithm

Many years after Gilbert's work, Mitchell et al. [18] indepen-

dently suggested a new algorithm for MNP. We will refer to

their algorithm as the MDM algorithm. Unlike Gilbert's algo-

rithm, MDM algorithm fundamentally uses the representation,

in its basic operation. When , it is clear

that for all which have . If

then and hence the above condition automatically holds.

However, at an approximate point, , the situation is dif-

ferent. The point, could be very close to and yet, there could

very well exist one or more such that

and (24)

(though is small). For efficiency of representation as well as

algorithm performance, it is a good idea to eliminate such from

the representation of . With this in mind, define the function

(see Fig. 4)

(25)

Clearly, , and, if and only ,

i.e., .

At each iteration, MDM algorithm attempts to decrease

whereas Gilbert's algorithm only tries to decrease .

This can be seen geometrically in Fig. 4. MDM algorithm tries

to crush the total slab toward zero while Gilbert's algorithm only

attempts to push the lower slab to zero. This is the essential

difference between the two algorithms. Note that, if there is a

satisfying (24) then MDM algorithm has a much better potential

to quickly eliminate such from the representation.

Let us now describe the main step of MDM algorithm. Let

be an index such that

Let . With the reduction of in mind,

MDM algorithm looks for improvement of norm value along the

direction at . For , let and .

Since , it is easy to see that moving

along will strictly decrease if . Since, in the rep-

resentation for decreases during this movement, has

to be limited to the interval defined by . Define

. So, the basic iteration of MDM algorithm con-

sists of finding the point of minimum norm on the line segment

joining and .

Fig. 5. Illustrating the various ideas for improvement. Here: A = w ;
B = s (�z) = w ; zB = Gilbert line segment; zC = MDM line
segment (zC is parallel to AB); T = triangle zCB; T = triangle zA B;
Q = quadrilateral ABA B ; and, T = triangle DAB.

We implemented and tested MDM algorithm. It works faster

than Gilbert's algorithm, especially in the end stages when ap-

proaches . Algorithms which are much faster than MDM al-

gorithm can be designed using the following two observations:

(1) it is easy to combine the ideas of Gilbert's algorithm and

MDM algorithm into a hybrid algorithm which is faster; and (2)

by working directly in the space where and are located it

is easy to find just two elements of that are used to modify

the , and at the same time, keep the essence of the hybrid algo-

rithm mentioned above. In the next section we describe the ideas

behind the hybrid algorithm. Then we take up details of the final

algorithm incorporating both observations in Section VI.

C. A Hybrid Algorithm

A careful look at MDM algorithm shows that the main com-

putational effort of each iteration is associated with the compu-

tation of , the determination of and the updating

of and of the inner products cache. Hence we can quite af-

ford to make the remaining steps of an iteration a little more

complex, provided that leads to some gain and does not dis-

turb the determination of , , and the updatings. Since

Gilbert's algorithm mainly requires the computation of

and , which are anyway computed by the MDM algo-

rithm, it is possible to easily insert the main idea of Gilbert's

algorithm into MDM algorithm so as to improve it. A number

of ideas emerge from this attempt. We will first describe these

ideas and then comment on their goodness.

The situation at a typical iteration is shown in Fig. 5. As be-

fore, let us take the representation for as

Without loss of generality let us assume that

for some index, . (If is not equal to any , we

can always include it as one more and set the corresponding

to zero without affecting the representation of in anyway.)

The points and are, respectively, shown as and

in the figure. The point, (i.e., the

of MDM algorithm) is shown as .

Idea 1: At Step 2 of each iteration of the MDM algorithm,

take to be the point of minimum norm on , the triangle

formed by , and .
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An algorithm for computing the point of minimum norm on

a triangle is given in the Appendix. Since the line segment con-

necting and (the one on which MDM algorithm finds the

minimum point) is a part of , this idea will locally perform

(in terms of decreasing norm) at least as well as MDM algo-

rithm. Note also that, since the minimum norm point on can

be expressed as a linear combination of and , the cost of

updating and the inner products cache is the same as that of

MDM algorithm.

For a given , let us define

Clearly, is the point in obtained by removing from the

representation of and doing a renormalization. Let us define

; see Fig. 5. Since

it follows that lies on the line segment joining and .

Idea 2: At Step 2 of each iteration of MDM algorithm, take

to be the point of minimum norm on , the triangle formed

by and .

Because contains , Idea 2 will produce a whose norm

is less than or equal to that produced by Idea 1.

One can carry this idea further to generate two more ideas.

Let and be the point of intersection of the line

joining and the line joining ; it is easily checked that

is the point obtained by removing both the indexes, and

from the representation of and then doing a renormal-

ization, i.e.,

Let denote the quadrilateral formed by the convex hull of

and be the triangle formed by , , and .

Clearly, . Also, along the lines of an earlier argument,

it is easy to show that .

Idea 3: At Step 2 of each iteration of MDM algorithm, take

to be the point of minimum norm on .

Idea 4: At Step 2 of each iteration of MDM algorithm, take

to be the point of minimum norm on .

We implemented and tested all of these ideas. Idea 1 gives a

very good overall improvement over MDM algorithm and Idea

2 improves it further, a little more. However, we have found

that, in overall performance, Idea 3 performs somewhat worse

compared to Idea 2, and Idea 4 performs even worser! (We do

not have a clear explanation for these performances.) On the

basis of these empirical observations, we recommend Idea 2 to

be the best one for use in modifying MDM algorithm.

VI. A FAST ITERATIVE ALGORITHM FOR NPP

In this section we will give an algorithm for NPP directly

in the space in which and are located. The key idea is

motivated by considering Gilbert's algorithm. Let and

be the approximate solutions at some given iteration and

.

We say that an index, satisfies condition at if

(26)

(27)

Suppose satisfies (26). If is the point on the line segment

joining and that is closest to , then, by the relation (A.8)

given in the Appendix we get an appreciable decrease in the

objective function of NPP

(28)

where . A parallel comment can be made if

satisfies (27). On the other hand, if we are unable to find an index

satisfying then (recall the definitions from Section III) we

get

(29)

which, by Theorem 3, is a good way of stopping. These obser-

vations lead us to the following generic algorithm, which gives

ample scope for generating a number of specific algorithms

from it. The efficient algorithm that we will describe soon after

is one such special instance.

Generic Iterative Algorithm for NPP:

0) Choose and set .

1) Find an index satisfying . If such an index cannot be

found, stop with the conclusion that the approximate opti-

mality criterion, (29) is satisfied. Else go to Step 2) with the

found.

2) Choose two convex polytopes, and such that

and

if if (30)

Compute to be a pair of closest points minimizing the

distance between and . Set , and go back to

Step 1).

Suppose, in Step 2) we do the following.If , choose

as the line segment joining and , and . Else,

if , choose as the line segment joining and , and

. Then the algorithm is close in spirit to Gilbert's algo-

rithm. Note however, that here only one index, plays a role in

the iteration, whereas Gilbert's algorithm requires two indexes

(one each from and ) to define . In a similar spirit, by appro-

priately choosing and , the various ideas of Section V-C can

be extended while involving only two indexes. Before we dis-

cuss a detailed algorithm, we prove convergence of the generic

algorithm.

Theorem 5: The generic iterative algorithm terminates in

Step 1 with a satisfying (29), after a finite number of

iterations.

The proof is easy. First, note that (28) holds because of the

way and are chosen in Step 2). Since, by assumption A1,

is uniformly bounded below by zero, there is a uniform

decrease in at each iteration. Since the minimum distance



132 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 1, JANUARY 2000

between and is nonnegative the iterations have to terminate

within a finite number of iterations.

Consider the situation in Step 2) where an index satisfying

is available. Suppose the algorithm maintains the following

representations for and :

(31)

where , and

We will refer to a , as a support vector, consis-

tent with the terminology adopted in the literature. Let us define

and as follows (see Fig. 6):

(32)

(Though redundant, we have stated the conditions, and

to stress their importance. Also, in a numerical imple-

mentation, an index having could occur

numerically. Unless such indexes are regularly cleaned out of

, it is best to keep these positivity checks in (32).)

There are a number of ways of combining and one

index from and then doing operations along

ideas similar to those in Section V-C to create a variety of

possibilities for and . We have implemented and tested

some of the promising ones and empirically arrived at one final

choice, which is the only one that we will describe in detail.

First we set as follows: if

; else . Then Step 2) is

carried out using one of the following four cases, depending on

and . See Fig. 7 for a geometric description of the cases.

Case 1: . Let be the point in obtained

by removing from the representation of , i.e.,

(33)

where . Choose: to be the triangle

formed by , and ; and, .

Case 2: , . Let be the point in obtained

by removing from the representation of , i.e.,

(34)

where . Choose: to be the triangle

formed by and ; and, .

Case 3: . Choose: to be the line segment

joining and ; and to be the line segment joining and

where is as in (34).

Case 4: , . Choose: to be the line segment

joining and ; and to be the line segment joining and

where is as in (33).

This defines the basic operation of the algorithm. Efficient

algorithms for doing nearest point computations involving a

triangle and line segments can be found in the Appendix and

Fig. 6. Illustration of imin, jmin;, imax, and jmax. Here C = z ;
D = z ; A = z and B = z .

Fig. 7. A geometric description of the four cases. For Cases 1 and 3, A = z ;
for Cases 2 and 4, B = z .

[17]. Tremendous improvement in efficiency can be achieved by

doing two things: 1) maintaining and updating caches for some

variables and 2) interchanging operations between the support

vector and nonsupport vector sets. These ideas are directly in-

spired from those used by Platt in his SMO algorithm. Let us

now go into these details.

First let us discuss the need for maintaining cache for some

variables. A look at (26), (27), and (32) shows that

, and are important variables. If any of

these variables is to be computed from scratch, it is expensive;

for example, computation of (for a single ) using (31)

requires the evaluation of kernel computations and

computation (where , the number of elements in )

and, to compute of (32) this has to be repeated times!

Therefore it is important to maintain caches for these variables.

Let us define: , ,

, , and .

Among these cache variables, and are the only vectors.

Since the algorithm spends much of its operation adjusting the
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of the support vectors, it is appropriate to bring in the nonsupport

vectors only rarely to check satisfaction of optimality criteria.

In that case, it is efficient to maintain and only for

and, for other indexes compute these quantities from

scratch whenever needed.

As mentioned in the last paragraph, it is important to spend

most of the iterations using . With this in mind, we

define two types of loops. The Type I loop goes once over all

, sequentially, choosing one at a time, checking condition

, and, if it is satisfied, doing one iteration, i.e., Step 2) of the

generic algorithm. The Type II loop operates only with

, doing the iterations many many times until certain criteria are

met. Whereas, in Platt's SMO algorithm, the iterations run over

one support vector index at a time, we have adopted a different

strategy for Type II loop. Let us define , , and

as follows:

(35)

if

otherwise.
(36)

These can be efficiently computed mainly because of the

caching of and for all . A basic Type II

iteration consists of determining and doing one iteration

using . These iterations are continued until the

approximate optimality criteria are satisfied over the support

vector set, i.e., when

(37)

In the early stages of the algorithm (say a few of the TypeI-

then-TypeII rounds) a “nearly accurate” set of support vector in-

dexes get identified. Until that happens, we have found that it is

wasteful to spend too much time doing Type II iterations. There-

fore we have adopted the following strategy. If, at the point of

entry to a Type II loop, the percentage difference of the number

of support vectors as compared with the value at the previous

entry is greater than 2%, then we limit the number of Type II it-

erations to , the total number of training pairs in the problem.

This is done to roughly make the cost of Type I and Type II

loops equal. In any case, we have found it useful to limit the

number of Type II iterations to . The algorithm is stopped

when (37) holds, causing the algorithm to exit Type II loop, and,

in the Type I loop that follows there is no satisfying condition

.

Full details concerning the actual implementation of the full

algorithm and a pseudocode for the algorithm can be found in

[14]. Using them it is extremely easy to develop a working code

in short time.

VII. COMPUTATIONAL EXPERIMENTS

In this section we empirically evaluate the performance of

the nearest point algorithm (NPA) described in the last section.

TABLE I
PROPERTIES OF DATA SETS

Since Platt's SMO algorithm is currently one of the fastest algo-

rithms for SVM design, we compare NPA against SMO. Apart

from comparison of computational cost we also compare the

two algorithms on how well they generalize.

We implemented both algorithms in Fortran and ran them

using on a 200-MHz Pentium machine. SMO was imple-

mented exactly along the lines suggested by Platt in [20].

Although we have compared the methods on a number of

problems, here we only report the (representative) performance

on two benchmark problems: Checkers data and UCI Adult data

[25], [21]. We created the Checkers data by generating a random

set of points on a 4 4 checkers grid [14]. The Adult data set

was taken from Platt's web page [21]. In the case of Adult data

set, the inputs are represented in a special binary format, as used

by Platt in the testing of SMO. To study scaling properties as

training data grows, Platt did staged experiments on the Adult

data. We have used only the data from the first, fourth and sev-

enth stages. For training we used exactly the sets given by Platt.

For validation and testing we used subsets of the large valida-

tion and test sets given by Platt. The Gaussian kernel

was used in all experiments. The values employed, , the

dimension of the input, and , , and , the sizes of

the training, validation and test sets, are given in Table I. The

values given in this table were chosen as follows. For the

Adult data the values are the same as those used by Platt in

his experiments on SMO; for the Checkers data, we chose

suitably to get good generalization.

We first applied the three algorithms on the training sets and

compared the computational costs. The algorithms apply to dif-

ferent SVM formulations: SMO solves SVM-VL whereas NPA

solves SVM-VQ. Hence, to do a proper cross comparison of the

methods, we did the following. Let denote the final margin

obtained by a solution in the solution space. For each data set,

we chose two different ranges for and values in such a way

that they roughly cover the same range of values. (It may be

noted that has an inverse relationship with and .) Then

we ran the methods on a bunch of and values sampled from

those ranges. Such a study is important for another reason, as

well. When a particular method is used for SVM design, or

is usually unknown, and it has to be chosen by trying a number

of values and using a validation set. Therefore, fast performance

of a method in a range of or values is important. Whether

or not a particular method has such a performance gets revealed

clearly in our experiments. A common stopping criterion was

chosen for both methods; see [14] for details.



134 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 1, JANUARY 2000

Fig. 8. Checkers data: CPU time (in seconds) shown as a function of the
marginM .

Fig. 9. Adult-1 data: CPU time (in seconds) shown as a function of the margin
M .

For the various datasets, Figs. 8–11 show the variation of

computing cost (measured as CPU time in seconds) as a function

of the margin, . On an average, SMO and NPA perform quite

closely. At small values (large values), NPA seems to

do better than SMO, which indicates that it is a better method for

solving SVM-NV. For the higher values the two algorithms

are equally efficient. The performance on the Adult datasets also

indicates that NPA scales to large size problems as well as SMO.

Table II gives a rough idea of the variation of the number of

support vectors with for the various combinations of datasets

and algorithms. The linear violation formulation (SMO) results

in a smaller number of support vectors when compared to the

quadratic violation formulation (NPA). While the difference is

small for the Checkers dataset, the difference is prominent for

the Adult datasets, especially at high (small , ) values. If

such a difference occurs in a particular problem, then the linear

formulation has an advantage when using the SVM classifier for

inference after the design process is over.

After training on several values we studied general-

ization properties of SVM classifiers designed using SMO and

Fig. 10. Adult-4 data: CPU Time (in seconds) shown as a function of the
marginM .

Fig. 11. Adult-7 data: CPU time (in seconds) shown as a function of the margin
M .

NPA. For each combination of algorithm and dataset, the cor-

responding validation set was used to choose the best or

value. (The Adult-7 dataset was not used in these experiments

because of the large computing times involved in choosing op-

timal and values using the validation set.) Using the clas-

sifier corresponding to this best value the performance (per-

centage misclassification) on the test set was evaluated. The re-

sults are given in Table III. Clearly, the classifiers designed using

SMO and NPA give nearly the same performance.

VIII. CONCLUSION

In this paper we have developed a new fast algorithm for

designing SVM classifiers using a carefully devised nearest

point algorithm. The comparative performance of this algo-

rithm against the SMO algorithm on a number of benchmark

problems is excellent. The performance studies done in this

paper as well as those done by Frieß [9] indicate that the SVM

classifier formulation that quadratically penalizes classification

violations is worth considering. Like the SMO algorithm, our
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TABLE II
NUMBER OF SUPPORT VECTORS. THE NUMBERS ARE GIVEN AT SOME REPRESENTATIVEM VALUES. FOR SMO THE TWO VALUES IN EACH ITEM ARE THE

NUMBER OF � 's WHICH ARE IN THE OPEN INTERVAL (0; C) AND THE NUMBER OF � 's AT C , RESPECTIVELY. FOR NPA THE VALUE IS

THE NUMBER OF NON-ZERO � 's

TABLE III
PERCENTAGE MISCLASSIFICATION ON THE TEST SET

algorithm also is quite straightforward to implement, as indi-

cated by the pseudocode in [14]. Our nearest point formulation

as well as the algorithm are special to classification problems

and cannot be used for SVM regression.

APPENDIX I

LINE SEGMENT AND TRIANGLE ALGORITHMS

In this Appendix we give two useful algorithms: one for com-

puting the nearest point from the origin to a line segment; and

one for computing the nearest point from the origin to a triangle.

Consider the problem of computing , the nearest point of

the line segment joining two points, and from the origin.

Expressing in terms of a single real variable as

(A.1)

and minimizing with respect to , it is easy to obtain the

following expression for the optimal :

if

otherwise.
(A.2)

It is also easy to derive an expression for the optimal value of

if

otherwise.
(A.3)

Furthermore, suppose the following condition holds:

(A.4)

Let us consider two cases.

Case 1) In this case, we have, by (A.3) and

(A.4)

(A.5)

Case 2)

Using (A.3) we get, after some algebra

(A.6)

Let for some finite . (If and are points of a

polytope then such a bound exists. By (A.4) and (A.6) we get

(A.7)

Combining the two cases we get

(A.8)

Consider next, the problem of computing the nearest point

of a triangle joining three points, , , and from the origin.

We have found it to be numerically robust to compute the min-

imum distance from the origin to each of the edges of the tri-

angle and the minimum distance from the origin to the inte-

rior of the triangle (if such a minimum exists) and then take

the best of these four values. The first three distances can be

computed using the line segment algorithm we described above.

Let us now consider the interior. This is done by computing

the minimum distance from the origin to the two dimensional

affine space formed by , , and , and then testing whether

the nearest point lies inside the triangle. Setting the gradient of

to zero and solving for and

yields

(A.9)

where

, , and

. Let . Clearly, the minimum

point to the affine space lies inside the triangle if and only if

, , and ; in that case, the nearest point

is given by and the square of the minimum

distance is .
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