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Abstract:
This paper presents a novel dimensionality reduction

algorithm for kernel based classification. In the feature
space, the proposed algorithm maximizes the ratio of
the squared between-class distance and the sum of
the within-class variances of the training samples for
a given reduced dimension. This algorithm has lower
complexity than the recently reported kernel dimension
reduction(KDR) for supervised learning. We conducted
several simulations with large training datasets, which
demonstrate that the proposed algorithm has similar
performance or is marginally better compared with
KDR whilst having the advantage of computational
efficiency. Further, we applied the proposed dimension
reduction algorithm to face recognition in which the
number of training samples is very small. This proposed
face recognition approach based on the new algorithm
outperforms the eigenface approach based on the princi-
ple component analysis (PCA), when the training data
is complete, that is, representative of the whole dataset.

Key Words
Support Vector Machine, Dimensional Reduction, Clas-

sification, Face Recognition, Optimization.

I Introduction

Dimension reduction is an essential and powerful tech-
nique for many applications since it reduces noise, irrele-
vant variables and computation complexity. By proper di-
mension reduction, the classification performance can be im-
proved via removal of noise vectors and irrelevant variables.
For the task of removing noise and irrelevant variables, lin-
ear dimensionality reduction is usually preferable compared
with nonlinear dimensionality reduction due to its simplic-
ity. However, many popular classification methods such as

support vector machines (SVM) [2, 12] formulate the classi-
fier in the feature space into which the input data is mapped
by nonlinear mapping.

0-7803-9091-1/05/$20.00 ©2005 IEEE

Let {(xc, yz), i = 1, 2 ... n, be a set of training sam-
ples, where the ith example x¾ E PRC in a m-dimension
input space belongs to one of the two classes labeled by
y c {1, -1}. The goal of the SVM is to define a hyperplane
in a high-dimensional feature space, which divides the set of
samples in the feature space such that all the points with
the same label are on the same side of the hyperplane. The
mapping from the input space to the feature space is usually
nonlinear. One important property of SVM [2, 12] is that
it finds an optimal separating hyperplane so as to separate
two classes of patterns with maximal margin. The general-
ization ability of SVMs is related to the margin with which it
separates the classes. A modified version of SVM, the least
squares support vector machine (LS-SVM) was proposed by
[9]. The major difference of LS-SVM with SVM is that an
L2 norm is taken with equality constraints so as to obtain a
linear set of equations instead of a quadratic programming
problem which is involved in formulating SVM.

[3] proposed kernel dimensionality reduction (KDR), an
algorithm for regression or classification problems. They
treat the dimensionality reduction problem as that of find-
ing a low-dimensional effective subspace for the explanatory
variable x which retains the statistical relationship between
x and the observation y, where y can be discrete or con-
tinuous. With a general nonparametric characterization of
conditional independence via using the variable covariance
on reproducing kernel Hilbert spaces, they proposed a con-
trast function for estimation of the effective subspaces. One
advantage of KDR is that it requires neither assumptions
on the marginal distribution of x, nor a parametric model
of the conditional distribution of the observation. However,
the contrast function of KDR involves the inverse of the ker-
nel matrix and the computation complexity of this matrix
inversion is generally of order 0(n3) where n is the number
of training samples.

Our motivation lies in designing classifiers in feature
space into which we have mapped the input using nonlin-
ear kernel functions. To enable such classifiers, a desirable
feature is that the classes mapped into the feature space
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should be as separable as possible with a linear separating
hyperplane. One of the measures of such separability is the
ratio of the squared between-class distance and the sum of
the within-class variances of the classes mapped into this
feature space and we choose it as a contrast function. The
proposed algorithm maximizes this contrast function for a
given dimension. The significance lies in reducing the com-
plexity of dimensionality reduction to 0(n)) compared to
O(n3) of KDR, whist maintaining comparable classification
performance. The motivation of the dimensional reduction
in this paper is to improve the classification performance for
any SVM-based classifier. Maximization of the proposed cri-
terion is equivalent to feature discriminant analysis (FDA)
if the kernel induced mapping from the input space to the
feature space is linear.

The layout of this paper is as follows. In Section 2, we
briefly review the formulation of LS-SVM. In Section 3, we
develop the dimensionality reduction method for clustered
data by first presenting the contratst function and then ad-
dressing the algorithmic issues. In Section 4, we provide
experimental examples to illustrate the performance of the
proposed algorithm with a comparison to KDR. In addition,
we apply the technique to face recognition and compare the
results with the eigenface approach [11].

2 Least Squares Support Vector Machines

Given a tranli-ing set {(x,y)}}j with input data x, E
Rtm and class labelsy Ec {-1, 1}, according to [9, 8], the least
square support vector machine (LS-SVM) is formulated as

follows

minJ(w, e) = w w+7IL82 (1)

with constraints

yt[wTW(XZ) ± b] = 1- e),i = 1,2, * (2)

The nonlinear function (.)} Rtm -- R', which is usually
induced by a kernel function, maps the input space to a high
dimensional feature space. The classifier in primal space is
formulated as

[31 + 1/7 ] a ] [1,
with y = [yl,y2, - ,Yrln], = [1,1,... ,1]T,a =

[aj, c2, anT and

Q2t = y-yf(x Tf (x) = yiyjK(x , xk (5)

where the kernel K satisfies the Mercer's condition. Then,
w is of the form

(6)w =E aCzyzf(xz)
Z=1

and the LS-SVM clasifier is constructed as

yQx)=sign Ea.y.K(x.,x}+ (7)

For the kernel function KQ-, .), one typically can choose
either linear, polynomial or Gaussian kernels.

Since the evaluation of kernel matrix depends on the
dimension of the input space, the dimension reduction of
the input space can reduce the computational complexity of
the training and formulation of LS-SVM classifiers.

3 Dimension Reduction for Clustered Data

Given a training set {(xT y)}L1 with input data xc £
Rm and class labels yW £ (-1, 14, the task of dimension re-
duction for kernel based classification is to find a matrix
B E Rm" (r < m) with BTB = 4, such that the set
{zj = BTTw}9, is separable with the largest posible mar-
gin by a hyperplane in the feature space. In this paper, we
choose the ratio of the squared between-class distance and
the sum of the within class variances of the training samples
in the feature space as a criterion to be maximized under the
constraint BTB = 4,. The constraint BTB = 4, is necessary
in signal processing as demonstrated in [11]. Therefore,

(8)d=+2

where d denotes the between-class distance which is defined
as the distance of the centers of the two different classes, iLe,

Y(T) = sign[wTW() + b], (3)
where w and b are obtained from (1) and (2) and T is the
testing data. However, one never need evaluate w and y(.)
in the LS-SVM framework. By Lagrangian multiplier opti-
mization methods, the solution of the minimization problem
in the primal space can be obtained by solving the following
linear system (see [8] for details)

d =1 E W(Z( 1 E w(zt)

and i24v2 denote the within-class variances
12~~~~~~~~~~~~~~

2~~~~~~~~~~~~~~~
= i SZ1 y4z)-ni{-tZ fw(z¾)

2
2{Z.~1Q) - Z +1 W(Z.)
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Here, nt is the number of samples in cluster one with
labels 1, n2 is the number of samples in cluster two with
labels -1 and nt + nz2 = n. Also, without loss of general-
ity, the samples {c-}In1 are organized such that the first nt
samples are the samples in cluster one and the remaining
are the samples in cluster two.

Throughout this paper, we use the Gaussian kernel

11Z _r11 2

k(z, z) = Ie 2

where z. = BTcc. The Gram matrix of z is defined as

(GC>j = k(z-, z. The Kernel matrix K is defined as

K= WCW (11)

where W = _- lIT and ½, denotes a vector with all
elements being 1. Using the fact that ERz = QW(zp) W(4z)) =
p(z)(z}), by direct calculation, we obtain

g2 2 Zi1Zt K

+2 S;i +1 SSni +I K'j

7ZiZ2 Z +1 XZ (12)
I1IT I T flKj 12

- [ ---njTi2 ]K>2 I722

Note that

ff [ nitti ]= [ nit ti ](13)
R c b 2 is s 2t

Replacing Kij by Gij, (12) is still true, i.e.,

d2 = [4 >&1n12K2['i7]

=n Iini2 I2 I
n2 2

= iT1Ti>2 nil] -
Z

i

- i n n2 n2 [j

22 Gin-nj+1 o=n+1

If we denote

a(B) =+?=Z7itZ?ftt
± =ni+z1 Z7=nj at

then

]

d2 = a(B) - /(B).
Similarly, one has

4i = w z z- z S z
= - E.', Ki - IEBU'±I K ±K

(14)

Let a = [at, a2> , an-' GIC, and A K -GC. Then
A = -+(a- + a) + - 37,a= It is straightforward to
verify that

I Eni A. _ I Eni n

12 LE>n1Az+- I ZX>, nZ> A
= = 0

>2EZ->i +tt ZZ n2 =n4 +1 4 Z

(18)

Hence, replacing Ki1 by CG , (17) and (8) are still true,
and therefore v2 + V2 = 2 -a(B) which implies that

F(B) = 1 + 2 -7(B)
2 - c4B) (19)

Therefore, the aim of this paper is to maximize the contrast
function F(B) with unitary constraint B33 = 1.

3.1 The Algorithm

The maximization problem of F(B) is a special type
of optimization problem under unitary constraints and we
apply the optimization algorithm proposed in [6] to solve
it. The only prerequisite for being able to implement this
algorithm is to compute the derivative of the cost function.
Since our cost function satisfies F(B) = F(BQ) for any
unitary matrix Q, it should be maximized on the Grassmann
manifold. In this paper, we adopt the Algorithm 24 [6] which
can be summarized as follows.

1. Choose B E Rmxr such that BTB = I. Set step size
7 := 1.

2. Compute DB, which is the derivative of F at B.

3. Compute the descent direction Z := (I - BBTl Dp.
4. Evaluate (Z, Z) = tr{ZTZ}. If (Z, Z~ is sufficiently

small, then stop.

5. If F(T{B + 2Z}I) - F(B) > j(Z, Z), then set j :=2
and repeat 5.

6. If F(wf{B + 7Z}) - F(B) < 0. 5y(Z, Z, then set j
0.5q and repeat 6.

7. Set B := w{B + qZ}. Go to Step 2.

(15) Here w{B} denotes an orthogonal basis of span(B). The
threshold in step 4 for the stopping criterion depends on
the properties of the optimal point of the cost function, i.e.,

16 the flatness of the cost function around the optimal point.
(16) However, it is usually good enough to choose the threshold as

0.001. The initial value for this algorithm is chosen as below
in this paper. With training samples {cn}>-1 and xc e Rm,
one can construct a matrix

(17) X = [XI,x2, x>]
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and its covariance matrix XXT. The eigenvectors corre-
sponding to the largest r eigenvalues will be chosen as the
initial condition Bo, This selection of initial condition is
actually based on PCA technique [5].

Next, we derive the formula for the derivative of the cost
functions F(B). Note that

Gj= e a2

and
aGuj, -2G0
9B -.(X )--Q(x .)- TB (20)

The derivatives of a(B) and j(B) are:

Da , 2 41_i

+H Sz-n+1 Sa=ni+tI G j Xr } B (21)
-2{f 22 7?tvn G8m8Jz B

where 8xcc =x - x, and thus the derivative of F(B) can
be obtained as

LW 2_ 2&-flu '-cp (22)
3B (2 a)2

By simplification, one can f-ind P such that,

OF pTB3=XPX B (23)

where X = [XI, X2, , ,,] E Rm>' and P can be obtained
a follows. Decompose G into four blocks

G [Gi t22] (24)

where G i ER""->, G22 E£Rn2xn2 and G12 E£Rni>2
Let

G
< t ni 212
2- G t 252022 (25)

D = diag{di d2, ,dj}
where dz is the sum of the ith row of G. Then

4
P = 2(2-)2( - D) (26)

This completes the development of the dimension reduc-
tion algorithm. Once we can find an optimal B, we can de-
velop the classification approach in lower feature space based
on the LS-SVM. Since the proposed reduction algorithm is
a SVM-Oriented Dimension Reduction (SDR) approach, we
will denote it as SDR in the rest part of this paper.

3.2 Computation Complexity

In order to estimate the complexity of the proposed algo-
rithm, we first consider the evaluation of the Gram matrix.
It can be implemented as follows.

1. Compute zz = BTxz for i 1=21, ,

2. Let
Z= [zi, 22, Zn?z]E

and compute M - ZTZ;

3. Let a denote the diagonal vector of Mi.e.,a(i) =Mi
and compute

9 = a1_+ 1,aT - 2M

Note that Q9, = -I_l2

4. Evaluate G with G j = exp(_-90/u2).
For each step, the complexity order is less than or equal to
0(n2) Note that we assume that m < n. So the evaluation
of the Gram matrix is of order 0(n2). Once G obtained, from
equations (15,19,23,25,26 ), one can see that the evaluation
of the cost function and its derivative is also of the order
0(n2) Hence, the computation complexity of the overall
algorithm is of order 0(n2). Since the cost function of KDR
involves the inverse of the kernel matrix with dimensionr n x
n anld matrix in-version is generally an 0(n3) process1, the
proposed algorithm has lower complexity than KDR.

4 Experimental Results

4.1 Application to Two Benchmark Datasets

In this section, we first report the application of the
proposed ratio maximization algorithm and compare it with
KDR on the two benchmark datasets from UCI benchmark
repository [1]: a separable one, the Johns Hopkins univer-
sity ionosphere(ion), and a noisy one, the Statlog heart dis-
ease(hea). The hea dataset consists of 270 samples with
dimension 13 while the ion dataset consists of 351 sam-
ples with dimension 33. The experiments have been car-
ried out for 100 randomizations, for each randomization
2/3 of the data is chosen for dimension reduction and for
training of LS-SVM classifiers and the remaining 1/3 is
used for testing. The LS-SVM algorithm is downloaded
from bttp; lwww,esat,kaleaven,ac,belsista lssvmlab. The-
oretically, we should train the hyper-parameters, i.e., the

'Theoretically, the complexity of matrix inversion can be reduced
to O(&n 496 )[7]
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kernel function parameter a (used in dimension reduction
and SVM classification ) and the regularization constant j
(used in the SVM classification) for each dimension-reduced
dataset and therefore the optimal dimension reduction ma-
trix B. Thus, the optimal hyper-parameters should be op-
timized alternately. For simplicity, in the training of LS-
SVM classifiers, we choose the optimal hypterparameters
as suggested in [4] regardless of the dimension reduction
matrix B. The optimal chosen parameters for a and y
are: a = 5.69, log10>(a) = -0.76 for the hea dataset, and
a = 3.30, log ioQ}) = 0. 63 for the ion dataset.

Figure 1 shows the average classification rates of 100
randomizations for various dimensions. The figure shows
the classification rates of LS-SVMs for three cases: a), using
all variables (no dimension reduction), b)> using the pro-
posed ratio maximization to reduce the dimension and c),
using KDR to reduce the dimension. Compared to using
all variables, both ratio maximization and KDR maintain
a comparable performance after dimension reduction while
ratio maximization method performs better for the heart
disease dataset and KDR performs slightly better for the
ionrosphere dataset.

85-5

85

84.5

84
.

2

m

.2

83a5 -

83 -

82.5-
2

(a) Statlog heart disease

.* . f
-1-

-4X AllVanriabl
-- - KDR
-D Ratio maxir

4 6 8
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(b) Ionosphere

.

.2
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Figure 1. Classification accuracy of
after dimension reduction.

Table 1. Running times (s) for KDR on hea data set
with various training samples and dimensions.

SAMPLES/DIMS 4 8 1 2
90 14.28 10 20.6250 26.9220
180 83.28 10 110.4840 140.3600
2 70 259.8 280 3 3 7.0940 419.5150

Table 2. Running times (s) for the proposed algo-
rithm onhea data set with varioustraining samples
and dimensions.

SAMPLES/DIMS 4 8 1 2
90 1.7180 1.9380 2.0000
180 6.4530 7.1870 7.7340
270 15.2500 16.6720 17.3900

Table 1 and Table 2 shows the time required to conduct
KDR and the proposed algorithm with various samples and
dimensions on the hea dataset. KDR is much more time-
consuming than the proposed algorithm as expected. Table
1 and Table 2 can approximately verify that the complexity
of the proposed algorithm and KDR is of order 0(n)) and
O(O) respectively.

4.2 Application to Face Recognition

Irn above experiment, the number of training samples is
sufficiently large and there are only two classes for all the

mization samples. Next, we will apply the proposed SDR algorithm to
1 0 12 face recognition and investigate its effectiveness. Compared

to the previous example, the number of training samples in
this experiment is small and further there are more than two
clases for all the experiments.

* > - Experiments were carried out on ten datasets created
from Yale database [13]. This database contains 15 individ-
uals (mostly male) with 11 images each. Table 3 shows some
of the images used in the training and testing datasets. Each
training dataset was constructed from 15 individuals with 4
images each. The remaining images not included in train-
ing dataset are used to construct the corresponding testing

mization datasets. No preprocessing methods are used to enhance the
25 so facial images prior to feature extraction. In order to investi-

gate the SDR fairly, face images with light configurations as

shown in Figure 2 were excluded as the excessive light casts
the LS-SVM shadows on the background which requires preprocessing in

practice.
Also the eigenface algorithm based on PCA from [11] is
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Figure 2. Images with light configurations from
Yale face database.

Dataset J Images

1 Yaining happy, normal, sleepy, wink
Testing glases, no-glasses, sad, surprised

2 aYaining glasses, happy, no-glasses, normal
Testing sad, sleepy, surprised, wink

3 aYaining glasses, happy, surprised, wink
Testing no-glasses, normal, sad, sleepy

4 aYaining happy, no-glasses, normal, sad
Testing glasses, sleepy, surprised, wink

5 aYaining glasses, no-glasses, sleepy, surprised
Testing happy, normal, sad, wink

6 Yaining glasses, normal, sad, surprised
Testing happy, no-glasses, sleepy, wink

7 aYaining happy, no-glasses, sad, surprised
Testing glasses, normal, sleepy, wink
aTYaining no-glasses, sad, sleepy, wink
Testing glases, happy, normal, surprised

9 Yaianing glasses, no-glasses, normal, sleepy
Testing happy, sad, surprised, wink

10 aYaining no-glasses, normal, sad, sleepy
Testing glasses, happy, surprised, wink

Table 3. Images
datasets.

used in Yale training and testing

implemented for comparison with the proposed face recog-
nition approach based on the SDR since the eigenface ap-
proach has been broadly used [10]. The face recognition
system in Figure 3 shows the implementation of the SDR
with LS-SVM classifier. This system consists of 2 stages,
namely training and recognition. Since the sample data
size M is much smaller than its dimension and the rank
of the data matrix is at most M, we use the PCA [5] to
remove its null vectors and thus reduce the training sam-
ple to dimension M. This creates eigenspace El with
the number (M') of eigenvectors being set to be the num-
ber of training images (M). Then the training images
are projected into the eigenspace El and these projections
are used as training data (Xtr) for SDR reduction algo-
rithm. The next step is to find the optimal parameters

for u and j using the tunelssvm function downloaded from
htt;lwww,esat,kealeven,oac,belsistalssvmlab. With Xtr,
we use the SDR dimension reduction algorithm to obtain
a lower-order training sample Ztr based on which the LS-
SVM classifiers are trained. We denote the dimension of Ztr
as r. Each LS-SVM model represents an individual and it
is trained to output T' on the corresponding individual and
output '0' on other individuals. In the recognition stage, the
test image is first projected into the eigenspace El and then
further reduced by SDR producing Ztest. We then verify
which individual Ztest belongs to via each LS-SVM model
with the following classifier:

K

y(x) =E a yKS(x x) + b. (27)

If the test stage produces only one positive signal, then the
testing image matches the corresponding individual. Other-
wise, we iteratively train new LS-SVM models taking data
for individuals corresponding to positive signals since these
individuals are possible right classes according to the LS-
SVM. This process is repeated with each test image until
onry one positive signal is produced. Thus, the testing pro-
cess continues to produce a hierachy of LS-SVM's.

Training
Images 1Toeit TFwin

PI I~and{ SIR LSSV

El iflOdds

Trnining Step_

El8 ~~~~madWs
Togt
.fJpEbenspaCew BSDR L---I Matchmar

Fac. Image

Recognition Stag

Figure 3. Face Recognition with SDR and LS-SVM.

The simulation results are shown in Table 4. Figure 4
gives the average performance for these two approaches. One
can see that from dimension 20 to 22, the SDR performs bet-
ter on average than the eigenface approach. In detail, one
can see from Table 4 that the SDR only performs worse than
the eigenface approach in testing datasets 9 and 10, while
performing much better in other cases in these dimension
ranges. One can see that the training samples in dataset 10
do not cover the case of wearing glasses while it appears in
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Figure 4. Average Error Rates of SDR vs PCA.

the testing samples. Similar cases happen in dataset 9 in
which the face expressions in the training samples are not
sufficiently complete to cover all the possible caes in the
testing samples. Bsed on these observations, we may con-

clude that the SDR should perform better that the eigenface
approach baed on PCA if the training samples are complete
to cover the salient features of the datwet. SInce SDR aims
to maximize the separability of the training samples, it re-

quires that the training samples are complete enough so that
their distribution are approximately the same that of the
dataet including test samples.

4.3 Face Recognition via LS-SVIM

Since the proposed contrast function in this paper is mo-

tivated by SVM-based classification idea, in this section, we

will conduct some experiments on face recognition with the
proposed SDR reduction algorithm, and without any dimen-
sion reduction. As demonstrated in the previous section,
the SVM-based classification approaches require the train-
ing samples to be as complete as possible. As seen in Table
3, datasets 5 and 6 satisfy this essential requirement.

In detail, we will use the Xtr as the training sample with
LS-SVM as a classifier and do experiments on datasets 5 and
6. Further, we also use the Ztr as the training sample with
LS-SVM as classifier and do the experiments on these two
dataets. Their error rates are displayed in Figure 5 and
Figure 6 respectively. These figures showed that the per-

formance is much better after SDR dimensional reduction.
This illustrates that dimension reduction is necessary and
can indeed improve the performance.

Dataset/ Dimension

8

9

iO

22 23 24

Table 4. SDR and PCA error rates on ten datasets.

1F7 1i8 19 20 21 22 17

D irrens in

Figure 5. Error Rates of SDR vs PCA

5 Conclusions

In this paper, a novel, linear dimension reduction al-
gorithm for clustered data is developed by maximizing the
ratio of the squared between-class distance and the sum of
the within-class variances of training samples mapped into
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-6 [9] J. Suykens and J. Vandewalle. Least squares support vector
machine classifiers. Neural Proces sing Lettrs, 9:293-300,
1999.

U]4 5s w \ [10] R. Tiahyadi. Investigations into PCA and DCT Based
Recognition Algonrthms. Master Thesis, Curtin University
of Technology, 2004.
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[12] nat of Cognitive Neuroscien c 13(l):71-86, 1991.
V[2]'. Vapnik. The nature of statistie rniMg theory. New-
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Figure 6. Error Rates of SDR vs PCA Database, 2004.

the feature space. After dimension reduction, the computa-
tion complexity of the formulating of the LS-SVM is then
reduced. This algorithm has an advantage of computational
efficiency while maintaining comparable performance com-
pared to KDR for supervised learning. Further, we showed
that the proposed approach can also applied to face recogni-
tion in which the number of training samples is small. The
experiments show that dimensional reduction is necessary in
face recognition and that the proposed technique can indeed
improve the performance.
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