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Abstract:

This paper presents a novel dimensionality reduction
algorithm for kernel based classification. In the feature
space, the proposed algorithm maximizes the ratio of
the squared between-class distance and the sum of
the within-class variances of the training samples for
a given reduced dimension. This algorithm has lower
complexity than the recently reported kernel dimension
reduction(KDR) for supervised learning. We conducted
several simulations with large training datasets, which
demonstrate that the proposed algorithm has similar
performance or is marginally better compared with
KDR whilst having the advantage of computational
efficiency. Further, we applied the proposed dimension
reduction algorithm to face recognition in which the
number of training samples is very small. This proposed
face recognition approach based on the new algorithm
outperforms the eigenface approach based on the princi-
ple component analysis (PCA), when the training data
iz complete, that is, representative of the whole dataset.

Key Words
Support Vector Machine, Dimensional Reduction, Clas-
sification, Face Recognition, Optimization.

1 Introduction

Dimension reduction is an essential and powerful tech-
nique for many applications since it reduces noise, irrele-
vant variables and computation complexity. By proper di-
mension reduction, the classification performance can be im-
proved via removal of noise vectors and irrelevant variables.
For the task of removing noise and irrelevant variables, lin-
ear dimensionality reduction is usually preferable compared
with nonlinear dimensionality reduction due to its simplic-
ity. However, many popular classification methods such as
support vector machines (SVM) [2, 12] formulate the classi-
fler in the feature space into which the input data is mapped
by nonlinear mapping.

0-7803-9091-1/05/$20.00 ©2005 IEEE

Let {(zs,9:),4 = 1,2,--- ,n} be a zet of training sam-
ples, where the #th example z; € R™ in a m-dirmension
input space belongs to one of the two classes labelad by
yi € {1, —1}. The goal of the SVM is to define a hyperplane
in a high-dimensional feature space, which divides the set of
samples in the feature space such that all the points with
the samse label are on the same side of the hyperplane. The
mapping from the input space to the feature space iz usually
nonlinear, One important property of SVM [2, 12] is that
it finds an optimal separating hyperplane so as to separate
two classes of patterns with maximal margin. The general-
ization ability of 8VIMs is related to the margin with which it
geparates the classes. A modified vergion of SVM, the least
squares support vector machine (L8-SVM) was proposed by
[9]. The major difference of LS-SVM with 8VM iz that an
Lo norm is taken with equality constraints so as to obtain a
linear set of eguations instead of a quadratic programming
problam which is involved in formulating SVIM.

[2] proposed kernel dimensionality reduction (KDR), an
algorithm for regression or classification problems. They
treat the dimensionality reduction problem as that of find-
ing alow-dimensional effective subspace for the explanatory
variable x which retains the statistical relationship between
x and the observation y, where ¥ can be discrete or con-
tinuous. With a general nonparametric characterization of
conditional independence via using the variable covariance
on reproducing kernel Hilbert spaces, they proposed a con-
trast function for estimation of the effective subspaces. One
advantage of KDR is that it requires neither assumptions
on the marginal distribution of 2, nor a parametric model
of the conditional digtribution of the obgervation. However,
the contrast function of KDR. involves the inverse of the ker-
nel matrix and the compubation complexity of this matrix
inversion is generally of order O(n®) where n is the number
of training samples.

Our motivation lies in designing classifiers in feature
gpace into which we have mapped the input using nonlin-
sar kernel functions. To enable such classifiers, a2 desirable
feature iz that the classes mapped into the feature space
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should be as ssparzbla as possible with a linear ssparating
hyperplane. One of the measures of such separability is the
ratio of the squared between-class distance and the sum of
the within-class variances of the classes mapped into this
feature spacs and we chooss it as a contrast function. Tha
proposed algorithm maximizes this contrast function for a
given dimension. The significance lies in reducing the com-
plexity of dimensionality reduction to G(n?) compared to
O(n*) of KDR, whist maintaining comparable classification
performance. The motivation of the dimensional reduction
in this paper is to improve the classification performance for
any SVM-based classifier. Maximization of the proposed cri-
terion ig equivalent to feature discriminant analysis (FDA)
if the kernel induced mapping from the input space to the
feature spacs ig linsar.

The layout of this paper is as follows. In Section 2, we
briefly review the formulation of LS-SVM. In Section 3, we
develop the dimensionality reduction method for clustered
data by first presenting the contrast function and then ad-
dressing the algorithmic issues. In Section 4, we provids
experimental examples to illustrate the performance of the
proposed algorithm with a comparison to KDR. In addition,
we apply the technique to face recognition and compare the
results with the eigenface approach [11].

2 Least Squares Support Vector Machines

Given a training set {(2,,3:)}2, with input data z; €
B™ and class labels ¢, € {—1,1}, according to [9, 8], the least
square support vector machine (LS-3VM) is formulated as
follows

. 1 T 1 i 2
with constraints
wlwTole)+ b =1—e,i=1,2, - ,n (2)

The nonlinear function ¢(-) : R™ — R", which is usually
induced by a kernal function, mape the input space to a high
dirnensional feature space. The classifier in primal spacs is
formulated as

y(e) = signf” p(z) + 8, 3

where w and b are obtained from (1) and (2) and = is the
testing data. However, one never need evaluate w and o(-)
in the L3-SVM framework. By Lagrangian multiplier opti-
mization methods, the solution of the minimization problem
in the primal space can be obtained by solving the following
linesr system (see [8] for details)

0 T b 0
3 admla]-[n] @
with ¥ = [yisy%'" Jyﬂliln = [1) 1)"' :\1]T:a =
[, @9, -+, o] T and
Oy = yuyjﬁo(mi)T‘P(ms) =y, K (24 o) (5)

where the kernel K satisfies the Mercer’s condition. Then,
w is of the form

w= Zﬂz@hﬂﬁ(%) (8)
i=1

and the LS-SVM classifier is constructed as
y(x) = sign {E oK (e, 2)+ b} . (N
=1

For the kernel function K, '), one typically can choose
either linear, polynomial or Gaussian kernsls,

Since the evaluation of kernel matrix dspsnds on the
dimension of the input space, the dimension reduction of
the input space can reduce the computational complexity of
the training and formulation of L3-5VM classifiers.

3 Dimension Reduction for Clustered Data

Given a training set {(zi, ;) }2y with input dats z, €
R™ and class labels 3; € {1, 1}, the task of dimension re-
duction for kernel based classification is to find a matrix
B € R™*" (v < m) with BYB = I, such that the set
{2z = BT}, is separable with the largest possible mar-
gin by a hyperplans in the feature space. In this paper, we
chioose the ratio of the squared between-class distance and
the sum of the within class variances of the training samples
in the festure space as & criterion to be maximized under the
constraint BT B = I,. The constraint BT B = I, is necessary
in signal processing as demonstrated in [11]. Therefore,

2

=02 2
vf +v3

F(B) (8)

where d denotes the betweean-class distance which is defined
ag the distance of the centers of the two different classes, i,

) 1 ™ 1 L]
= Lu-L e ®
1=t 2 i=ni41
and v, 23 denote the within-class variances
2
= E5w o) -+ D5 o) _—
B = LTl u|el) - LTL. 0
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Hers, ny iz the number of samples in cluster one with
labsls 1, no is the number of samples in cluster two with
labels —1 and ny + ny = n. Also, without loss of general-
ity, the samples {2;}2 ;| are organized such that the first ny
samples are the samples in cluster one and the remaining
are the samples in cluster two.

‘Throughout this paper, we use the Gaussian kernel

Izs—2; 12
klzs, 25)=e"— o2

where z; = BTx;. The Gram matrix of z is defined as
(G)i; = E(25 25). The Kernel matrix K is defined as

K =WGW (11)

where W = I, — 1,17 and 1, denotes a vector with all
elements being 1. Using the fact that Ky; = (¢(2:), p(z)) =
@(2:) p(z;), by direct calculation, we obtain

Ay N>
+_%Zz=m +1 E‘j—n, +1 K'l.?
— ot K? '

g =1 g=ny 41

~ (B 2R ]E| Ay |

(12)

——1
Note that

W n - n
5= ]
Replacing Ky; by Gy, (12) is still true, ie,

(13)
£ o= [ AL

= [ n%lgt

A1, x|

B e
nz 1?‘?2

2
T g M
A0 A |

= _721—1 l;?
+_%23—m+1 Za m-i-ig
ninQZt_i 3_n1+1G

If we denote
«(B)

] WGW ”_ilm ]

- (41

= _T Et—i
+ ;f Et_n1,+1 ZE‘ F=rq —‘,—1
'B(B) = fzﬁng ‘:11 Eg:n1+iG3<?9

(15)

then
d* = o(B) -

Similarly, ons has
‘U% = %E 1 Ko — Zz—i E:’ i
1

’U% = E?_m+i K‘i ;gZz—m,+i zj =ny+1 K
(17

B(B). (18)

Let a = [ay, a0, -+ ,@,)T = Gl, and A = K — G. Then
Dy = —%(at +a;) + ﬁr S a1t is straightforward to
verity that

N = B A“— et Ay =0
o Et_ni—‘,-l Am _5 Zz_m—‘,-i 23 41 A =0

Hencs, replacing Ky; by Gy, (17) and (8) are still true,
and therefore vf 4 v¢ = 2 — a(B) which implies that

S w

Therafore, the aim of this paper is to maximize the contrast
function F(B) with unitary constraint BT B = I.

(18)

P(B)=—

3.1 The Algorithm

The maximization problem of F(B) iz a special type
of optimization problem under unitary constraints and we
apply the optimization algorithm proposed in [6] to solve
it. The only prerequisite for being able to implement this
algorithm is o compute ths derivative of the cost function.
Since our cost function satisfies F(B) = F(BQ) for any
unitary matrix ¢, it should be maximized on the Grassmann
manifold. In this paper, we adopt the Algorithm 24 [8] which
can be surnmarized as follows,

1. Choose B € R™*" such that BTB = I. Set step size
=1

2. Compute Dg, which is the derivative of F' at B.

3. Comnpute the descent direction Z := (I — BBT)Dp.

4. Bvaluate (Z,2) = tr{ZT Z}. If +/(Z,Z) is sufficiently
small, then stop.

5. If F(w{B +2y2}) — F(B) > ¥(Z, Z}, then set y := 2y
and repeat 5.

8. If F(m{B +~2Z})
0.5y and repsat 6.

— F(B) < 0.59{Z, Z), then set 7y :=

7. Set B =a{B +¥Z}. Goto Step 2.

Here w{B} denotes an orthogonal basis of span(B). The
threshold in step 4 for the stopping criterion depends on
the properties of the optitnal point of the cost function, i.e.,
the flatness of the cost function arocund the optimal point.
However, it is usually good enough to chooss the thresheld as
0.001. The initial value for this algorithm is chosen as below

in this paper. With training samples {2;}2; and z; € R™,
one can construct a matrix

X =[z1,29, 24
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and its covariance matrix XX7. The eigenvectors corre-
sponding to the largest ¢ eigenvalues will be chosen as the
initial condition Bg. This sslection of initial condition is
actually based on PCA technique [5].

Next, we derive the formula for the derivative of ths cost
functions F{B). Note that

18T 0BT

G.g,j =g L
and G e
55 = 5 (i — 8 )@ — 25)" B. (20)

The derivatives of o(B) and f{ B) are:

e
I

=2 { TR Yy Guybay bl

AT T Gytega L} B (2D)
& =0

Eg' = ?2' {;nfng Z?;l E;=n‘+1605x®5x5} B

where dey; = ¢; — ¢, and thus the derivative of FI(B) can
be obtained as

F 2 —fF)+af —B

= 22
4B (2 — o) (22)
By simplification, one can find P such that,
3B~ XPX" B {23)
where X = [&1, 25, -+ ,%,] € R™" and P can be obtained
as follows. Decompose & into four blocks
| Gu G
G- { Gl G } ]
where G1q e RP1#™ Goo e R™%™2 gnd Gyp € R 702,
Let g
B —;:‘QG i1 i:,:: Gy
=0T 2—;;@22 (25)
D = diag{dlad%'” ;dn}
where d; iz the sum of the ith row of &. Then
P—— _G-D (26)
T e22—-a)2N TN

This completes the development of the dimension reduc-
tion algorithm. Once we can find an optimal B, we can de-
velop the classification approach in lower feature space based
on the LS-SVM. Since the proposed reduction algorithm iz
3 SVIM-Oriented Dimension Reduction (SDR) approach, we
will denote it as SDER. in the rest part of this paper.

3.2 Computation Complexity

In order to estirnate the complexity of the proposed algo-
rithm, we first consider the evaluation of the Gram matrix.
It can be implemented as follows.

1. Compute 2, = BTa;for i=1,2,+:-,n;

2. Let
Z = [z1, 29,7, 25] € R™7
and compute M = Z7Z;

3. Let a denote the diagonal vector of M le,a(i) = M,
and compute

Q=0al1T + 1,07 —2M

Note that Qi = ||2: — 2;]|%
4. Evsluate G with G = exp(—Qy/o?).

For each step, the complexity order is lass than or equal to
O(n?). Note that we assume that m < n. So the evaluation
of the Gram matrix is of order O(n?). Once G obtained, from
squations (15,19,22,25,26 ), one can see that the evaluation
of the cost function and its derivative is also of the order
O(n?). Hence, the computation complexity of the overall
algorithm is of order O(n?). Since the cost function of KDR.
imvolves the inverse of the kernel matrix with dimension n x
n and matrix inversion ig generally an O(n®) process®, the
proposed algorithm has lower complexity than KDE.

4 Experimental Results
4.1 Application to Two Benchmark Datasets

In this section, we first report the application of the
proposed ratio maximization algorithm and compare it with
KDE. on the two benchmark datagets from UCI benchmark
repository [1]: a separsble ons, the Johns Hopking univer-
sity ionosphere(ion), and a noisy one, the Statlog heart dis-
eage(hea). The hea dataset consists of 270 samples with
dimension 13 while the ion dataset consists of 351 sam-
ples with dimension 33. The experiments have been cat-
ried out for 100 randomizations, for each randomization
2/3 of the data is chosen for dimension reduction and for
training of L3-3VM classifiers and the remaining 1/3 is
used for testing. The LS-SVM algorithm is downloaded
from Attp://wunn esat. kuleuven. ac,be/sista/lssumlab/. The-
oretically, we should train the hyper-parameters, ie., the

i Theoretically, the complexity of matrix inversion can be reduced
bo O(n?498)[7]
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kernel function parameter ¢ (used in dimension reduction
and 8VM classification ) and the regularization constant
(used in the SVM classification) for each dimension-reduced
dataset and thersfore the optimal dimension reduction ma-
trix B. Thus, the optimal hyper-parameters should be op-
timized alternately. For simplicity, in the training of LS-
SV classifiers, we choose the optimal hypterparameters
as suggested in [4] regardless of the dimension reduction
matrix B. The optimal chosen parameters for ¢ and v
are: g = 5.69,logyy(y) = —0.76 for the hea dataset, and
g = 3.30, logo(y) = 0.63 for the ion dataset.

Figure 1 shows the average classification rates of 100
randomizations for various dimensions. The figure shows
the classification rates of LS-SVMs for three cases: a), using
all variables (no dimension reduction), b), using the pro-
posed ratio maximization to reduce the dimension and ¢,
using KDR to reduce the dimension. Compared to using
all variables, both ratio maximization and KDR maintain
a comparable performance after dimension reduction while
ratio maximization method performs better for the heart
disease dataset and KDR performs slightly better for the
ioncsphere datasst.

(a) Statlog heart disecase

855
=
=
B
=
=
E
Z 835
= “3- All Varables
83 —— KDR 1
—=— Ratio maximization
825
4 6 8 10 12
Dimensions
(b} lonosphere
95 —r= !
. e e e e 2
= %
T
o
c o3
=
E 92
2 9
S o1t / -#- All Vanables
i —— KDR
—i=— Ratio maximization
o0 . ; . ;
5 10 15 20 25 30

Dimensions

Figure 1. Classification accuracy of the LS-SVM
after dimension reduction.

Table 1. Running times (s) for KDR on hea data set
with various training samples and dimensions.

SAMPLES/ DIME 4 8 12

00 14.2810  20.6250  26.9220
180 83.2810 110.4840 1403600
270 259.8280 33T7.0040 4195150

Table 2. Running times (s) for the proposed algo-
rithm on hea data set with various training samples
and dimensions.

SAMPLES/DIMS 4 8 12

90 1.7180 1.9380  2.0000
180 6.4530 T.1870 7.7340
270 15,2500 16.6720 17.3900

Table 1 and Table 2 shows the time required to conduct
KDR and the proposed algorithm with various samples and
dimensions on the hea dataget. KDR ig much mors time-
consurning than the proposed algorithm as expected. Table
1 and Table 2 can approximately verify that the complexity
of the proposed slgorithm and KDR is of order O(n?) and
O(n®) respactively.

4.2 Application to Face Recognition

In above experiment, the number of training samples is
sufficiently large and there are only two classes for all the
sarmples. Next, we will apply the proposed SDR algarithm to
face recognition and investigate its effectiveness. Compared
to the previous example, the number of training samples in
thig experiment iz small and further there are more than two
classes for all the experiments.

Expsriments were carried out on ten datasets created
from Yale database [13]. This database contains 15 individ-
uals (mostly male) with 11 images each. Table 3 shows some
of the images used in the training and testing datasets. Each
training dataset was constructed from 15 individuals with 4
images each. The remaining images not included in train-
ing dataset are used to construct the corresponding testing
datasets. No preprocessing methods are used to enhance the
facial images prior to feature extraction. In order to investi-
gate the SDR fairly, face images with light configurations as
shown in Figure 2 were sxcluded as the excessive light casts
chadows on the background which requires preprocessing in
practice.

Also the eigenface algorithm based on PCA from [11] is
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Figure 2. Images with light configurations from
Yale face database.

| Dataset | Images |

1 Training happy, normal, sleepy, wink
Tasting glasses, no-glasses, sad, surprized
Training | glasses, happy, no-glasses, normal

2 - - -
Testing sad, sleepy, surprized, wink

3 Training glasses, happy, surprizsed, wink
Testing no-glasses, normal, sad, slespy

4 Training happy, no-glasses, normal, sad
Testing glasses, sleepy, surprizsed, wink

5 Training | glasses, no-glasses, slespy, surprized
Teating happy, normal, sad, wink

6 Training glaszes, normal, sad, surprised
Testing happy, no-glasses, sleepy, wink

7 Training happy, no-glasses, sad, surprised
Testing glasses, normal, sleepy, wink

8 Training no-glasses, sad, slespy, wink
Testing glasses, happy, normal, surprized

9 Training | glasses, no-glasses, normal, sleepy
Testing happy, sad, surprized, wink

10 Training no-glasses, normal, sad, sleepy
Testing glasses, happy, surprizsed, wink

Table 3. Images used in Yale training and testing
datasets.

implermented for comparison with the proposed face recog-
nition approach based on the SDR since the sigenface ap-
proach has been broadly used [10]. The face recognition
systern in Figure 3 shows the implementation of the SDR
with L3-SV clagsifier. This svstem consiste of 2 stages,
namely training and recognition. Since the sample data
gize M iz much smaller than its dimension and the rank
of the data matrix is at most M, we use the PCA [F] to
rernove ite null vectors and thus reduce the training sam-
ple to dimension M. This creates eigenspace E1 with
the number (M) of eigenvectors being set to be the nmum-
ber of training images (M). Then the training images
are projected into the eigenspace E1 and these projections
are used ag training data [Xir) for SDR reduction algo-
rithm. The next step is to find the optimal parameters

for & and  using the tunelssvm function downloaded from
hitp:/fuaw. esat. kuleuven. ac. be/sista /lssumlab/. With Xtr,
we use the SDR dimension reduction algorithm to obtain
a lower-order training sample Ztv based on which the LS-
SV M clagsifiers are trained. We denote the dimension of Zir
as v. Bach L3-8V model represents an individual and it
is trained to output *1* on the corresponding individual and
output, *0" on other individuals. In the recognition stage, the
tast image iz first projected into the sigenspace £'1 and then
further reduced by SDR producing Ziest. We then verify
which individual Ziest belongs to via each L3-SVM model
with the following classifiar:

yla) = Z oy K (s, ) + B, (27)

=1

If the test stage produces only one positive signal, then the
tasting image matchas the corresponding individual. Other-
wise, we iteratively train new L3-8V models taking data
for individuals corresponding to positive signals since these
individuals are possible right classes according to the LS-
SVIM. This process is repeated with each test image until
only one positive signal is produced. Thus, the testing pro-
cess continues to produce a hierachy of L3-SV 1M's.

Tralning
Images Tam 2 [T
e P e E s
8 mo
El P models
Dambase
Trmining Stage
El B madels
Test k4 L 4 ‘}
Image _ |Elgenspace| SDR Maich ar
' |F'Nﬂeulon Projection] P Loskaton [ | jrmatrhed
Fare Imags

Recognition Stage

Figure 3. Face Recognition with SDR and LS-5VM.

The simulation results are shown in Table 4. Figure 4
gives the average performance for these two approaches. One
can ses that from dimension 20 to 22, the SDR performs bet-
ter on average than the eigenface approach. In detail, one
can ses from Table 4 that the SDE only performms worse than
the eigenface approach in testing datasets O and 10, while
performing rmuch better in other cases in these dimension
ranges. One can see that the training samples in dataset 10
do not cover the case of wearing glasses while it appears in
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1w 15 19 20 21 = 23 24 25
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Figure 4. Average Error Rates of SDR vs PCA.

the testing samples. Similar cases happen in dataset 9 in
which the face expressions in the training samples are not
sufficiently complete to cover all the possible cases in the
testing samples. Based on these observations, we may con-
clude that the SDR should perform better that the eigenface
approach based on PCA if the tralning samples are complete
to cover the salient features of the dataset. Slnce SDR aims
to maxirnize the separability of the training samples, it re-
quirss that the training samples are cormplete enough so that
their distribution are approximately the same as that of the
dataset including test samples.

4.3 Face Recognition via LS-SVM

Since the proposed contrast function in this paper is mo-
tivated by SVM-based classification idea, in this section, we
will conduct some experiments on face recognition with the
proposed SDE reduction algerithm, and without any dimen-
sion reduction. As demonstrated in the previous section,
the SVIM-based classification approaches require the train-
ing samplas to be as complete as possible. Ag szen in Table
3, datazets 5 and © satisfy this essential requirernent.

In detail, we will use the X#r as the training sample with
L3-8V ag a classifier and do experiments on datasets 5 and
8. Further, we also use the Zir as the training sample with
L3-8VM as clazsifier and do the experiments on these two
datasets. Their error rates are displayed in Figure 5 and
Figure 6 respectively. These figures showed that the per-
formance iz much better after SDR. dimensional reduction.
This illustrates that dimension reduction is necessary and
can indeed improve the performance.

| Datazety Dimension ‘ 1r | 18 ‘ 19 | 20 ‘ a1 |
i EDR 1 .0 6.7 3.5 1.7
FOA EE3) L) 3% E3% EEL
- SDR EE3 170 5.5% 550 5%
FOA 0% 50 5.O0% 50% 5.0%
= SDR 330 170 50% 17 0.0%
FOA 10.0% | 100% | 10.0% | 100k | 10.0%
4 SDER 10.0% 10.0% 11.7% 5.0 500
FOA ) & .75 ) 6. )
5 ST 0.0% 175 1.7% 1.7% 1.7%
FOE 1% T7%h T 7% 1%
= EDE 0.0% 0.0% E.5% 5% 175
FOE TO% T 0T TO0% 0% 0%
v SDR E0% ) ) 50 5.0%
FOA E0% 0% 0% 0 0% |
A EDER EE3) 10.0% 5.0% 50 5.0%
FOE I0.0% | 100% | 100% | 100 T0.0%
5 EDR EE3) 150% | 153% | 11.7% | 10.0%
FOE % =% B =% =R
1o EDL 1E0% | o00% | 167% | 153k | 20.0%
FOA ) & "% ) 6% )
Dataset/ Dimeansion | 23 | 23 | 24 | 25 |
1 EDR 230 £ 0% Z 3% 3 3%
FOA ] TIR ] LB
a SDR 6.7 .7 5. [
FCA 0% 5 .0% 5 O0% BN
3 EDR 0.0% 0.0% 17 [
FOA 100 I00% | 10.0% | 100%
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Table 4. SDR and PCA error rates on ten datasets.
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Figure 5. Error Rates of SDR vs PCA

5 Conclusions

In this paper, a novel, linear dimengion reduction al-
gorithm for clustered data is developed by maximizing the
ratio of the squared between-class distance and the sum of
the within-class varlances of training samples mapped into
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Figure 6. Error Rates of SDR vs PCA

the feature space. After dimension reduction, the computa-
tion complexity of the formulating of the LS-8VM iz then
reduced. This algorithm has an advantage of computational
efficiency while malntaining comparable performance corm-
pared to KDR for supervised learning. Further, we showed
that the proposed approach can alzo applied to face recogni-
tion in which the number of training samples is small. The
experiments show that dimensional reduction s necessary in
face recognition and that the proposed technique can indeed
improve the performance.
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