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ABSTRACT Advances in moving object detection have been driven by the active application of deep

learning methods. However, many existing models render superior detection accuracy at the cost of high

computational complexity and slow inference speed. This fact has hindered the development of such models

in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally

limited platform. In this paper, we propose a super-fast (inference speed-154 fps) and lightweight (model

size-1.45 MB) end-to-end 3D separable convolutional neural network with a multi-input multi-output

(MIMO) strategy named “3DS_MM” for moving object detection. To improve detection accuracy, the

proposed model adopts 3D convolution which is more suitable to extract both spatial and temporal

information in video data than 2D convolution. To reduce model size and computational complexity, the

standard 3D convolution is decomposed into depthwise and pointwise convolutions. Besides, we proposed a

MIMO strategy to increase inference speed, which can take multiple frames as the network input and output

multiple frames of detection results. Further, we conducted the scene dependent evaluation (SDE) and scene

independent evaluation (SIE) on the benchmark CDnet2014 and DAVIS2016 datasets. Compared to state-

of-the-art approaches, our proposed method significantly increases the inference speed, reduces the model

size, meanwhile achieving the highest detection accuracy in the SDE setup and maintaining a competitive

detection accuracy in the SIE setup.

INDEX TERMS Convolutional neural network, depthwise convolution, moving object detection, multi-

input multi-output, pointwise convolution, scene independent evaluation, 3D separable convolution, unseen

videos, video analytics, video surveillance.

I. INTRODUCTION

W
ITH the increasing amount of network cameras, pro-

duced visual data and Internet users, it becomes quite

challenging and crucial to process a large amount of video

data at a fast speed. Moving object detection (MOD) is the

process of extracting dynamic foreground content from the

video frames, such as moving vehicles or pedestrians, while

discarding the non-moving background. It plays an essential

role in many real-world applications [1], such as intelligent

video surveillance [2], medical diagnostics [3], anomaly de-

tection [4], human tracking and action recognition [5], [6].

Traditional methods [7]–[29] are unsupervised which do

not require labeled ground truth for algorithm development.

They usually include two steps: background modeling and

pixel classification. However, these traditional methods meet

difficulties when applied in complex scenarios, such as

videos with illumination changes, shadows, night scenes, and

dynamic backgrounds.

With the availability of a huge amount of data and the

development of powerful computational infrastructure, deep
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neural networks (DNNs) [30]–[32] have shown remarkable

improvements in MOD problems and are developed to re-

place either background modeling or pixel classification in

traditional methods or to combine these two steps into an

end-to-end network. Existing DNN models are mostly su-

pervised approaches based on 2D convolutional neural net-

works (CNNs) [33]–[50], 3D CNNs [51]–[56], 2D separable

CNNs [57], or generative adversarial networks (GANs) [58]–

[63]. Besides, unsupervised GANs [64], [65] and semi-

supervised networks are also proposed [66]–[73]. It demon-

strates that the DNNs can automatically extract spatial low-,

mid-, and high-level features as well as temporal features,

which turn out to be very helpful in MOD problems.

While existing DNN models offer superior moving object

detection accuracy, they suffer from computationally expen-

sive and memory-intensive issues. In particular, the architec-

ture change in 3D CNNs leads to a huge increase in model

size and computational complexity compared to 2D CNNs,

making it challenging to apply those models to real-world

scenarios, such as robotics, self-driving cars, and augmented

reality. These tasks are usually deployed on mobile and em-

bedded devices, which have limited memory and computing

resources. Besides, these tasks are delay-sensitive and need to

be carried out in a timely manner, which cannot be achieved

by high-complexity deep learning models. Thus, we aim to

design a deep moving object detection model suitable for

mobile and embedded environment, that can achieve faster

inference speed and smaller model size while maintaining

high detection accuracy.

In this paper, we propose an efficient 3D separable con-

volutional neural network with a multi-input multi-output

strategy called “3DS_MM”. This model is tailored for

computation-resource-limited and delay-sensitive applica-

tions. Compared to state-of-the-art models, it significantly

increases inference speed and reduces model size, meanwhile

increasing detection accuracy or maintaining a competitive

detection accuracy. Our key contributions are as follows:

• We propose a new 3D separable CNN for moving object

detection. The proposed network adopts 3D convolution

to explore spatio-temporal information in the video data

and to improve detection accuracy. To reduce computa-

tional complexity and model size, the 3D convolution is

decomposed into a depthwise convolution and a point-

wise convolution. While existing 3D separable CNN

schemes all addressed other problems such as gesture

recognition, force prediction, 3D object classification or

reconstruction, our work applied it to the moving object

detection task for the first time in the literature.

• We propose a multi-input multi-output (MIMO) strat-

egy. While existing networks are single-input single-

output, multi-input single output, or two-input two-

output, our MIMO network can take multiple in-

put frames and output multiple binary masks using

temporal-dimension in each sample. This MIMO em-

bedded in 3D separable CNN can further increase model

inference speed significantly and maintain high detec-

tion accuracy. To the best of our knowledge, this is

the first time in the literature that such kind of MIMO

scheme is used in the MOD task.

• We demonstrate that the proposed 3DS_MM offers

overwhelmingly high inference speed in frames per

second (154 fps) and extremely small model size (1.45
MB), while achieving the best detection accuracy in

terms of F-measure, S-measure, E-measure, and MAE

among all models in scene dependent evaluation (SDE)

setup and achieving the best detection accuracy among

the models with inference speeds exceeding 65 fps in

scene independent evaluation (SIE) setup. The SDE

setup is widely used to tune and test the model on a

specific video as the training and test sets are from the

same video. The SIE setup originally raised in [50] is

specifically designed to assess the generalization capa-

bility of the model on completely unseen videos.

The rest of the paper is organized as follows. In Sec-

tion II, we introduce existing algorithms for moving object

detection. In Section III, we explain the principles of the

3D separable convolution which lays the foundation for our

proposed 3DS_MM. In Section IV, we elaborate on our pro-

posed network in detail. Section V explains the training and

evaluation setup of the experiments. Section VI describes our

experimental results compared to the state-of-the-art models.

Section VII concludes the paper.

II. RELATED WORKS

The methods for MOD problems have been extensively

studied and improved over the years. These methods can be

broadly categorized into: (1) traditional methods (unsuper-

vised learning), and (2) deep learning methods (supervised

and semi-supervised learning).

Traditional methods [7]–[29] are unsupervised which do

not require labeled ground truth. They basically consist of

two components: (1) background modeling which initializes

the background scene and updates it over time, and (2)

classification which classifies each pixel to be foreground or

background. There are many background modeling schemes,

such as the temporal or adaptive filters being applied to

build the background like running average background [10],

temporal median filtering [11], and Kalman filtering [12].

Another way for background modeling is to statistically

represent the background using parametric probability den-

sity functions such as a single Gaussian or a mixture of

Gaussians [13]. On the other hand, non-parametric methods

directly rely on observed data to model the background such

as IUTIS-5 [14], WeSamBE [15], SemanticBGS [16], and

kernel density estimation [17]. Sample consensus is another

non-parametric strategy used in PAWCS [18], ViBe [19] and

SuBSENSE [20]. In particular, SuBSENSE uses a feedback

system to automatically adjust the background model based

on the local binary similarity pattern (LBSP) features and

pixel intensities [21]. Eigen-background based on principal-

component analysis (PCA) [22]–[24] is also used in back-
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ground modeling. Further, background subtraction based

on robust principal-component analysis (RPCA) [25]–[29]

solves camera motion and reduces the curse of dimension-

ality and scale. However, it is quite difficult for traditional

methods to perform object detection in complex scenarios,

such as videos with illumination changes, shadows, night

scenes, and dynamic backgrounds.

Deep learning-based methods are mostly supervised and

have been recently proposed for MOD problems [30]–[32],

[42], [44]. The first work based on CNNs is ConvNet-

GT [33], which replaces the pixel classification component

with a well-defined network structure. The background is

estimated by a temporal median filter, then the estimated

backgrounds are stacked with the original video frames to

form the input of the CNN that outputs the binary masks

of detected objects. DeepBS [40] utilizes SuBSENSE [20]

algorithm to generate background image and multiple lay-

ers CNN for segmentation. Also, a spatial-median filter is

used for post-processing to perform smoothing. Wang et

al. [34] proposed a multi-scale patch-wise method with a

cascade CNN architecture called MSCNN+Cascade [34].

Although it achieves good detection performance, the patch-

wise processing is very time consuming. Other multi-scale

feature learning-based models such as Guided Multi-scale

CNN [35], MCSCNN [36], MsEDNet [37] and VGG-16 [74]

based networks FgSegNet_M [38] and FgSegNet_v2 [39]

were also proposed. FgSegNet_S [38] is a 2D CNN that takes

each video frame at its original resolution scale as the input,

while its extended version FgSegNet_M [38] takes each

video frame at three different resolution scales in parallel as

the input of the encoding network. FgSegNet_v2 is the best-

performing FgSegNet model in CDnet2014 [75] challenge.

Another example, MSFgNet [41], has a motion-saliency net-

work (MSNet) that estimates the background and subtracts it

from the original frames, followed by a foreground extraction

network (FgNet) that detects the moving objects.

3D convolution is applied to MOD problems to utilize

spatial-temporal information in visual data. In [52], 3D

CNN and a fully connected layer are adopted in a patch-

wise method. 3D-CNN-BGS [53] uses 3D convolution to

track temporal changes in video sequences. This approach

performs 3D convolution on 10 consecutive frames of the

video, and upsamples the low-, mid-, and high-level feature

layers of the network in a multi-scale approach to enhance

segmentation accuracy. 3DAtrous [54] captures long-term

temporal information in the video data. It is trained based

on a long short-term memory (LSTM) network with focal

loss to tackle the class imbalance problem commonly seen

in background subtraction. Another LSTM-based example

is the autoencoder-based 3D CNN-LSTM [55] combining

3D CNNs and LSTM networks. In this work, time-varying

video sequences are handled by 3D convolution to capture

short temporal motions, while the long short-term temporal

motions are captured by 2D LSTMs. Although these 3D

convolution-based methods offer accurate detection results,

they have high computational complexity.

Recently, the concept of generative adversarial net-

works (GAN) is adopted in MOD problems, such as BSc-

GAN [58], BSGAN [59], BSPVGAN [60], FgGAN [61],

BSlsGAN [62], and RMS-GAN [63]. BScGAN is based

on conditional generative adversarial network (cGAN) that

consists of two networks: generator and discriminator. BS-

GAN [59] and BSPVGAN [60] are based on Bayesian

GANs. They use median filter for background modeling and

Bayesian GANs for pixel classification. The use of Bayesian

GANs can address the issues of sudden and slow illumination

changes, non-stationary background, and ghost. In addition,

BSPVGAN [60] exploits parallel vision to improve results

in complex scenes. In [64], [65], adversarial learning is

proposed to generate dynamic background information in an

unsupervised manner.

However, the performance of all the aforementioned deep

learning-based moving object detection methods comes at

a high computational cost and a slow inference speed due

to complex network structures and intense convolution op-

erations. To reduce the amount of calculation, our previous

work [57] proposed to use 2D separable CNN which splits

the standard 2D convolution into a depthwise convolution

and a pointwise convolution. It dramatically increases the

inference speed and maintains high detection accuracy. How-

ever, this 2D separable CNN-based network does not exploit

the temporal information in the video input.

In this work, we extend the 2D separable CNN to a 3D

separable CNN, which reduces the computational complexity

compared to standard 3D CNN. Although some existing

works [76]–[79] adopt 3D separable CNN to extract high-

dimensional features, none of them applied it to the problem

of moving object detection. For example, the 3D separable

CNN in [76] is for hand-gesture recognition, in which the

last two layers of the network are fully connected layers that

output class labels. The 3D separable CNN in [77] is used

for two tasks: 3D object classification and reconstruction.

Neither task utilizes temporal data, hence no temporal convo-

lution is involved. The 3D separable CNN in [78] is to predict

interactive force between two objects, hence its network

output is a scalar representing the predicted force value. This

problem essentially is a regression problem. Besides, the way

that the 3D convolution is separated in [78], [79] is different

from our proposed method. It first conducts channel-wise

2D convolution for each independent frame and channel,

then conducts joint temporal-channel-wise convolution. In

contrast, our proposed 3D separable CNN performs spatial-

temporal convolution first, then performs pointwise convolu-

tion along the channel direction.

Another factor that limits the inference speed is the input-

output relationship. The input-output relationship of existing

moving object detection networks has two types: (1) single-

input single-output (SISO), which is widely exploited in 2D

CNNs such as FgSegNet_S [38] and 2D separable CNN [57];

and (2) multi-input single-output (MISO) which can be found

in 3D CNNs such as 3D-CNN-BGS [53], 3DAtrous [54], and

DMFC3D [51]. The disadvantage of SISO and MISO is that
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they result in a slow inference speed because only one frame

output is predicted in every forward pass. Recently, the X-

Net [80] adopts a two-input two-output network structure,

which takes two adjacent video frames as the network input

and generates the corresponding two binary masks. Although

it can track temporal changes, the network structure is inflex-

ible and the temporal correlation it utilizes is limited. In this

work, we propose a multi-input multi-output (MIMO) strat-

egy, which can take multiple input frames and output multiple

frames of binary masks in each sample. It explores temporal

correlations on a larger time span and significantly increases

the inference speed when embedded in 3D separable CNN.

Another issue for supervised methods is the generalization

capability of the trained models on completely unseen videos.

Several moving object detection models were designed and

evaluated over completely unseen videos, such as BMN-

BSN [47], BSUV-Net [48], BSUV-Net 2.0 [49], BSUV-

Net+SemBGS [48], ChangeDet [50], and 3DCD [56]. Be-

sides, semi-supervised networks were also designed to be

extended to unseen videos. For example, GraphBGS [66] and

GraphBGS-TV [67] are based on the reconstruction of graph

signals and semi-supervised learning algorithm, MSK [68] is

based on a combination of offline and online learning strate-

gies, and HEGNet [71] combines propagation-based and

matching-based methods for semi-supervised video moving

object detection.

In this paper, we devise a new lightweight 3D sep-

arable CNN specifically for moving object detection in

computation-resource-limited and delay-sensitive scenarios.

It has an efficient end-to-end encoder-decoder structure with

a multi-input multi-output (MIMO) strategy, named as the

“3DS_MM”. The proposed 3DS_MM does not require ex-

plicit background modeling. We evaluate the model over CD-

net2014 [75] dataset in an SDE framework with other state-

of-the-art models, and we also assess the generalization ca-

pability of the model over CDnet2014 and DAVIS2016 [81]

datasets in SIE setups over completely unseen videos.

The proposed 3DS_MM significantly increases the infer-

ence speed, reduces the trainable parameters, computational

complexity and model size, meanwhile achieving the highest

detection accuracy in SDE setup and maintaining a competi-

tive detection accuracy in SIE setup.

III. 3D SEPARABLE CONVOLUTION

In this section, we elaborate on the rationale of the 3D

separable convolution operation, which is the building block

of our proposed 3DS_MM. In the following sections, we use

the default data format “NLHWC” in Tensorflow to represent

data, which denotes the batch size N , the temporal length L,

the height of the image H , the width of the image W , and the

number of channels C.

A. 2D CONVOLUTION VS. 3D CONVOLUTION

As shown in Fig. 1(a) [82], an ordinary 2D convolution takes

a 3D tensor of size H ×W × Ci as the input, where H and

W are the height and width of feature maps, and Ci is the

output
𝐻

𝑊
𝐾 𝑥 𝑦 𝑊𝑜

𝐻𝑜
𝐶𝑖

𝐾 𝐶𝑖 𝑥𝑦

output

𝐻
𝑊 𝑊𝑜

𝐻𝑜𝐿𝐾𝐾 𝐾 𝑥𝑦 𝐿𝑜𝑧

(a)

(b)

FIGURE 1. Illustration of (a) the 2D convolution with 3D input and (b) the
3D convolution with 4D input.

number of input channels. In this case, the filter is a 3D filter

in a shape of K ×K ×Ci moving in two directions (y, x) to

calculate a 2D convolution. The output is a 2D matrix of size

Ho × Wo. If the filter number is Co, the output shape will

be Ho ×Wo × Co. The mathematical expression of such 2D

convolution is given by

Out[h,w] =

K−1∑

j=0

K−1∑

i=0

Ci−1∑

c=0

f [j, i, c]× In[h− j, w − i, c]

(1)

where In represents the 3D input to be convolved with the

3D filter f to result in a 2D output feature map Out. Here, h,

w and c are the height, width, and channel coordinates of the

3D input, while j, i and c are those of the 3D filter.

However, for video signal the 2D convolution in Fig. 1(a)

does not leverage the temporal information among adjacent

frames. 3D convolution addresses this issue using 4D convo-

lutional filters with 3D convolution operation, as illustrated

in Fig. 1(b). In a 3D convolution, the “input” becomes Ci

channels of 3D tensors of size L × H × W , where L is the

temporal length (i.e. the number of successive video frames).

Hence, the input is 4D and is of size L × H × W × Ci. A

4D convolutional filter of size K ×K ×K × Ci moves in 3

directions (z, y, x) to calculate convolutions, where z, y, and

x align with the temporal length, height, and width axes of

the 4D input. The output shape is Lo ×Ho ×Wo. If the filter

number is Co, the output shape will be Lo ×Ho ×Wo ×Co.

The mathematical expression of the 3D convolution with a

4D input is given by

Out[l, h, w] =

∑K−1

k=0

∑K−1

j=0

∑K−1

i=0

∑Ci−1

c=0

f [k, j, i, c]× In[l − k, h− j, w − i, c]
(2)

where In represents the 4D input to be convolved with the 4D

filter f to result in a 3D output Out. Here, l, h, w, and c are

the temporal length, height, width, and channel coordinates

of the 4D input, while k, j, i and c are those of the 4D filter.

If the size of the filter is K ×K ×K × Ci, then the indices

k, j, i range from 0 to K − 1, and c ranges from 0 to Ci − 1.
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Kernel size: 𝐾 × 𝐾 × 𝐾 × 𝐶𝑖
Step 1. Depthwise convolution

Multiplications: 𝐾 × 𝐾 × 𝐾 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖 + 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

Multiplications: 𝐾 × 𝐾 × 𝐾 × 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜
𝐾 × 𝐾 × 𝐾 × 𝐶𝑖

𝐾 × 𝐾 × 𝐾 × 1 1 × 1 × 1 × 𝐶𝑖

𝐻

Kernel size: 𝐾 × 𝐾 × 𝐾 × 1
Multiplications: 𝐾 × 𝐾 × 𝐾 × 1 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖 Kernel size: 1 × 1 × 1 × 𝐶𝑖

Multiplications: 1 × 1 × 1 × 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

𝑊

𝐻 𝑊

𝑊𝑜𝐻𝑜

𝑊𝑜𝐻𝑜𝑊𝑜𝐻𝑜 𝐻𝑜𝑊𝑜

(a)

(b)

𝐿 𝐿𝑜 𝐿𝑜𝐿𝑜

𝐿 𝐿𝑜

Step 2. Pointwise convolution

FIGURE 2. Illustration of (a) the standard 3D convolution and (b) the 3D
separable convolution. Red arrows point to effective directions of the

convolution calculation of the 3D filters.

The ability to leverage the temporal context improves mov-

ing object detection accuracy. However, 3D CNN is rarely

used in practice because it suffers from a high computational

cost due to the increased amount of computation used by 3D

convolutions, especially when the dataset scale goes larger

and the neural network model goes deeper. Thus, in order

to make use of the temporal features, a low-complexity 3D

CNN must be developed.

B. 3D CONVOLUTION VS. 3D SEPARABLE

CONVOLUTION

2D separable convolution splits traditional 2D convolution

into a depthwise convolution and a pointwise convolution,

which drastically reduces computational complexity [57],

[83]–[85].

In order to utilize temporal features in video data, the

idea of separable convolution can be applied to the standard

3D convolution. As shown in Fig. 2 (a), in the standard 3D

convolution, the 4D input of size L × H × W × Ci, is

convolved with Co filters of size K ×K ×K ×Ci, resulting

in a 4D output of size Lo × Ho × Wo × Co. The filters

calculate the 3D convolution by moving in the directions of

length, height, and width as shown by the red arrows. The

computational complexity of such standard 3D convolution

is K ×K ×K × Ci × Lo ×Ho ×Wo × Co.

To simplify the 3D convolution, we decompose it into a

3D depthwise convolution and a 1D pointwise convolution.

As shown in Fig. 2 (b) Step 1, the 3D depthwise convolution

adopts Ci independent filters of size K ×K ×K × 1 to per-

form a 3D convolution on each input channel. This procedure

is described in (3). The required multiplications of such 3D

depthwise convolution is K×K×K×1×Lo×Ho×Wo×Ci.

Out[l, h, w, c] =

K−1∑

k=0

K−1∑

j=0

K−1∑

i=0

f [k, j, i, c]× In[l − k, h− j,

w − i, c], c = 1, 2, ..., Ci. (3)

Afterwards, the output of Fig. 2 (b) Step 1 is used as the

input of Fig. 2 (b) Step 2, where the pointwise convolution

adopts a filter of size 1 × 1 × 1 × Ci, performs a linear

projection along the channel axis as shown by the red arrow,

and outputs a 3D tensor of size Lo×Ho×Wo. This procedure

is described in (4). Using Co such filters outputs Co 3D

tensors. The required multiplications of such 1D pointwise

convolution is 1× 1× 1× Ci × Lo ×Ho ×Wo × Co.

Out[l, h, w] =

Ci−1∑

s=0

f [s]× In[l, h, w, c− s]. (4)

The combination of the 3D depthwise convolution and the

1D pointwise convolution, called 3D separable convolution,

achieves a reduction in computational complexity of

ratio =
3D separable convolution

3D convolution

=

K ×K ×K × Lo ×Ho ×Wo × Ci

+ Ci × Lo ×Ho ×Wo × Co

K ×K ×K × Ci × Lo ×Ho ×Wo × Co

=
1

Co

+
1

K3.

(5)

With K = 3 and a large Co, the computational complexity

can be reduced by roughly 27 times compared to the standard

3D convolution.

This work adopts such 3D separable convolution in a mov-

ing object detection network for the first time. It substantially

reduces the amount of computation, meanwhile extracting

temporal features in the video sequence.

IV. PROPOSED 3DS_MM NETWORK

The proposed deep moving object detection network shown

in Fig. 3 is based on two major designs: (1) the encoder-

decoder-based 3D separable CNN and (2) the multi-input

multi-output (MIMO) strategy. This section describes the

proposed approach in detail.

A. ENCODER-DECODER-BASED 3D SEPARABLE CNN

As shown in Fig. 3, the proposed network is an encoder-

decoder-based CNN utilizing the 3D separable convolution

as described in Section III. The network involves six blocks

in the encoder network and three blocks in the decoder

network. These block numbers are selected to provide a good

trade-off between the inference speed and the detection ac-

curacy empirically. Table 1 shows the details of the network

and the shape of the input and output in each layer.

1) The Encoder Network

For each training sample, the input to the encoder network

is a set of video frames in a 4D shape of 9 × H × W × 3
without background frame needed, where 9 is the number

of video frames, H and W are the height and width of the

video frames, and 3 is the RGB color channels. In Fig. 3,

t0, t1, t2, t3, t4... represent different time slots. In the first

step, the standard 3D convolution described in Fig. 2(a) is
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FIGURE 3. The architecture of the proposed 3DS_MM.

TABLE 1. The proposed network configuration. The encoder consists of

blocks 0 to 5, and the decoder consists of blocks 6 to 8.

Layer Type / Stride (Filter Shape) × Filters Output Shape 

                           

Conv3D / s=[1,1,1]

Conv3D dw / s=[1,2,2]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[1,2,2]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3DTrans pw/s=[3,2,2]

Conv3D dw/s=[1,1,1]

Conv3DTrans pw/s=[1,2,2]

Conv3D dw / s=[1,1,1]

Conv3DTrans pw/s=[1,1,1]

Sigmoid Activation                           

block 0

D
ec

o
d

er

block 6

block 7

block 8

E
n

co
d

er

block 1

block 2

block 3

block 4

block 5

9 × 𝐻 ×𝑊 × 329 × 𝐻 ×𝑊 × 3
9 × 𝐻2 ×𝑊2 × 329 × 𝐻2 ×𝑊2 × 645 × 𝐻2 ×𝑊2 × 645 × 𝐻2 ×𝑊2 × 128
5 × 𝐻4 ×𝑊4 × 1285 × 𝐻4 ×𝑊4 × 128
3 × 𝐻4 ×𝑊4 × 1283 × 𝐻4 ×𝑊4 × 2562 × 𝐻4 ×𝑊4 × 2562 × 𝐻4 ×𝑊4 × 5126 × 𝐻2 ×𝑊2 × 2566 × 𝐻2 ×𝑊2 × 2566 × 𝐻 ×𝑊 × 646 × 𝐻 ×𝑊 × 646 × 𝐻 ×𝑊 × 16 × 𝐻 ×𝑊 × 1

(3 × 3 × 3 × 3) × 32(3 × 3 × 3 × 1) × 32(1 × 1 × 1 × 32) × 64(3 × 3 × 3 × 1) × 64
(3 × 3 × 3 × 1) × 128(1 × 1 × 1 × 64) × 128
(1 × 1 × 1 × 128) × 128(3 × 3 × 3 × 1) × 128(1 × 1 × 1 × 128) × 256(3 × 3 × 3 × 1) × 256(1 × 1 × 1 × 256) × 512(1 × 1 × 1 × 512) × 256(3 × 3 × 3 × 1) × 256
(3 × 3 × 3 × 1) × 64(1 × 1 × 1 × 256) × 64
(1 × 1 × 1 × 64) × 1

The output shape is in data format “LHWC”, where L is the temporal
length, H is the height, W is the width, C is the number of channels, dw
represents “depthwise convolution”, pw represents “pointwise convolution”,
and s represents the strides in temporal length, height, and width.

adopted with 32 filters of size 3× 3× 3× 3 to calculate the

convolution on nine input frames. The input video frames are

transformed to 32 feature maps in a shape of 9×H×W ×32

at the output. In the following blocks, each of the output

feature maps of each layer is convolved with an independent

filter of size 3×3×3×1 with strides [1, 2, 2] (in the direction

of temporal length, height, width) for depthwise convolution,

and then convolved with Co filters of size 1×1×1×Ci with

strides [1, 1, 1] for pointwise convolution.

2) The Decoder Network

The output of the encoder network is fed to the decoder

network for decoding to produce the binary masks of the

moving objects.

Each layer of the decoder network adopts a transposed

convolution, which spatially upsamples the encoded features

and finally generates the binary masks at the same resolution

as the input video frames.

The standard transposed convolution is split into a 1D

pointwise transposed convolution and a 3D depthwise trans-

posed convolution. These operations are defined similarly

to the 1D pointwise convolution and the 3D depthwise

convolution in the encoder network. In block 6 shown in

Table 1, the encoder output of size 2 × H
4
× W

4
× 512 is

converted to a tensor of size 6 × H
2
× W

2
× 256 using the

1D pointwise transposed convolution with 256 filters of size

1 × 1 × 1 × 512. By setting strides to be [3, 2, 2] for the

temporal length, height and width in the pointwise transposed

convolution, the feature maps are up-scaled by 3 times from 2
to 6 in the temporal length and enlarged by 2 times in height

and width. Then followed by a 3D depthwise transposed

convolution with 256 filters of size 3× 3× 3× 1 and strides

[1, 1, 1], the feature maps are projected to a tensor of size

6×H
2
×W

2
×256 at the output of block 6. Block 7 is similarly

defined. In the final block, the feature maps are projected to

a 4D output of size 6×H ×W × 1, and a sigmoid activation

function is appended to generate the probability masks for 6
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FIGURE 4. Left: Difference between Single-Input Single-Output (SISO),
Multi-Input Single-Output (MISO), and Multi-Input Multi-Output (MIMO).

Right: The proposed MIMO strategy used in the inference process.

successive frames. A threshold of 0.5 is applied to convert the

probability masks to binary masks that indicate the detected

moving objects.

B. MIMO STRATEGY

Fig. 4 illustrates our proposed MIMO strategy and how it

is different from SISO and MISO. The temporal-dimension

L of a 4D input or output of size L × H × W × C is

redefined as the number of input frames Li and the number

of output masks Lo. By applying different padding and stride

values in the convolutions in the neural network, different

number of output masks Lo can be predicted. In our study,

we set Li as 9 and Lo as 6. As shown in Fig. 4 (right), in

the inference process, two groups of 9 input frames with 3
frames overlapped can output two successive groups of 6
binary masks.

We also analyze how computational complexity can be

reduced from MISO to this MIMO scheme. Let us consider

our proposed network in Table 1. With the proposed MIMO

scheme, the output layer in block 8 is of size Lo × Ho ×
Wo × (Co = 1). Since block 8 mainly requires a pointwise

convolution, the multiplications required to generate such

output layer is 1×1×1×Ci×Lo×Ho×Wo× (Co = 1) =
Ci × Lo × Ho × Wo. Denote the total multiplications from

block 0 to block 7 as M0−7, then the overall complexity of

generating Lo binary masks is

M0−7 + Ci × Lo ×Ho ×Wo. (6)

With the same network structure, if we adopt a MISO

scheme, then the output layer is of size (Lo = 1) × Ho ×
Wo × (Co = 1). The multiplications involved in block 8
to generate such output layer is 1 × 1 × 1 × Ci × (Lo =
1) × Ho × Wo × (Co = 1) = Ci × Ho × Wo. To generate

Lo output binary masks, the overall complexity is

(M0−7+Ci×Ho×Wo)×Lo = M0−7×Lo+Ci×Lo×Ho×Wo.

(7)

Therefore, to output the same number of binary masks, MISO

requires (7) − (6) = (Lo − 1)×M0−7 more multiplications

than MIMO.

V. TRAINING AND EVALUATION OF THE PROPOSED

MODEL

To analyze how the proposed model performs, we conducted

three experiments illustrated in Table 2: (1) video-optimized

SDE setup on CDnet2014 dataset, (2) category-wise SIE

setup on CDnet2014 dataset, and (3) complete-wise SIE

setup on DAVIS2016 dataset. In SDE [50], frames in training

and test sets were from the same video, whereas, in SIE [50],

completely unseen videos were used for testing. Further, in

category-wise SIE, the training and testing were done per

category over CDnet2014, whereas, in complete-wise SIE,

training and testing were done over the complete DAVIS2016

dataset.

All the experiments were carried out on an Intel Xeon with

an 8-core 3GHz CPU and an Nvidia Titan RTX 24G GPU.

The following sections present the details of the training and

evaluation processes and performance evaluation metrics.

A. VIDEO-OPTIMIZED SDE SETUP ON CDNET2014

DATASET

The CDnet2014 dataset [75] was used in the experiment. It

contains 11 video categories: baseline, badWeather, shadow,

and so on. Each category has four to six videos, resulting in

a total of 53 videos (e.g., the baseline category has sequences

highway, office, pedestrians, and PETS2006). A video con-

tains 900 to 7, 000 frames. The spatial resolution of the video

frames varies from 240 × 320 to 576 × 720 pixels. In our

experiments, we excluded the PTZ (pan–tilt–zoom) category

since the camera has excessive motion.

We trained deep learning-based methods DeepBS [40],

MSFgNet [41], VGG-PSL-CRF [42], BSPVGAN [60],

RMS-GAN [63], MSCNN+Cascade [34], MsEDNet [37],

FgSegNet_S [38], FgSegNet_M [38], FgSegNet_v2 [39],

2D_Separable CNN [57] and our proposed 3DS_MM in the

same video-optimized SDE setup, in which a specific model

was trained for each video.

From each video, we selected the first 50% of frames as

the training set and the last 50% of frames as the test set.

The SISO-based networks and the proposed MIMO-based

3DS_MM were using exactly the same frames for training.

Suppose that one video contained 100 frames, then for the

SISO-based networks, the first 50 frames t0∼t49 were used

for training, and the last 50 frames t50∼t99 were used for

testing. For our proposed 3DS_MM, a 9-frame window slid

over the same first 50% of frames, such as t0∼t8, t1∼t9,

t2∼t10,. . . ,t41∼t49 to form the training set if the stride was

1, and t50∼t99 frames were for testing. In this way, all

the deep-learning-based models were using the same frames

for training. The only difference was that for the proposed

network, the first 50% of frames were repeatedly utilized

through the sliding operation. The traditional unsupervised

methods WeSamBE [15], SemanticBGS [16], PAWCS [18],

and SuBSENSE [20] were also tested on the same last 50%
frames for performance comparison.

We used the RMSprop optimizer with binary cross-entropy

loss function and trained each model for 30 epochs with batch
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TABLE 2. Different data division schemes of scene dependent evaluation (SDE) and scene independent evaluation (SIE).

size 1. The learning rate was initialized at 1 × 10−3 and

was reduced by a factor of 10 if the validation loss did not

decrease for 5 successive epochs.

B. CATEGORY-WISE SIE SETUP ON CDNET2014

DATASET

In order to evaluate the generalization capability of the pro-

posed 3DS_MM, we also run experiments for the SIE setup.

Compared to SDE, in SIE the training and test sets contain

a completely different set of videos. In the category-wise

SIE setup, the training and evaluation were conducted per

category. A leave-one-video-out (LOVO) strategy originally

raised in [50] was applied to divide videos in each category

into training and test sets for CDnet2014 dataset. For exam-

ple, the baseline category contains four videos, then three

videos (highway, office, PETS2006) were used for training,

and the 4th video (pedestrians) was for testing. This SIE setup

was carried out on seven categories, so for each method in

comparison, seven models were trained totally from scratch.

The traditional unsupervised methods WeSamBE [15],

PAWCS [18], and SuBSENSE [20] were compared in the

category-wise SIE setup. We also compared our proposed

3DS_MM with the other DNN-based networks such as

BMN-BSN [47], BSUV-Net [48], BSUV-Net 2.0 [49], and

ChangeDet [50] which were demonstrated to have great

performance on unseen videos.

We used the RMSprop optimizer with binary cross-entropy

loss function and trained the model for 30 epochs with batch

size 5. The learning rate was initialized at 1 × 10−3 and

was reduced by a factor of 10 if the validation loss did not

decrease for five successive epochs.

C. COMPLETE-WISE SIE SETUP ON DAVIS2016

DATASET

We also conducted an experiment in complete-wise SIE

setup on DAVIS2016 dataset. Different from the category-

wise setup on CDnet2014, the complete-wise setup on

DAVIS2016 refers to the training and evaluation on the whole

dataset. In our experiment, 30 videos in DAVIS2016 dataset

were used in training, and 10 completely unseen videos were

used for testing. For each method in comparison, only one

unified model was trained from scratch without using any

pre-trained model data.

Semi-supervised deep learning-based methods such as

MSK [68], CTN [69], SIAMMASK [70], PLM [73],

and HEGNet [71], as well as FgSegNet_S [38], FgSeg-

Net_M [38], FgSegNet_v2 [39], and 2D_Separable

CNN [57] were trained and tested in the same SIE setup

as our proposed 3DS_MM. We used the same training

configuration parameters (optimizer, loss function, epochs,

batch size, learning rate, etc.) as those in Section V-B.

D. EVALUATION METRICS

1) Efficiency

To evaluate the efficiency of our proposed model, the in-

ference speed is measured in frames per second (fps), the

model size is measured in megabytes (MB), the number

of trainable parameters is measured in millions (M), and

the computational complexity is measured in floating point

operations (FLOPs).

2) Detection Accuracy

To measure the detection accuracy, we adopt four met-

rics: the region-based F-measure, the structure measure

(S-measure) [86], the enhanced alignment measure (E-

measure) [87], and the mean absolution error (MAE) [88].

The F-measure is defined as:

F -measure =
2× precision × recall

precision + recall
(8)

where precision = TP
TP+FP

, recall = TP
TP+FN

, given the

true positive (TP), false positive (FP), true negative (TN), and

false negative (FN).

The S-measure [86] combines the region-aware structural

similarity Sr and object-aware structural similarity So, which

is more sensitive to structures in scenes:

S-measure = α× So + (1− α)× Sr , (9)

8 VOLUME , 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3123975, IEEE Access

B. Hou et al.: A Fast Lightweight 3D Separable CNN with MIMO for Moving Object Detection

where α = 0.5 is the balance parameter.

The E-measure is recently proposed [87] based on cogni-

tive vision studies and combines local pixel values with the

image-level mean value in one term, jointly capturing image-

level statistics and local pixel matching information.

We also evaluate the MAE [88] between the predicted

output and the binary ground-truth mask as:

MAE =
1

N

N∑

i=1

|Predi −GTi| , (10)

where Predi is the predicted value of the i-th pixel, GTi is

the ground-truth binary label of the i-th pixel, and N is the

total number of pixels.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. ABLATION STUDY

We first investigated the influence of different components

of our proposed 3DS_MM through ablation experiments. In

order to quantify the effect of two components “3D separable

CNN” and “MIMO” in 3DS_MM, we conducted four experi-

ments over 10 categories of CDnet2014 dataset in SDE setup.

The results are shown in Table 3. We began with the standard

3D CNN and a MISO strategy, namely “3D CNN + MISO”. It

has an F-measure of 0.9532, a very low inference speed of 26
fps, approximately 9.13 M trainable parameters, and a com-

putational complexity of 693.31 GFLOPs, which generates 1
output binary mask. To generate 6 output masks, the GFLOPs

need to be multiplied by 6 (×6). We then replaced the

standard 3D CNN by the 3D separable CNN, while the MISO

strategy was retained. For a fair comparison, the 3D CNN and

the 3D separable CNN structures adopted the same number

of network layers, and their intermediate layers have the same

output sizes. The resultant “3D separable CNN + MISO”

method has a slightly reduced F-measure, but the inference

speed increased from 26 fps to 31 fps. More importantly,

the parameters and FLOPs were drastically reduced, due to

the separable convolution operations. On the other hand, we

retained the standard 3D CNN but replaced MISO by MIMO.

In particular, we kept the front part of the network the same

and only modify the last layer to output 6 binary masks

instead of a single mask. The resultant method “3D CNN +

MIMO” significantly increased the inference speed (144 fps)

compared to “3D CNN + MISO”.

Finally, the proposed “3D separable CNN + MIMO”

method has a superior inference speed (154 fps) due to the

MIMO strategy, as well as the fewest trainable parameters

(∼0.36 M) and FLOPs (∼28.43 G) due to 3D separable con-

volutions. The above results have justified the effectiveness

of our proposed model design.

B. OBJECTIVE PERFORMANCE EVALUATION

1) Objective Results in Video-Optimized SDE Setup on

CDnet2014

The accuracy comparison of various methods in SDE setup

in each video category is shown in Table 4. Each row lists

TABLE 3. Ablation study of the proposed 3DS_MM.

Methods
Accuracy  ↑ 
(F-measure)

Inference Speed ↑  
(fps)

# Param ↓
(M)

FLOPs↓
(G)

3D CNN + MISO 0.9532 26 ~9.13 ~693.31 (×6)

3D separable CNN + MISO 0.9521 31 ~0.36 ~28.40 (×6)

3D CNN + MIMO 0.9522 144 ~9.13 ~693.97

3D separable CNN + MIMO 0.9517 154 ~0.36 ~28.43

#Param: Number of trainable parameters; M: millions; FLOPs: floating
point operations, G: gigaflops; (×6): six times the FLOPs in order to
generate the same number of output masks as the ‘MIMO’ strategy.

the inference speed, F-measure, S-measure, E-measure and

MAE values for a specific method, each column lists the al-

gorithm category, learning type (supervised or unsupervised

learning), input-output relationship (SISO, MISO or MIMO),

inference speed, GPU type, and F-measure values averaged

on test frames from a certain video category, while the last

four columns show the average F-measure, S-measure, E-

measure and MAE values across all video categories. The

first four classical methods are traditional non-deep learning-

based methods. These traditional models are tested on the

same last 50% of frames as the other compared models. In the

subsequent rows, the results of deep learning-based models,

including our proposed model are obtained by training and

testing in exactly the same SDE setup as introduced in Sec-

tion V-A. In Table 4, we highlight the best value in each col-

umn in bold. We observe that our proposed 3DS_MM model

achieves the highest inference speed at 154 fps, and performs

best in BDW-badWeather, DBG-dynamicBackground, IOM-

intermittentObjectMotion, LFR-lowFramerate, and Turbu-

lance categories in F-measure. It improved the average F-

measure by 1.1% and 1.4% compared to methods with the

second and third highest average F-measure values in Table 4.

It also offers the highest average S-measure, E-measure, and

the lowest average MAE values among all methods.

2) Objective Results in Category-Wise SIE Setup on

CDnet2014

Table 5 lists the comparison results in category-wise SIE

setup. Each column lists the inference speed and accuracy

metrics values calculated on the unseen video being left

out from each category for testing in the LOVO strategy.

The models FgSegNet_S [38], FgSegNet_M [38], FgSeg-

Net_v2 [39], BMN-BSN [47], BSUV-Net [48], BSUV-Net

2.0 [49], and ChangeDet [50] were trained and evaluated in

the same SIE setup introduced in Section V-B as our pro-

posed 3DS_MM. Our proposed 3DS_MM (with an inference

speed at 154 fps, an F-measure of 0.8499, an S-measure of

0.8632, an E-measure of 0.9445, and an MAE of 0.0545)

outperforms all the other listed methods in inference speed,

while maintaining high detection accuracy by outperform-

ing FgSegNet_S, FgSegNet_M, FgSegNet_v2, BMN-BSN,

BSUV-Net, and BSUV-Net 2.0 by 26.6%, 34.8%, 24.9%,

7.2%, 2.7%, and 3.9% in F-measure, respectively. It achieves

similar superiority in terms of S-measure, E-measure and

MAE as well. Although ChangeDet [50] offers relatively
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TABLE 4. Comparative F-measure, S-measure, E-measure and MAE performance in video-optimized SDE setup on CDnet2014 dataset.

S-measure ↑ E-measure ↑ MAE ↓
BDW BSL CJT DBG IOM NVD LFR SHD THM TBL Avg Avg Avg Avg

WeSamBE [15] 2 CPU i5 0.8530 0.9293 0.7830 0.7274 0.7256 0.5801 0.6532 0.8492 0.7768 0.7667 0.7644 0.7835 0.8536 0.1423

SemanticBGS [16] 7 Titan 0.8190 0.9488 0.8332 0.9326 0.7742 0.4886 0.7818 0.9050 0.8025 0.6851 0.7971 0.8094 0.8935 0.1002

PAWCS [18] 27 CPU i5 0.8072 0.9277 0.7996 0.8772 0.7628 0.4024 0.6518 0.8719 0.8130 0.6350 0.7549 0.7644 0.8478 0.1453

SuBSENSE [20] 30 CPU i5 0.8539 0.9383 0.8006 0.8011 0.6433 0.5471 0.6375 0.8797 0.7977 0.7722 0.7671 0.7790 0.8598 0.1394

VGG-PSL-CRF [42] 4.9 Titan 0.8869 0.9474 0.9276 0.7190 0.7405 0.7398 0.6105 0.8890 0.8352 0.9137 0.8210 0.8398 0.9157 0.0801

DeepBS [40] 10 Titan 0.8221 0.9460 0.8844 0.8593 0.5962 0.5777 0.5932 0.9116 0.7389 0.8385 0.7768 0.7956 0.8712 0.1184

MSFgNet [41] 83.8 Titan 0.8424 0.9091 0.8167 0.8348 0.7669 0.7973 0.8352 0.9151 0.7822 0.8572 0.8357 0.8545 0.9266 0.0613

BSPVGAN[60] 10 Titan 0.9564 0.9717 0.9747 0.9683 0.9230 0.8873 0.8448 0.9732 0.9570 0.9240 0.9380 0.9466 0.9856 0.0123

RMS-GAN [63] 50 Titan 0.9490 0.9658 0.9624 0.9612 0.9342 0.8812 0.9333 0.9262 0.9510 0.9434 0.9407 0.9490 0.9825 0.0155

MsEDNet [37] 13.6 Titan 0.8975 0.9248 0.9027 0.8902 0.8051 - - 0.9002 0.8621 - 0.8832 0.8897 0.9766 0.0204

MSCNN+Cascade [34] 50 Titan 0.9351 0.9666 0.9612 0.9492 0.8358 0.8837 0.8312 0.9227 0.8764 0.9038 0.9066 0.9190 0.9568 0.0413

FgSegNet_M [38] 69 Titan 0.9307 0.9528 0.9403 0.9136 0.8943 0.8830 0.8897 0.9153 0.9160 0.7964 0.9032 0.9166 0.9789 0.0224

FgSegNet_S [38] 82 Titan 0.9331 0.9608 0.9407 0.9233 0.9045 0.8871 0.9123 0.9197 0.9152 0.7980 0.9095 0.9236 0.9758 0.0241

FgSegNet_v2 [39] 89 Titan 0.9396 0.9680 0.9475 0.9143 0.8985 0.8736 0.9247 0.9152 0.9196 0.8179 0.9119 0.9184 0.9876 0.0112

2D_Separable CNN [57] 149 Titan 0.9165 0.9552 0.9401 0.9324 0.9352 0.8459 0.9255 0.9030 0.9067 0.8936 0.9154 0.9304 0.9858 0.0123

Proposed 3DS_MM 154 Titan 0.9571 0.9704 0.9417 0.9686 0.9637 0.8848 0.9736 0.9432 0.9516 0.9621 0.9517 0.9687 0.9945 0.0067

Method

GANs  (SV, SISO)

(SV, MISO)

F-measure ↑

Traditional Methods (unSV)

Deep CNNs  (SV, MISO)

Accuracy

GPU

Inference 

Speed ↑ 
(fps) 

Algorithms

(Learning type, Input-Output)

3D Separable (SV, MIMO)

2D Separable (SV, SISO)

Multiscale CNNs (SV, MISO)

Deep CNNs  (SV, SISO)

unSV: unsupervised learning, SV: supervised learning, SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input multi-
output. The best value in each column is highlighted in bold. ↑ Larger value of the metric denotes better performance. ↓ Smaller value of the metric
denotes better performance.

TABLE 5. Comparative F-measure, S-measure, E-measure and MAE performance in category-wise SIE setup for unseen videos on CDnet2014 dataset.

S-measure ↑ E-measure ↑ MAE ↓
blizzard-

BDW

pedestrians-

BSL

boats- 

DBG

turnpike5fps-

LFR

winterStreet-

NVD

busStation-

SHD

corridor-

THM
Avg Avg Avg Avg

WeSamBE [15] unSV 2 CPU i5 0.8584 0.9569 0.6401 0.9130 0.5900 0.8628 0.8944 0.8165 0.8198 0.9112 0.0723

PAWCS [18] unSV 27 CPU i5 0.6612 0.9511 0.8820 0.9072 0.4610 0.8583 0.6489 0.7671 0.7746 0.8003 0.1789

SuBSENSE [20] unSV 30 CPU i5 0.8501 0.9500 0.6893 0.8531 0.4469 0.8577 0.9129 0.7943 0.7990 0.8432 0.1432

BSUV-Net [48] SV, MISO 6 Titan 0.8195 0.9765 0.9004 0.6802 0.6100 0.9398 0.8350 0.8231 0.8342 0.9109 0.0691

BSUV-Net 2.0 [49] SV, MISO 29 Titan 0.8310 0.9630 0.8750 0.7077 0.6170 0.8012 0.8743 0.8100 0.8301 0.9032 0.0910

BMN-BSN [47] SV, MISO 48 Titan 0.8401 0.9523 0.6400 0.6893 0.6122 0.9211 0.7933 0.7783 0.7894 0.8712 0.1213

ChangeDet [50] SV, MISO 58.8 Titan 0.9484 0.9490 0.9182 0.8492 0.7699 0.7801 0.8350 0.8643 0.8798 0.9484 0.0466

FgSegNet_M [38] SV, MISO 69 Titan 0.5511 0.7209 0.6857 0.2233 0.4200 0.6051 0.3104 0.5024 0.5232 0.6043 0.3812

FgSegNet_S [38] SV, SISO 82 Titan 0.7412 0.6478 0.4045 0.5767 0.4500 0.5244 0.7435 0.5840 0.5987 0.6543 0.3778

FgSegNet_v2 [39] SV, SISO 89 Titan 0.6990 0.6310 0.6189 0.5290 0.4300 0.5415 0.7590 0.6012 0.6281 0.7223 0.2712

Proposed 3DS_MM SV, MIMO 154 Titan 0.8942 0.9165 0.7998 0.9147 0.7856 0.7978 0.8409 0.8499 0.8632 0.9445 0.0545

Accuracy

Method
Learning Type,

Input-Output

Inference 

Speed ↑ 
(fps) 

GPU
F-measure ↑

unSV: unsupervised learning, SV: supervised learning, SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input multi-
output. The best value in each column is highlighted in bold. The second best average accuracy values are also highlighted. ↑ Larger value of the
metric denotes better performance. ↓ Smaller value of the metric denotes better performance.)

TABLE 6. Comparative F-measure, S-measure, E-measure and MAE performance in complete-wise SIE setup for unseen videos on DAVIS2016 dataset.

S-measure ↑ E-measure ↑ MAE ↓
camel car-

roundab

out

car-

shadow

cows goat horsejump-

high

kite-

surf

paragliding-

launch

parkour soapbox
Avg Avg Avg Avg

MSK [68] semi-SV, MISO 0.5 Titan 0.7350 0.9260 0.9480 0.8120 0.8140 0.8510 0.4380 0.2290 0.8740 0.8420 0.7469 0.7598 0.8068 0.1900

CTN [69] semi-SV, MISO 4.5 Titan 0.7250 0.7750 0.8670 0.7750 0.7460 0.8660 0.4600 0.2270 0.8820 0.7440 0.7067 0.7123 0.7855 0.2102

PLM [73] semi-SV, MISO 9.5 Titan 0.6130 0.7140 0.7310 0.7410 0.6940 0.7860 0.4560 0.1810 0.8120 0.6300 0.6358 0.6436 0.6975 0.2890

HEGNet [71] semi-SV, MISO 12.5 Titan 0.7490 0.7892 0.7798 0.7792 0.7312 0.7402 0.6843 0.7392 0.8029 0.6500 0.7304 0.7489 0.7837 0.2110

SIAMMASK [70] semi-SV, MISO 78 Titan 0.7480 0.8720 0.9780 0.7720 0.7210 0.6880 0.3260 0.1910 0.8290 0.5470 0.6672 0.6703 0.7182 0.2701

FgSegNet_M [38] SV, MISO 69 Titan 0.6047 0.4892 0.8704 0.5620 0.4009 0.6199 0.6308 0.8639 0.5190 0.5835 0.6144 0.6265 0.7034 0.2803

FgSegNet_S [38] SV, SISO 82 Titan 0.6163 0.5194 0.8940 0.5356 0.4063 0.6273 0.6904 0.8738 0.5345 0.5902 0.6288 0.6398 0.7134 0.2511

FgSegNet_v2 [39] SV, SISO 89 Titan 0.6201 0.5120 0.8744 0.5309 0.4509 0.5940 0.6820 0.8729 0.5029 0.6194 0.6260 0.6379 0.7201 0.2710

2D_Separable CNN [57] SV, SISO 149 Titan 0.5235 0.5286 0.8304 0.5387 0.4701 0.3815 0.4729 0.8163 0.4818 0.6209 0.5665 0.5934 0.6235 0.3723

Proposed 3DS_MM SV, MIMO 154 Titan 0.7495 0.7103 0.7849 0.7039 0.7290 0.6103 0.7012 0.8749 0.7693 0.6835 0.7317 0.7492 0.8024 0.2089

Accuracy

Method
Learning Type,

Input-Output

Inference 

Speed ↑ 
(fps) 

GPU
F-measure ↑

semi-SV: semi-supervised learning, SV: supervised learning. SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input
multi-output. The best value in each column is highlighted in bold. The second best average accuracy values are also highlighted. ↑ Larger value of
the metric denotes better performance. ↓ Smaller value of the metric denotes better performance.)

better detection accuracy than our model, the inference speed

of our model is 2.6 times that of ChangeDet.

3) Objective Results in Complete-Wise SIE Setup on

DAVIS2016

All the models listed in Table 6 were trained and evalu-

ated in the same complete-wise SIE setup as described in

Section V-C. It is more challenging for a model to per-

form well in such SIE setup on DAVIS2016 dataset, be-

cause (1) the complete-wise SIE setup mixes 30 different

kinds of videos from the real-world together for training,

and (2) the content complexity of DAVIS2016 dataset is

high. We compared our proposed model 3DS_MM (with

an inference speed at 154 fps and an average F-measure

of 0.7317, S-measure of 0.7492, E-measure of 0.8024 and

MAE of 0.2089 over 10 test videos) to the state-of-the-

art semi-supervised deep learning-based models MSK [68],

CTN [69], SIAMMASK [70], HEGNet [71], and PLM [73].

It turns out that our proposed model is superior over these
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TABLE 7. The comparison between our proposed method and other deep learning-based methods for speed, trainable parameters, computational
complexity, model size, and accuracy metrics values. The Table is sorted in ascending order of the inference speed.

F ↑ S↑ E ↑ MAE ↓ F ↑ S↑ E ↑ MAE ↓ F ↑ S↑ E ↑ MAE ↓
MSK [68] 0.5 - - - - - - - - - - - 0.7469 0.7598 0.8068 0.1900

CTN [69] 4.5 - - - - - - - - - - - 0.7067 0.7123 0.7855 0.2102

VGG-PSL-CRF [42] 4.9 ~  48.72 ~3270 G 127 0.8210 0.8398 0.9157 0.0801 - - - - - - - -

BSUV-Net [48] 6.0 - - 116 - - - - 0.8231 0.8342 0.9109 0.0691 - - - -

PLM [73] 9.5 - - - - - - - - - - - 0.6358 0.6436 0.6975 0.2890

DeepBS [40] 10.0 ~ 3.15 ~1750 G 28.46 0.7768 0.7956 0.8712 0.1184 - - - - - - - -

BSPVGAN [60] 10.0 - - - 0.9380 0.9466 0.9856 0.0123 - - - - - - - -

HEGNet [71] 12.5 - - - - - - - - - - - 0.7304 0.7489 0.7837 0.2110

MsEDNet [37] 13.6 ~ 23.29 ~1120 G 95 0.8832 0.8897 0.9766 0.0204 - - - - - - - -

BSUV-Net 2.0 [49] 29.0 ~15.90 ~540 G 110 - - - - 0.8100 0.8301 0.9032 0.0910 - - - -

BMN-BSN [47] 48.0 - - - - - - - 0.7783 0.7894 0.8712 0.1213 - - - -

MSCNN+Cascade [34] 50.0 ~ 10.30 ~318 G 76.35 0.9066 0.9190 0.9568 0.0413 - - - - - - - -

RMS-GAN [63] 50.0 - - - 0.9407 0.9490 0.9825 0.0155 - - - - - - - -

ChangeDet [50] 58.8 ~ 0.13 ~262 G 1.59 - - - - 0.8643 0.8798 0.9484 0.0466 - - - -

FgSegNet_M [38] 69.0 ~ 15.83 ~220 G 60.40 0.9032 0.9166 0.9789 0.0224 0.5024 0.5232 0.6043 0.3812 0.6144 0.6265 0.7034 0.2803

SIAMMASK [70] 78.0 - - - - - - - - - - - 0.6672 0.6703 0.7182 0.2701

 FgSegNet_S [38] 82.0 ~ 8.16 ~199 G 31.20 0.9095 0.9236 0.9758 0.0241 0.5840 0.5987 0.6543 0.3778 0.6288 0.6398 0.7134 0.2511

MSFgNet [41] 83.8 ~ 0.29 ~193 G 1.48 0.8357 0.8545 0.9266 0.0613 - - - - - - - -

FgSegNet_v2 [39] 89.0 ~ 7.49 ~181 G 29.80 0.9119 0.9184 0.9876 0.0112 0.6012 0.6281 0.7223 0.2712 0.6260 0.6379 0.7201 0.2710

Proposed 3DS_MM 154.0 ~ 0.36 ~28.43 G 1.45 0.9517 0.9687 0.9945 0.0067 0.8499 0.8632 0.9445 0.0545 0.7317 0.7492 0.8024 0.2089

SIE 

(complete-wise)

 SIE 

(category-wise)Method
Inference Speed ↑  

(fps) 

# Param ↓
(M)

Model Size ↓
(MB)

FLOPs ↓ 
(G)

SDE

#Param: Number of trainable parameters; M: millions; G: gigaflops; F: F-measure; S: S-measure; E: E-measure; MAE: mean absolute error. The
best value in each column is highlighted in bold. The second best accuracy values are also highlighted. ↑ Larger value of the metric denotes better
performance. ↓ Smaller value of the metric denotes better performance.

(a) F-measure vs. Inference speed (b) S-measure vs. Inference speed

(c) E-measure vs. Inference speed (d) MAE vs. Inference speed

FIGURE 5. Accuracy vs. inference speed (in fps) on an NVIDIA Titan GPU of our proposed model and other compared models in the three experiments
(in SDE, category-wise SIE, and complete-wise SIE setup).

models in the inference speed. Besides, our model improved

the F-measure by 2.5%, 9.6% and 6.5% compared to CTN,

PLM and SIAMMASK, respectively, and its F-measure is

on par with HEGNet. Although MSK offers 1.5% higher F-
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measure than ours, its inference speed is extremely low. Our

proposed model also outperforms the supervised learning-

based models FgSegNet_S [38], FgSegNet_M [38], FgSeg-

Net_v2 [39], and 2D_Separable CNN [57] in F-measure

by 10.3%, 11.7%, 10.6%, and 16.5%, respectively. Our

proposed method demonstrates a similar superiority in S-

measure, E-measure and MAE values. Although there are

other models in DAVIS Challenge website with higher de-

tection accuracy than our proposed model, those models are

far less efficient and their inference speed is too slow to be

applied in delay-sensitive scenarios.

C. ACCURACY, SPEED, MEMORY, AND

COMPUTATIONAL COMPLEXITY ANALYSIS

Fig. 5 displays the detection accuracy metrics in F-measure,

S-measure, E-measure and MAE versus the inference speed

of all the compared models in the SDE setup, category-

wise SIE setup, and complete-wise SIE setup. Since we

aim at delay-sensitive applications, we expect our proposed

3DS_MM to offer overwhelmingly high inference speed,

and a superior detection accuracy among models with high

inference speeds. In Fig. 5, we observe that our proposed

3DS_MM surpasses all the other schemes in inference speed

in all three experiment setups. In terms of the F-measure, S-

measure, E-measure and MAE, in the SDE setup our method

is the best among all models, while in both the category-wise

and complete-wise SIE setups our method is the best among

all models with an inference speed above 65 fps.

In Table 7, we summarize the overall performance in-

cluding inference speed, trainable parameters, computational

complexity, model size, and detection accuracy of our pro-

posed 3DS_MM and other methods. The table is sorted

in an ascending order of the inference speed. It is evident

that the proposed 3DS_MM outperforms all the other listed

methods with the highest inference speed at 154 fps, which is

increased by 1.7 times and 1.8 times respectively, compared

to the second and third fastest methods in Table 7. The com-

putational complexity and the model size of our proposed

method are 28.43 GFLOPs and 1.45 MB, smaller than all the

other models in Table 7, due to our proposed 3D separable

convolution.

In terms of detection accuracy (F-measure, S-measure, E-

measure, and MAE), our proposed model outperforms all

other models in SDE setup. In category-wise SIE setup, our

proposed method offers the second best accuracy scores.

Although it is slightly worse than changeDet [50], its infer-

ence speed (154 fps) is 2.6 times that of ChangeDet (58.8
fps). In complete-wise SIE setup, although our model offers

slightly worse accuracy scores than MSK [68], it offers

overwhelming superiority in terms of inference speed. The

extremely low inference speed of MSK (0.5 fps) hinders the

practical use of this model for delay-sensitive applications.

The number of trainable parameters of our proposed model

(∼0.36 million) is much less than most of the models in

comparison. The reason that ChangeDet [50] (∼0.13 million)

and MSFgNet [41] (∼0.29 million) have fewer trainable

parameters than ours is because they use 2D filters and

they are shallower networks with fewer convolutional layers,

while our proposed 3DS_MM uses 3D filter and a deeper

network. Nevertheless, the inference speeds of ChangeDet

and MSFgNet are much slower than ours since they are

both MISO networks. In contrast, our 3DS_MM is able to

significantly increase the inference speed due to the proposed

MIMO strategy and 3D separable convolution.

D. SUBJECTIVE PERFORMANCE EVALUATION

In addition to objective performance, we also provide visual

quality comparison as shown in Fig. 61, Fig. 7, and Fig. 8.

1) Subjective Results in Video-Optimized SDE setup on

CDnet2014

In Fig. 6, we randomly picked a sample test frame from cate-

gories BSL-baseline, BDW-badWeather, NVD-nightVideos,

and IOM-intermittentObjectMotion. We observe that (1) the

proposed 3DS_MM provides more details and clearer edges

in the detected foreground objects, such as the car mirrors

in “BSL” and “BDW”, and (2) the proposed method detects

more contiguous objects such as the bus in “NVD” and

the walking man in “IOM”. In contrast, the detected binary

masks of other methods in comparison have either blurry

edges or missing parts.

2) Subjective Results in Category-Wise SIE setup on

CDnet2014

In Fig. 7, we randomly select a sample frame from each of

the four categories (BSL-baseline, BDW-badWeather, LFR-

lowFramerate, SHD-shadow) of CDnet2014 test results to

show the visual quality of the models in Category-Wise

SIE setup. Our proposed model has a better generalization

capability compared to other models. It shows that our pro-

posed model detects clearer shapes of the persons in BSL

and SHD, and detects more details of person legs in SHD.

The results of other methods, however, are either noisy,

blurry, or have missing parts. In addition, the proposed model

performs better in BDW and LFR categories with clear and

correct shapes, while other models detect excessive or non-

contiguous content.

3) Subjective Results in Complete-Wise SIE setup on

DAVIS2016

In Fig. 8, we randomly select four videos (camel, horsejump-

high, paragliding-launch, and kite-surf) from the results

of DAVIS2016. Our proposed model detects the shapes

of objects consistently well for all four videos, while the

detection results of 2D_Separable [57], FgSegNet_S [38],

FgSegNet_v2 [39], and SIAMMASK [70] are either noisy

or incomplete. Besides, the detection results of CTN [69],

MSK [68], and PLM [73] for the kite-surf video are less

accurate than the proposed model.

1There are some non-ROI (non-region-of-interest) areas shown as gray
color regions in the ground truth images, which were not considered in the
training.
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Input                   Ground Truth              Proposed       2D_Separable[57]      FgSegNet_S[38]     FgSegNet-v2[39]       BSPVGAN[60]   MSCNN+Cascade[34]    DeepBS[40]        SuBSENSE[20]        

BSL
(highway)

BDW
(snowFall)

NVD
(streetCorner

AtNight)

IOM
(sofa)

FIGURE 6. Visual comparison of sample results from CDnet2014 dataset in video-optimized SDE setup. BSL: baseline, BDW: badWeather, NVD:
nightVideo, IOM: intermittentObjectMotion.

Input                   Ground Truth          Proposed        FgSegNet_S[38]     FgSegNet_M[38]     FgSegNet_v2[39]       BSUV-Net[48]      WeSamBE [15]        PAWCS [18]         SuBSENSE[20]        

BSL

(pedestrians)

BDW
(blizzard)

LFR
(turnpike5fps)

SHD

(busStation)

FIGURE 7. Visual comparison of unseen sample results from CDnet2014 dataset in category-wise SIE setup. BSL: baseline, BDW: badWeather, LFR:

lowFramerate, SHD: shadow.

camel

horsejump-

high

paragliding-

launch

kite-surf

Input               Ground Truth          Proposed      2D_Separable[57]  FgSegNet_S[38]  FgSegNet_v2[39]        CTN [69]        SIAMMASK [70]        MSK [68]             PLM [73]           

FIGURE 8. Visual comparison of unseen sample results from DAVIS2016 dataset in complete-wise SIE setup.

VII. CONCLUSION

In this paper, we propose the 3DS_MM model for mov-

ing object detection. Our model is designed specifically for

memory- and computation-resource-limited environments

and for delay-sensitive tasks. Our model utilizes spatial-

temporal information in the video data via 3D convolution.

The proposed 3D depthwise and pointwise convolutions

with the MIMO strategy effectively reduce computational

complexity and significantly enhance the inference speed.

In addition, the 3D separable convolution leads to very

few trainable parameters and a small model size. Finally,

the defined SDE and SIE experiments demonstrate that our

proposed model achieves superior detection accuracy among

all compared models with high inference speeds suitable for

low-latency vision applications.

In terms of future study, we plan to use data-augmentation

technique to improve the robustness of the proposed model

and to further improve the model generalization capability

on unseen videos. We will also investigate the potential of

feature fusion to improve moving object detection accuracy

without reducing the efficiency. Further, we plan to extend

the work to semantic segmentation tasks.
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