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Abstract. We present a new Simplex-based linear arithmetic solver that can be
integrated efficiently in the DPLL(T ) framework. The new solver improves over
existing approaches by enabling fast backtracking, supporting a priori simplifica-
tion to reduce the problem size, and providing an efficient form of theory propa-
gation. We also present a new and simple approach for solving strict inequalities.
Experimental results show substantial performance improvements over existing
tools that use other Simplex-based solvers in DPLL(T ) decision procedures. The
new solver is even competitive with state-of-the-art tools specialized for the dif-
ference logic fragment.

1 Introduction

Decision procedures for quantifier-free linear arithmetic determine whether a boolean
combination of linear equalities, inequalities, and disequalities is satisfiable. Several
tools for solving this problem rely on the DPLL(T ) approach [1]: they combine boolean
satisfiability solvers based on the Davis-Putnam-Logemann-Loveland (DPLL) proce-
dure, and arithmetic solvers capable of deciding the satisfiability of conjunctions of lin-
ear constraints. Results of a first satisfiability modulo theories (SMT) competition, com-
paring several of these tools, are presented in [2]. Several tools (e.g., Barcelogic [21] or
Slice [20]) are specialized for the difference-logic fragment of linear arithmetic and rely
on graph algorithms. For general linear arithmetic, existing tools rely either on Fourier-
Motzkin elimination [3] (used by CVClite [4], CVC [5], SVC [6]) or on Simplex meth-
ods [7] (used by MathSat [8], ICS [9], Simplics, Yices, ARIO [10]). Fourier-Motzkin
elimination explodes on many problems and Simplex is generally superior.

The common methods for integrating a Simplex solver with DPLL rely on incre-
mental versions of Simplex such as described in [11,12,13,14]. A tableau is constructed
and updated incrementally: rows are added as DPLL proceeds and are later removed
when DPLL backtracks. These frequent addition and removal of rows and the related
bookkeeping have a significant cost. For example, backtracking may require pivoting
operations. This paper presents a simpler and more efficient solver that considerably
reduces this overhead. The approach relies on transforming the original formula Φ into
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an equisatisfiable Φ′ such that the satisfiability of Φ′ is decided by solving a series of
problems of the form

find x ∈ R
n such that Ax = 0 and li ≤ xi ≤ ui for i = 1, . . . , n,

where the matrix A is fixed and li and ui are bounds on xi that may vary with each
problem. Variants of Simplex can efficiently solve problems in this form. Section 4
presents such a variant designed to be efficient in the DPPL(T ) context, and Section 5
shows how to extend it to problems with strict inequalities. Since A is fixed, no row
is ever added or removed from the tableau, and backtracking is very cheap. The new
solver has additional advantages: it is possible to simplify the problem a priori by elim-
inating irrelevant variables, and a simple but useful form of theory propagation can be
implemented cheaply.

2 Background

Given a quantifier-free theory T , a T -solver is a procedure for deciding whether a fi-
nite set of atoms of T is satisfiable. If Φ is a formula built by boolean combination of
atoms of T , then the satisfiability of Φ can be decided by combining a boolean satis-
fiability solver and a T -solver. The DPLL(T ) approach is an efficient method for such
integrations that relies on the DPLL procedure.

2.1 Solvers for DPPL(T )

In the DPLL(T ) framework, a T -solver maintains a state that is an internal representa-
tion of the atoms asserted so far. This solver must provide operations for updating the
state by asserting new atoms, checking whether the state is consistent, and backtracking.
Optionally, the solver may also implement theory propagation, that is, identify atoms
that are implied by the current state. To interact with the DPLL search, the solver must
produce explanations for conflicts and propagated atoms. In an inconsistent state S, an
explanation is any inconsistent subset of the atoms asserted in S. Similarly, an expla-
nation for an implied atom γ is a subset Γ of the asserted atoms such that Γ |= γ. An
explanation Γ is minimal if no proper subset of Γ is an explanation.

The solver is assumed initialized for a fixed formula Φ and we denote by A the set
of atoms that occur in Φ. The set of atoms asserted so far is denoted by α. The solver
also maintains a stack of checkpoints that mark consistent states to which the solver can
backtrack. We assume that a T -solver implements the following API.1

– Assert(γ) asserts atom γ in the current state. It returns either ok or unsat〈Γ 〉 where
Γ is a subset of α. In the first case, γ is inserted into α. In the latter case, α ∪ {γ}
is inconsistent and Γ is the explanation.

– Check() checks whether α is consistent. If so, it returns ok, otherwise it returns
unsat〈Γ 〉. As previously Γ ⊆ α is an explanation for the inconsistency. A new
checkpoint is created when ok is returned.

1 This is similar to the API proposed in [1].
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– Backtrack() backtracks to the consistent state represented by the checkpoint on the
top of the stack.

– Propagate() performs theory propagation. It returns a set {〈Γ1, γ1〉, . . . , 〈Γt, γt〉}
where Γi ⊆ α and γi ∈ A \ α. For every pair 〈Γi, γi〉 produced, γi is an atom not
already asserted that is implied by Γi, and Γi is a subset of α.

Assert must be sound but is not required to be complete: Assert(γ) may return ok
even if α∪{γ} is inconsistent. Similarly, Propagate must be sound but does not have to
be exhaustive. On the other hand, function Check is required to be sound and complete:
if Check() = ok then α must be consistent. This model enables several atoms to be
asserted in a single “batch”, using several calls to Assert followed by a single call to
Check. Assert can then implement only inexpensive (and possibly incomplete) consis-
tency checks while Check implements a complete (and possibly expensive) consistency-
checking procedure. The state S′ after executing Backtrack must be logically equivalent
to the state S when the checkpoint was created, but S′ may be different from S.

2.2 Existing Simplex Solvers for DPLL(T )

A quantifier-free linear arithmetic formula is a first-order formula whose atoms are
either propositional variables of equalities, disequalities, or inequalities of the form

a1x1 + . . . + anxn �� b,

where a1, . . . , an and b are rational numbers, x1, . . . , xn are real (or integer) variables,
and �� is one of the operators =, ≤, <, >, ≥, or 	=. In the DPLL(T ) framework, de-
ciding the satisfiability of such formulas requires a linear-arithmetic solver. A common
approach is to use incremental forms of Simplex similar to the algorithms described
in [11,12,13,14]. Tools based on this approach include our own tools, Yices and Sim-
plics, and others such as MathSat [8].

In these algorithms, a solver state includes a Simplex tableau that is derived from all
equalities and inequalities asserted so far. A tableau can be written as a set of equalities
of the form

xi = bi +
∑

xj∈N
aijxj , xi ∈ B (1)

where B and N are disjoint sets of variables. Elements of B and N are called basic and
nonbasic variables, respectively. Additional constraints are imposed on some variables
of B ∪ N . So-called slack variables are required to be non-negative, and the tableau
may also contain zero variables, which are all implicitly equal to 0. Zero variables are
used to generate explanations (cf. [11]).

A pivoting operation pivot(xr , xs) swaps a basic variable xr and a nonbasic variable
xs such that ars 	= 0. After pivoting, xs becomes basic and xr becomes nonbasic. The
tableau is updated by replacing equation xr = br +

∑
xj∈N arjxj with

xs = − br

ars
+

xr

ars
−

∑

xj∈N \{xs}

arjxj

ars
(2)

and then equation (2) is used to eliminate xs from the rest of the tableau by substitution.
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(b)Heuristic vs. Full Propagation

Fig. 1. Impact of theory propagation in Simplics

Assertion of equalities or inequalities adds new equations to the tableau. For exam-
ple, let γ be an atom of the form t ≥ 0 where t is an arithmetic term. The operation
Assert(γ) involves three steps. First, γ is normalized by substituting any basic variable
xi occurring in t with the term bi +

∑
xj∈N aijxj . The solver checks then whether

the resulting inequality t′ ≥ 0 is satisfiable. This step uses the Simplex algorithm to
maximize t′ subject to the tableau constraints. If t′ has a maximum M and M is neg-
ative, then t′ ≥ 0 is not satisfiable and an explanation is generated. Otherwise, a fresh
slack variable sk is created and a row of the form sk = t′′ is added to the tableau.
Some bookkeeping is required to record that sk is nonnegative and is associated with
atom γ. Processing of equalities and strict inequalities follows the same general princi-
ples. Backtracking removes rows from the tableau. For example, to retract γ, the solver
retrieves the slack variable sk associated with γ. If sk is a basic variable in the cur-
rent state then the corresponding equation is removed from the tableau. Otherwise, a
pivoting operation is applied first to make sk basic.

Disequalities are treated separately since they cannot be incorporated into the
tableau. When a disequality t 	= 0 is asserted, it is first normalized as before, and
then the solver must check whether the current tableau implies t = 0. This can be
implemented via the zero-detection procedure described in [11] for example.

2.3 Performance

Assertions and backtracking have a significant cost in solvers based on incremental
Simplex algorithms. Part of this cost (e.g., the pivoting involved in Assert operations)
cannot be avoided, but there is also significant overhead in the frequent additions and re-
movals of rows, creations and deletions of slack variables, and associated bookkeeping.
The remainder of the paper describes a different type of solver, still based on the Sim-
plex method, which significantly reduces this overhead. The new approach is simpler
and more uniform than incremental Simplex. It is also more economical as irrelevant
variables can be eliminated a priori and fewer slack variables are necessary.

Some of the simplifications are based on lessons we learned from experiments with
our previous tools Simplics and Yices:2

2 Both use incremental Simplex and zero detection.
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– Minimal explanations are critical. Dramatic improvements were observed when
comparing Simplics and Yices, which generate minimal explanations, and their
predecessor ICS, which does not.

– Theory propagation is useful if it can be done cheaply. Figure 1 compares the re-
sults of Simplics on the real-arithmetic subset of the SMT-LIB benchmarks [15]
using different levels of theory propagation. By default, Simplics uses a heuristic
form of propagation that is relatively inexpensive but incomplete (no pivoting is
used). This is compared in Figure 1(a) with Simplics running with no propagation
at all, and in Figure 1(b) with Simplics running with complete propagation (where
pivoting is used). On these benchmarks, full propagation is just too expensive, but
no propagation is also a poor choice. Heuristic propagation is clearly superior.

– Zero detection is expensive and can be avoided. On a few examples in the SMT-
LIB benchmarks, Simplics spends as much as 30% of its time in the zero-detection
procedure. A simpler alternative is to rewrite a disequality t 	= 0 as the disjunction
of two strict inequalities (t < 0)∨ (t > 0). This transformation may seem wasteful
since it may entail additional case splits, but it works well in practice. After this
transformation, Simplics can solve six problems of the SMT-LIB benchmarks that
it cannot solve otherwise.

3 Preprocessing

Incremental Simplex algorithms can be avoided by rewriting a linear arithmetic formula
Φ into an equisatisfiable formula of the form ΦA ∧Φ′, where ΦA is a conjunction of lin-
ear equalities, and all the atoms occurring in Φ′ are elementary atoms of the form y �� b,
where y is a variable and b is a rational constant. The transformation is straightforward.
For example, let Φ be the formula

x ≥ 0 ∧ (x + y ≤ 2 ∨ x + 2y − z ≥ 6) ∧ (x + y = 2 ∨ x + 2y − z > 4).

We introduce two variables s1 and s2 and rewrite Φ to ΦA ∧ Φ′ as follows.

(s1 = x + y ∧ s2 = x + 2y − z) ∧
(x ≥ 0 ∧ (s1 ≤ 2 ∨ s2 ≥ 6) ∧ (s1 = 2 ∨ s2 > 4))

Clearly, this new formula and Φ are equisatisfiable. In general, starting from a formula
Φ, the transformation introduces a new variable si for every linear term ti that is not
already a variable and occurs as the left side of an atom ti �� b of Φ. Then ΦA is the
conjunction of all the equalities si = ti and Φ′ is obtained by replacing every term ti
by the corresponding si in Φ.

Let x1, . . . , xn be the arithmetic variables of ΦA ∧ Φ′, that is, all the variables orig-
inally in Φ and m-additional variables s1, . . . , sm introduced by the previous transfor-
mation (m ≤ n). Then formula ΦA can be written in matrix form as Ax = 0, where
A is a fixed m × n rational matrix and x is a vector in R

n. The rows of A are linearly
independent so A has rank m. Checking whether Φ is satisfiable amounts to finding an
x such that Ax = 0 and x satisfies Φ′. In other words, checking the satisfiability of Φ
in linear arithmetic is equivalent to checking the satisfiability of Φ′ in linear arithmetic
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modulo Ax = 0. Since all atoms of Φ′ are elementary, this requires a solver for de-
ciding the consistency of a set of elementary atoms Γ modulo the constraints Ax = 0.
If Γ contains only equalities and (nonstrict) inequalities, this reduces to searching for
x ∈ R

n such that

Ax = 0 and lj ≤ xj ≤ uj for j = 1, . . . , n (3)

where lj is either −∞ or a rational number, and uj is either +∞ or a rational number.
Since the elementary atoms of Φ′ are known in advance, we can immediately sim-

plify the constraints Ax = 0 by removing any variable xi that does not occur in any
elementary atom of Φ′. This is done by Gaussian elimination. In practice, this presim-
plification can reduce the matrix size significantly (cf. [16]).

The variables si introduced during the transformation play the same role as the slack
variables of standard Simplex. However, the presence of both lower and upper bounds
is beneficial. For example, incremental Simplex algorithms need two slack variables to
represent a constraint such as 1 ≤ x + 3y ≤ 4, whereas a single sk is sufficient if the
general form (3) is used. Overall, rewriting Φ into ΦA ∧ Φ′ and relying on the general
form leads to problems with fewer variables than the algorithms discussed previously.

4 Basic Solver

We first describe a basic solver that handles equalities and nonstrict inequalities with
real variables. Extensions to strict inequalities and integer variables are presented in the
next sections. The basic solver decides the satisfiability of problems in form (3) and
implements the API of Section 2.1 for integration with a DPLL-based SAT solver.

The solver state includes a tableau derived from the constraint matrix A. We will
write such a tableau in the form:

xi =
∑

xj∈N
aijxj xi ∈ B,

where B and N denote the set of basic and nonbasic variables, respectively.3 Since
all rows of this tableau are linear combinations of rows of the original matrix A, the
equality xi =

∑
xj∈N aijxj is satisfied by any x such that Ax = 0.

In addition to this tableau, the solver state stores upper and lower bounds li and ui for
every variable xi and a mapping β that assigns a rational value β(xi) to every variable
xi. The bounds on nonbasic variables are always satisfied by β, that is, the following
invariant is maintained

∀xj ∈ N , lj ≤ β(xj) ≤ uj . (4)

Furthermore, β satisfies the constraint Ax = 0. In the initial state, lj = −∞, uj = +∞,
and β(xj) = 0 for all j.

Figure 2 describes two auxiliary procedures that modify β. Procedure update(xi, v)
sets the value of a nonbasic variable xi to v and adjusts the value of all basic variables
so that all equations remain satisfied. Procedure pivotAndUpdate(xi, xj , v) applies piv-
oting to the basic variable xi and the nonbasic variable xj ; it also sets the value of xi to
v and adjusts the values of all basic variables to keep all equations satisfied.

3 This is the same as (1) with bi = 0 for all xi ∈ B.
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procedure update(xi, v)
for each xj ∈ B, β(xj) := β(xj) + aji(v − β(xi))
β(xi) := v

procedure pivotAndUpdate(xi, xj , v)
θ := v−β(xi)

aij

β(xi) := v
β(xj) := β(xj) + θ
for each xk ∈ B \ {xi}, β(xk) := β(xk) + akjθ
pivot(xi, xj)

Fig. 2. Auxiliary procedures

4.1 Main Algorithm

The main procedure of our algorithm is based on the dual Simplex and relies on Bland’s
pivot-selection rule to ensure termination. It relies on a total order on the variables.
Assuming an assignment β that satisfies the previous invariants, but where li ≤ β(xi) ≤
ui may not hold for some basic variables xi, procedure Check searches for a new β that
satisfies all constraints. The procedure is shown in Figure 3. It either terminates with a
new assignment and basis that satisfy all lower and upper bounds (line 4), or finds the
constraints to be unsatisfiable (lines 8 and 13). The body of the main loop selects a basic
variable xi that does not satisfy its bounds (line 3). If xi is below li, then it looks for
a variable xj in the row xi =

∑
xj∈N aijxj that can compensate the gap in xi (lines

6-7). If no such xj exists the problem is unsatisfiable (line 8) because the value of xi is
maximal and is below the lower bound li. Otherwise, the procedure pivots xi and xj ,
and xi is set to li (line 9). The case where xi is above its upper bound (lines 10-14) is
symmetrical.

The following property implies the correctness of Check; a proof is given in [16].

Theorem 1. Procedure Check always terminates.

4.2 Generating Explanations

An inconsistency may be detected by Check at line 8 or 13. Let us assume a conflict is
detected at line 8. There is then a basic variable xi such that β(xi) < li and for every
nonbasic variable xj we have aij > 0 ⇒ β(xj) ≥ uj and aij < 0 ⇒ β(xj) ≤ lj .
Let N+ = {xj ∈ N | aij > 0} and N− = {xj ∈ N | aij < 0}. Since β satisfies all
bounds on nonbasic variables, we have β(xj) = lj for every xj ∈ N− and β(xj) = uj

for every xj ∈ N +. It follows that

β(xi) =
∑

xj∈N
aijβ(xj) =

∑

xj∈N +

aijuj +
∑

xj∈N −

aij lj.

The equation xi =
∑

xj∈N aijxj holds for any x such that Ax = 0. Therefore, for any
such x, we have

β(xi) − xi =
∑

xj∈N +

aij(uj − xj) +
∑

xj∈N −

aij(lj − xj),



88 B. Dutertre and L. de Moura

1. procedure Check()
2. loop
3. select the smallest basic variable xi such that β(xi) < li or β(xi) > ui

4. if there is no such xi then return satisfiable
5. if β(xi) < li then
6. select the smallest nonbasic variable xj such that
7. (aij > 0 and β(xj) < uj ) or (aij < 0 and β(xj) > lj)
8. if there is no such xj then return unsatisfiable
9. pivotAndUpdate(xi, xj , li)
10. if β(xi) > ui then
11. select the smallest nonbasic variable xj such that
12. (aij < 0 and β(xj) < uj ) or (aij > 0 and β(xj) > lj)
13. if there is no such xj then return unsatisfiable
14. pivotAndUpdate(xi, xj , ui)
15. end loop

Fig. 3. Check procedure

from which one can derive the following implication:

∧

xj∈N +

xj ≤ uj ∧
∧

xj∈N −

lj ≤ xj ⇒ xi ≤ β(xi).

Since β(xi) < li, this is inconsistent with li ≤ xi. The explanation for the conflict is
then the following set of elementary atoms:

Γ = {xj ≤ uj | j ∈ N +} ∪ {xj ≥ lj | j ∈ N−} ∪ {xi ≥ li}.

It is easy to see that Γ is minimal. Explanations for conflicts at line 13 are generated in
the same way.

4.3 Assertion Procedures

The Assert function relies on two procedures shown in Figure 4 for updating the bounds
li and ui. Procedure AssertUpper(xi ≤ ci) has no effect if ui ≤ ci and returns unsat-
isfiable if ci < li; otherwise the current upper bound on xi is set to ci. If variable
xi is nonbasic, then β is updated to maintain invariant (4). If an immediate conflict is
detected at line 3 then generating a minimal explanation is straightforward.

Procedure AssertLower(xi ≥ ci) does the same thing for the lower bound. An equal-
ity xi = ci is asserted by calling both AssertUpper and AssertLower.

4.4 Backtracking

Efficient backtracking is important since the number of backtracks is often very large.
In our approach, backtracking can be efficiently implemented. We just need to save
the value of ui (li) on a stack before it is updated by the procedure AssertUpper (As-
sertLower). This information is used to restore the old bounds when backtracking is
performed. Backtracking does not require saving the successive βs on a stack. Only
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1. procedure AssertUpper(xi ≤ ci)
2. if ci ≥ ui then return satisfiable
3. if ci < li then return unsatisfiable
4. ui := ci

5. if xi is a nonbasic variable and β(xi) > ci then update(xi, ci)
6. return ok

1. procedure AssertLower(xi ≥ ci)
2. if ci ≤ li then return satisfiable
3. if ci > ui then return unsatisfiable
4. li := ci

5. if xi is a nonbasic variable and β(xi) < ci then update(xi, ci)
6. return ok

Fig. 4. Assertion procedures

one assignment β needs to be stored, namely, the one corresponding to the last success-
ful Check. After a successful Check, the assignment β is a model for the current set of
constraints and for the set of constraints asserted at any previous checkpoint. Since no
pivoting or other expensive operation is used, backtracking is very cheap.

4.5 Theory Propagation

Given a set of elementary atoms A from the formula Φ′, then unate propagation is very
cheap to implement. For example, if bound xi ≥ ci has been asserted then any unas-
signed atom of A of the form xi ≥ c′ with c′ < ci is immediately implied. Similarly,
the negation of any atom xi ≤ u with u < ci is implied. This type of propagation is
useful in practice. It occurs frequently in several SMT-LIB benchmarks.

Another method is based on bound refinement. Given a row of a tableau, such as
xi =

∑
xj∈N aijxj , one can derive a lower or upper bound on xi from the lower or

upper bounds on the nonbasic variables xj . These computed bounds may imply unas-
signed elementary atoms with variable xi. This is a heuristic technique as the computed
bounds may be weaker than the current bounds asserted on xi (for example, the com-
puted bounds may be −∞ or +∞). However, bound refinement is quite general. It is
applicable with any equality a1x1 + . . . + anxn = 0 derived by linear combination of
rows of A, not just with rows of a tableau.

4.6 Example

Figure 5 illustrates the algorithm on a small example. Each row represents a state. The
columns contain the tableaux, bounds, and assignments. The first row contains the ini-
tial state. Suppose x ≤ −4 is asserted. Then the value of x must be adjusted, since
β0(x) > −4. Since s1 and s2 depend on x, their values are also modified. No pivoting
is required since the basic variables do not have bounds, so A1 = A0. Next, x ≥ −8
is asserted. Since β1(x) satisfies this bound, nothing changes: A2 = A1 and β2 = β1.
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A0 =
{

s1 = −x + y
s2 = x + y

β0 = (x �→ 0, y �→ 0, s1 �→ 0, s2 �→ 0)

A1 = A0 x ≤ −4 β1 = (x �→ −4, y �→ 0, s1 �→ 4, s2 �→ −4)
A2 = A1 −8 ≤ x ≤ −4 β2 = β1

A3 =
{

y = x + s1

s2 = 2x + s1

−8 ≤ x ≤ −4
s1 ≤ 1 β3 = (x �→ −4, y �→ −3, s1 �→ 1, s2 �→ −7)

Fig. 5. Example

Next, s1 ≤ 1 is asserted. The current value of s1 does not satisfy this bound, so Check
must be invoked. Check pivots s1 and y to decrease s1. The resulting state S3 is shown
in the last row; all constraints are satisfied.

If s2 ≥ −3 is asserted in S3 and Check is called then an inconsistency is detected:
Tableau A2 does not allow s2 to increase since both x and s1 are at their upper bound.
Therefore, s2 ≥ −3 is inconsistent with state S3.

5 Strict Inequalities

The previous method generalizes to strict inequalities using a simple observation.

Lemma 1. A set of linear arithmetic literals Γ containing strict inequalities S =
{p1 > 0, . . . , pn > 0} is satisfiable iff there exists a rational number δ > 0 such
that Γδ = (Γ ∪ Sδ) \ S is satisfiable, where Sδ = {p1 ≥ δ, . . . , pn ≥ δ}.

This lemma says that we can replace all strict inequalities by nonstrict ones if a small
enough δ is known. Rather than computing an explicit value for δ, we treat it symbol-
ically, as an infinitesimal parameter. Bounds and variable assignments now range over
the set Qδ of pairs of rationals. A pair (c, k) of Qδ is denoted by c+kδ and the following
operations and comparison are defined in Qδ:

(c1, k1) + (c1, k2) ≡ (c1 + c2, k1 + k2)
a × (c, k) ≡ (a × c, a × k)

(c1, k1) ≤ (c2, k2) ≡ (c1 < c2) ∨ (c1 = c2 ∧ k1 ≤ k2),

where a is a rational. Strict bounds in Q are converted to nonstrict bounds in Qδ: in-
equality xi > li is converted to xi ≥ li + δ, and xi < ui is converted to xi ≤ ui − δ.
Then all updates to β used in the previous algorithm can be performed in Qδ. The matrix
A does not change; all its coefficients are rational numbers.

By this process, a problem S with strict bounds in the rational is converted into a
problem S′ in the general form (3) but where the bounds li and ui, and the variables xi

are elements of Qδ. If an assignment β′ satisfies S’ then it can be converted into a ra-
tional assignment β that satisfies S. This relies on substituting the symbolic parameter
δ with a small enough positive rational number δ0 ∈ Q, which can always be done since
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there is a finite number of inequalities in S′ (cf. [16]). If S′ is unsatisfiable in Qδ, then
by Lemma 1, S is also unsatisfiable in the rationals.

6 Extensions

The previous solver is sound and complete for the reals. If some or all of the variables xi

are required to be integer, the algorithm is not complete. Nothing ensures that the assign-
ment β constructed by Check gives an integer value to integer variables. To be complete
in the integer or mixed integer case, we employ a branch and cut strategy, that is, the
combination of branch-and-bound with a cutting plane generation algorithm [17,18].
The branch-and-bound algorithm works when problems are solved in Qδ rather than
Q. In other words, it can be used when strict inequalities are present. The cutting-plane
method we use is based on mixed integer Gomory cuts. Such a cutting-plane algorithm
is critical as it dramatically accelerates the convergence of branch-and-cut in several
cases.

Also, it is possible to integrate the linear-arithmetic solver presented in this paper
with solvers for other theories. The simplest method is to perform case-splits on equal-
ities between variables that are shared between different theories. In most cases, the
number of such shared variables is small in comparison with the total number of vari-
ables and this method is quite efficient. This approach is described in detail at [19]. It
can be extended with an opportunistic equality-propagation method [16].

7 Experiments

Figure 6 compares a prototype SMT solver that uses the previous algorithms with other
tools that participated in last year’s SMT competition. The comparison uses all the
SMT-LIB benchmarks in the QF RDL (real difference logic), QF IDL (integer differ-
ence logic), QF LRA (linear real arithmetic), and QF LIA (linear integer arithmetic)
divisions. The experiments were conducted on identical PCs, all equipped with a 32bit
Pentium 4 processor running at 3 GHz. The timeout was set to 1 hour and the memory
usage was limited to 1 GB. With these timing and memory constraints, running all the
benchmarks required approximately 60 CPU days.

Each point on the graphs represents a benchmark: + denotes a difference logic prob-
lem and × denotes a problem outside the difference-logic fragment. The axes corre-
spond to the CPU time taken by the new solver (y-axis) or the other solver (x-axis) on
each benchmark. CPU times are measured in seconds. Points below the diagonal are
then SMT-LIB benchmarks where our new solver is faster. Points on the leftmost verti-
cal edge are problems where a solver aborted, typically by running out of memory. The
graphs comparing our new solver with Barcelogic and Simplics have fewer points, be-
cause Barcelogic supports only difference logic and Simplics does not support integer
problems.

Table 1 summarizes the results. For each tool, it lists the number of instances solved
and unsolved, and the total runtime. As can be seen, the new algorithm largely outper-
forms the other solvers. It is even faster on problems in the difference logic fragment



92 B. Dutertre and L. de Moura

abort
timeout

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ario-1.1

(a)Ario 1.1 vs. New Solver

abort
timeout

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

bclt

(b)BarcelogicTools vs. New Solver

abort
timeout

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

cvcl

(c)CVC Lite 2.0 vs. New Solver

abort
timeout

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

mathsat-3.3.1

(d)MathSAT 3.3.1 vs. New Solver

abort
timeout

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

simplics-smtcomp-05

(e)Simplics vs. New Solver

abort
timeout

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

yices-smtcomp-05

(f)Yices vs. New Solver

Fig. 6. Experimental results

than tools that are specialized for this fragment. The performance improvement is due
to efficient backtracking and to the presimplification enabled by our approach, efficient
theory propagation based on bound refinement also has a big impact.
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Table 1. Experimental results: Summary

sat unsat failed time (secs)
Ario 1.1 186 640 517 1218371
BarcelogicTools 153 417 92 401842
CVC Lite 117 454 772 1193747
MathSAT 3.3.1 330 779 234 739533
Yices 358 756 229 702129
Simplics 240 351 110 476940
New Solver 412 869 62 267198

8 Conclusion

We have presented a new Simplex-based solver designed for efficiently solving SMT
problems involving linear arithmetic. The main features of the new approach include
the possibility to presimplify the input problem by eliminating variables, a reduction
in the number of slack variables, and fast backtracking. A simple but useful form of
theory propagation can also be implemented cheaply. Another result of the paper is a
simple approach for solving strict inequalities that does not require modification of the
basic Simplex algorithm. This approach is more generally applicable to other forms of
solvers, such as graph-based solvers for difference logic.

Experimental results show that the new Simplex-based solver outperforms the most
competitive solvers from SMT-COMP’05, including specialized solvers on difference
logic problems.

Applications for the algorithm presented in this paper go beyond SMT. We are cur-
rently extending the solver to support a form of weighted MAX-SMT, that is, the search
for an assignment to an SMT problem that maximizes a linear objective function. This
MAX-SMT solver will be integrated to SRI’s CALO system4, as part of a module that
combines learning and deductive algorithms.
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