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D.L.G. Hill4,�, and R.S. Razavi1

1 Division of Imaging Sciences, King’s College London,
5th floor Thomas Guy House, Guy’s Hospital, London, UK

2 Jean Leray Mathematics Laboratory, Nantes University, France
3 Epidaure Research Project, INRIA, Sophia Antipolis, France

4 Centre for Medical Image Computing, University College London, UK
derek.hill@ucl.ac.uk

Abstract. Cardiac ablation procedures are becoming more routine to
treat arrhythmias. The development of electrophysiological models will
allow investigation of treatment strategies. However, current models are
computationally expensive and often too complex to be adjusted with
current clinical data. In this paper, we have proposed a fast algorithm to
solve Eikonal-based models on triangular meshes. These models can be
used to extract hidden parameters of the cardiac function from clinical
data in a very short time, thus could be used during interventions. We
propose a first approach to estimate these parameters, and have tested it
on synthetic and real data derived using XMR imaging. We demonstrated
a qualitative matching between the estimated parameter and XMR data.
This novel approach opens up possibilities to directly integrate modelling
in the interventional room.

1 Introduction

The treatment of cardiac arrhythmias has changed considerably in the last fifteen
years. Radio-frequency cardiac ablation techniques are becoming widely available
as an alternative treatment to drug therapy. These are carried out under x-ray
fluoroscopic guidance, with specialised catheters for making invasive recordings
of the electrical activity in the heart, and even reconstruct the chamber geometry
(CARTO from Biosense, EnSite from ESI).

These procedures can be highly effective with minimal side effects, but in
some groups of patients have unsatisfactory success rates, are often very long,
and can involve high x-ray radiation dose to both patient and staff. Moreover,
serious side effects can arise if the lesions extend beyond the target area. There
is a need for substantial innovation in order to reliably achieve successful results
in an acceptable time, with lower radiation dose and reduced risk of accidental
damage to adjacent structures.
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The aim of this research work is to design models of the cardiac electrical
activity that are suited for clinical use and to propose methods to combine these
models with interventional data in order to better estimate the patient cardiac
function and help in the guidance of procedures.

1.1 Electrophysiology Models

Modelling the electrophysiology of the cell is an active research area since the
seminal work of Hodgkin and Huxley [1]. The precise modelling of the my-
ocardium involves a cell membrane model embedded into a set of partial dif-
ferential equations (PDE) modelling a continuum. We can divide these models
into three categories, from the more complex to the simpler (numerically):

– Biophysical models: semi-linear evolution PDE + ionic models. Up to fifty
equations for ion concentrations and channels (Luo-Rudy, Noble)

– Phenomenological models: semi-linear evolution PDE + mathematical sim-
plification of biophysical models. Reducing to two equations representing the
intra- and extra-cellular potentials (bi-domain, mono-domain)

– Eikonal models: one static non-linear PDE for the depolarisation time de-
rived from the previous models (Eikonal-Curvature, Eikonal-Diffusion)

Solutions of the evolution PDE are very computationally demanding, due to the
space scale of the electrical propagation front being much smaller than the size
of the ventricles. The motion of the front governed by the Eikonal equation is
observed at a much larger scale, resulting in much faster computations.

For our interventional purpose, and as parameter adjustment often requires
several simulations, we want to design a very fast model. Moreover, clinical data
currently available is mainly on depolarisation times. For these reasons we chose
to base the presented work on the Eikonal models. Even if these models are not
able to precisely simulate the whole range of cardiac pathologies, they open up
possibilities for fast estimation, filtering, interpolation and extrapolation. The
long-term goal is to build up a hierarchy of models where a more complex model
could be used in pathological areas.

1.2 Clinical Measures

XMR suites are a new type of clinical facility combining in the same room a
MR scanner and a mobile cardiac x-ray set. The patient can be easily moved
between the two systems using a specially modified sliding MR table top that
docks with and transfers patients to a specially modified x-ray table. Techniques
have been designed to register the two imaging spaces [2]. Therefore it is possible
to combine patient anatomy with electrophysiology recordings.

2 A Fast Electrophysiology Model

The classical Eikonal equation is:

c‖∇T ‖ = 1 (1)

where T is the depolarisation time and c is the local propagation speed.
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However, the propagation in an excitable medium like the myocardium de-
pends on the curvature of the propagating front. It can be explained physically
by the fact that if a convex front is propagating outward, the excitation of the
neighbours is more spread out, so the excitation is slower than for a planar wave.
Two different formulations have been proposed to introduce this effect. Both are
based on asymptotic development of the solution around the activation front
given by the Nagumo equation: ∂tu = D∆u + kf(u), where u is the action po-
tential. f and k describe the cell membrane, they refer to the ionic reactions in
the cell. D is the volumetric electrical conductivity of the tissue i.e. the transmis-
sion of the electrical wave from cell to cell. In the case of cardiac pathology, the
conductivity and the ion channel mediated change of polarisation of the cardiac
cells can be both involved.

The two resulting formulations are the Eikonal-Curvature equation [3]:

c
√

kD‖∇T ‖ − Dκ(T ) = 1 (2)

with κ(T ) = ‖∇T ‖div
(

∇T
‖∇T‖

)
, and the Eikonal-Diffusion equation [4]:

c
√

kD‖∇T ‖ − D∆T = 1 (3)

c is a constant depending only on the function f .

2.1 Fast-Marching Approach

Different numerical approaches have been proposed to solve these equations. A
temporal evolution term and finite differences have been applied to Eq. 2 [3]:
c
√

kD‖∇T ‖ − Dκ(T ) = ∂tT , and an evolution term and finite elements to the
Eq. 3 [4]: ∂tT + c

√
kD‖∇T ‖ − D∆T = 1.

A time dependant PDE like these needs up to thousands of iterations, each of
which might be a linear (or non-linear) system to solve. Furthermore, additional
stability conditions constrain the computations. The static solving of Eikonal
equations 2 and 3, first proposed by [5] with a Newton’s method, requires to
solve only one non-linear system of equations.

For sake of efficiency, our approach is also to directly solve the static equa-
tions 2 and 3, but takes advantage of the Fast-Marching Method (FMM) [6] to
solve the non-linear system. FMM are numerical algorithms for solving Eq. 1 on
a Cartesian grid in O(MlogM) steps (O(M2) for a Newton’s method), where M
stands for the number of grid points. Consistent upwind discretisations of the
gradient are used that select the correct viscosity solution, and leads to a causal-
ity relationship between the unknowns: the solution at a grid point depends only
on the smaller adjacent points, and the unknown can be computed from point
to point in an ascending manner.

We evaluate a first guess T0 for T by solving the Eq. 1 with the FMM, and
then compute the curvature effect from T0 to correct the equation and re-evaluate
T . The iterative process is: c‖T k+1‖ = 1+F (T k), where F (T k) = κ(T k) for Eq. 2
and F (T k) = ∆T k for Eq. 3. The curvature term being only a small perturbation
of the equation, the sequence (T k) hopefully converges quickly. Then its limit is
a solution of the discretised equation.
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2.2 Unstructured Grids Implementation

The complexity of the heart geometry is difficult to describe with structured
grids. Moreover, most of the 3D medical data is in the form of triangulated
surfaces or point clouds. It is thus important to be able to deal with this kind
of domain. This is why we implemented our algorithm on triangulations.

The FMM has been extended to unstructured grids, with criteria on the tri-
angles to compute the narrow band values [7]. We implemented Eq. 3 using using
P1 Lagrange Finite Elements to compute the Laplacian. Experimental evidence
suggests no flux on the myocardium surface, so we use Neumann boundary con-
ditions. We integrate this in the stiffness matrix K: Kij =

∫
∇φi∇φj coming

from an integration by parts of the Laplacian in the variational formulation,
with φi and φj the P1 Lagrange shape functions.

We compute the curvature flow for Eq. 2 with the formula proposed in [8].
We adapted the edge-based formula into a triangle-based formula, faster for the
neighbourhood iterators we are using, and to cope with the presence of holes in
the mesh. The curvature flow at point i is then:

κ(T ) ≈ ‖∇T ‖i

∑
n∈Ni

W i
j (Tj − Ti) + W i

k(Tk − Ti)∑
n∈Ni

meas(n)

with Ni the triangle neighbour set incident to i; j and k the two other ver-
tices of triangle n (and αj , αk the corresponding angles); ‖∇T ‖i the point-
wise mass-lumped Galerkin approximation of the gradient in i; and W i

j =
cotan(αk)/(2‖∇T ‖n); and meas(n) the area of n.

Our C++ implementation using the sorted containers of the Standard Tem-
plate Library and precomputed neighbouring iterators makes it possible to com-
pute the FMM and these terms in less than a second for a 13 000 nodes mesh.

2.3 Validation of the Algorithm: Convergence and Precision

The numerical approach has been tested on Eq. 2 with c = 1 and α = 0.002,
on a family of unstructured meshes with up to 13092 nodes. Since we study
the effect of curvature, the front is initially a circle of radius r0 = 0.1 in the
square [−1, 1]× [−1, −1]. As a consequence, the solution is expected to be mainly
dependent on r =

√
x2 + y2 so that its curvature κ = 1/r varies from 1/r0 = 10

down to 1.
The computation of numerical solutions to Eq. 2 introduces errors when

approximating the differential terms by differences on a mesh of nodes, and also
when solving the resulting non-linear discrete problem.

We investigated numerically:

1. the algorithmic convergence of the sequence of approximation T k towards
a limit, expected to be the solution TN of the discrete problem on a given
mesh with N nodes, Fig. 1 (Left);

2. the mesh convergence of the solution TN as N → ∞, Fig. 1 (Right).
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Fig. 1. (Left) Convergence of the algorithm for different mesh sizes. (Right) Evolution
of the error with the mesh size.

Concerning point 1, the sequence T k seems to converge, as shown in Fig. 1 Left.
The number of iterations necessary for the residual correction ‖T k+1 − T k‖∞
to be of order 10−10 increase slowly as N , but remains reasonable: about 50
iterations on a 13 092 nodes mesh, which means that 50 FMM solutions has
been successively computed. Our FMM iterative algorithm looks like a good
replacement for a Newton’s method.

Concerning point 2, a reference solution is constructed on the finer mesh, and
compared to the solutions on coarser meshes. As expected from the first order
upwind differences used to discretise the gradient, the error decreases as 1/N (ie
as h

1
2 in 2D, standard for such methods). Of course higher order methods exist

to discretise the gradient in an upwind manner. But, on unstructured meshes,
they are not usually compatible with a Fast-Marching type algorithm.

3 Local Apparent Conductivity Estimation

Depolarization times on the endocardium are difficult to interpret due to the
influence of the geometry and the curvature. The idea is to estimate hidden
parameters using the proposed model and the clinical measurements in order to
help diagnosis and therapy planning from electrophysiology study. A first step is
to locate differences in local conductivity. In this section, we present a method
to estimate this parameter using the fast Eikonal-Curvature model presented in
the previous section (it could also be applied to the Eikonal-Diffusion).

Such parameters could eventually be estimated from the measured data using
a signal processing approach. The model based method has the advantage of
allowing the use of the model in a predictive way, once adjusted to the data.
This can be very useful to test therapies and plan interventions. Moreover, it
can be extended to partial observations: we aim to model the whole volumetric
myocardium, but we will still have only access to surface data.

Estimating the parameters of a model from patient specific data is part
of the field of data assimilation. Existing methods are generally based on the
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minimisation of the quadratic error between the model and the data: C(P) =∑
i(T

m
i −T s

i (P))2, where T m
i is the measured depolarisation time at vertex i and

T s
i (P) is the depolarisation time at vertex i computed with the set of parameters

P. The minimisation is either sequential like in Kalman filtering based methods
or global like in adjoint methods.

The time introduced in Eq. 3 or 2 to solve the Eikonal equation is an arti-
ficial time, therefore the sequential methods are not the natural framework to
solve this problem. Moreover sequential methods involve the updating of all the
variables and of a covariance matrix of the same size, involving additional com-
putational costs. The adjoint methods propose a precise method to compute the
gradient of C but the numerical scheme proposed, alternating a fast marching
step and the computation of diffusion/curvature term, implies that the adjoint
methods are not directly applicable to this problem.

The adaptation of one of these methods to the proposed discrete model is still
work in progress. As a first approach, we proposed to adjust the conductivity
parameter D by iterating the two following steps:

– convergence of the Eq. 2 using presented algorithm
– local adjustment by multiplying D by 1 + ε or 1 − ε depending on the sign

of the difference between the measured and simulated depolarisation times

We expect this parameter to be different (smaller) in pathological regions.

3.1 Synthetic Data

We simulated on a triangulated sphere different propagation conditions to test
the estimation procedure. On this normalised test, c0 = 1, k = 1, D0 = 0.01. We
defined three different zones: one excitation zone for the initialisation, one zone
where D = 2D0, and one zone where D = D0/2. We simulated the propaga-
tion and stored the depolarisation times. We then started the data assimilation
procedure with D = D0.

After convergence of this procedure, we obtain a mean error of 2.95 × 10−3

and a maximum error of 8.46 × 10−3 on the depolarisation times which are
between 0 and 31 (arbitrary units). We were thus able to detect very precisely
the areas with different conductivity and these conductivities were well estimated
(cf Fig. 2).

3.2 XMR Interventional Data

XMR registration makes it possible to integrate in a same coordinate space
the electrophysiology measurements and the patient anatomy. This opens up
possibilities to obtain very rich data to validate the estimation procedure, as
MR can give spatial information on the location of the pathology.

We used measurements from the Ensite system (Endocardial Solutions),
which is a non-contact invasive catheter based device for recording the elec-
trical activity of the heart (reconstructed on 256 points). Due to the tangential
aspect of the fibre orientations, we believe that the 3D aspect of the propagation
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Fig. 2. (Left) Simulation of different conduction zones with D twice the normal value
(left zone) and half the normal value (right hexagonal zone). (Middle) Resulting
isochrones with the Eikonal-Curvature equation. The excitation zone is on the right
side of the sphere. (Right) Estimated D with the parameter estimation procedure.
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Fig. 3. (Left) Initial propagation with standard parameters. (Middle) Resulting
isochrones with adjusted the Eikonal-Curvature equation . (Right) Estimated D with
the parameter estimation procedure. Mesh: 256 nodes.

Fig. 4. Matching between the conductivity estimated with the described procedure
and a scar segmented in a late enhancement MR image (white voxels). The complete
XMR registration involves non-rigid deformation, this is why the shape of the basket
is different between Fig. 3 and Fig. 4.

does not interfere too much with the surface endocardial recordings. This data
is from a patient with a left bundle branch block, so the initialisation does not
come from the Purkinje network, but through the septum. From these record-
ings, we initialise the depolarisation in the model. We then adjusted the local
conductivity. We obtain a mean error of 7.75 × 10−1 ms and a maximum error
of 9.75 ms on the depolarisation times which are between 0 and 66 ms.
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The XMR registration makes it possible to locate these electrophysiology
measurements in the MR coordinate space. This patient had multiple scars in
the myocardium, leading to a left bundle branch block and poor cardiac function.
Using late enhancement MR, some of these scars were manually segmented by
an expert. The local apparent conductivity estimation procedure can then be
compared with the scars locations. Precise comparison is still work in progress,
but the first results obtained compare qualitatively well with the segmented scar.
We can see in Fig. 4 that the segmented scar corresponds to a lower apparent
conductivity zone (blue).

The mean value of the adjusted local apparent conductivity is 0.0149 and
the maximum value is 0.0309.

4 Conclusion

We presented in this article a new algorithm to achieve fast simulations of elec-
trophysiology, along with a procedure to adjust the model parameters from inter-
ventional data. This algorithm has been validated on analytical solutions and the
procedure has been tested on synthetic and real data. It was used to estimate
the local apparent conductivity from interventional data, and the first results
obtained are very encouraging. Having such a model opens up possibilities for
real-time filtering and interpolation of electrophysiology recordings. Moreover,
hidden parameter estimation is of great use for a better evaluation of the extent
of the pathology and for planning of the therapy . An excellent example appli-
cation is the planning of bi-ventricular pacing therapy for treatment of heart
failure. A model with accurate information on the local conductivity would al-
low a better placement of the pacing leads and thus man improve of the 50-60%
success rate of the procedure.

This simulation part could be improved by using higher order schemes for the
FMM and the curvature term, and the improvement of the implementation in
case of obtuse angles in the triangulation. The current implementation does not
treat these cases separately, but the numerical schemes should be different. Also,
including the fibre orientations, which is rather straightforward in this formula-
tion, could give more reliable results. We also plan to study more sophisticated
estimation procedures, to achieve a precise and robust adjustment. In particular,
we want to study the possibility to adapt a sequential method, like unscented
Kalman filtering, or adjoint methods to this parameter estimation problem.
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