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A Fast Method to Compute the
Potential in the Multisphere Model

J. C. de Munck and Maria J. Peters

Abstract—A series expansion is derived for the potential distri-
bution, caused by a dipole source in a multilayered sphere with
piecewise constant conductivity. When the radial coordinate of
the source approaches the radial coordinate of the field point the
spherical harmonics expansion converges only very slowly. It is
shown how the convergence can be improved by first calculating
an asymptotic approximation of the potential and using the so-
called addition-subtraction method. Since the asymptotic solution
is an approximation of the true solution, it gives some insight
on the dependence of the potential on the conductivities. The
formulas will be given in Cartesian coordinates, so that difficulties
with coordinate transformations are avoided. Attention will be
paid to the (fast) computation of the partial derivatives of the
potential, which is useful for inverse algorithms.

I. INTRODUCTION

T is commonly accepted that the mechanism underlying

the generation of the electroencephalogram (EEG) can be
physically described as a set of current sources embedded
in a conductive medium. The position and orientation of
these sources can be estimated from the observed potential
differences on the skin by constructing mathematical models
that describe the geometry of the sources and the geometry
of the medium. Since the head is approximately spherically
symmetric, a concentric sphere model has been developed to
describe the head, with different levels of complexity: the
homogeneous sphere model [1], the three sphere model [2],
the four sphere model [3], the isotropic multisphere model [4],
and the anisotropic multi sphere model [5]. The computation
of the potential distribution, when the geometry of the sources
and the medium are given is called the forward problem. The
inverse problem is to estimate the sources, for a given medium
and a known potential distribution on a set of electrodes.
The inverse problem is a parameter estimation problem in
which the unknown source parameters are varied until the
difference between the measured and calculated potential is as
small as possible. Since for the inverse algorithm the solution
of the forward problem has to be known for many different
combinations of source parameters, it is of prime importance to
calculate the potential as fast as possible. When the Marquardt
algorithm is used in the inverse problem then also the partial
derivatives of the potential have to be calculated in a fast way.
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In this paper the forward problem is solved for the general
anisotropic multisphere model. The solution method which
is used is based on the derivation given in [5]. However,
the derivation is slightly adapted to obtain an expression in
Cartesian coordinates (Section II). The new formulation of
the solution also makes it possible to derive an asymptotic
approximation of the terms of the spherical harmonics ex-
pansion. This approximation is used to accelerate the speed
of convergence of the series. In Section III it is shown how
the improvement of the convergence works in general and in
Section IV the asymptotic approximation of the multisphere
potential is derived. In Section V an explicit expression for
the dipole potential and its partial derivatives is given. Finally,
in Section VI the merits of the convergence acceleration are
demonsirated with some numerical examples.

II. REFORMULATION OF THE SOLUTION

If the quasi-static approximation is valid, the potential 1) is a
solution of a boundary value problem with Neuman conditions

(6],

div(':y:gradw)z.s, TeV )
(¥-grady)-A=f, FedV

where %(a':’) is the conductivity tensor, V is the volume
conductor, 9V is the volume conductor boundary with outer
normal 7i(Z) and s(£) is the current source density. From
Gauss’ identity it follows that a solution of the Neuman
problem can only exist if

/ sdi= ¢ fdS. )
4 av

For a current dipole in an isolated volume conductor this
condition is automatically satisfied, since then f = 0. It can be
shown that the solution is unique up to an additive constant.

The current dipole potential can be expressed in terms of
the gradient of the monopole potential ¢mon(To, Ze):

1/1(50, fe) = Q . Vﬂwmon(fﬂv "Ee) (3)

where T is the source point and &, is the field point, and Q is
the dipole vector. The symbol V indicates that the gradient
has to be taken with respect to the source point. The monopole
potential 1,0, is the solution of (1), with s = §(Zp — 7) and
f = A7!, and A is the area of the volume conductor. It
will next be assumed that the volume conductor is spherically
symmetric, and therefore the conductivity 5(Z) is completely
defined by its radial and tangential conductivity, which in turn
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both depend only on r. Obviously, the monopole potential
is only a function of the radial coordinate of the source ryg,
the radial coordinate of the electrode r. and on the angular
distance wo. between electrode and source point. Therefore,
Ymon can be expressed as follows

o0

47 Ymon = Z(?n + DRy (70, 7e) Pn(cos wpe ). 4)

n=0

Here, P, are the Legendre polynomials and the coefficients
R, are solutions of the following differential equation [5],

% (TQE(T)%RTL(T‘O, 7))

—n(n+ n(r)Ru(ro,r) = 8(ro — 1) (5)
where €(r) is the radial and 7(r) the tangential conductivity.
The solution of the inhomogeneous (5) can be expressed
as the product of two linear independent solutions of the
homogeneous equation [7]:

1

R(rg,re) = —————
r2eW (H HY)

] {Hg)(ro)Hﬁl)(re). 7o > Te )
HP (ro) HP (r0). 19 < 10
where
WHD, HP) = HO0) L HP (1)
T
~HP@LEDE) 0
.

is the Wronskian determinant. The functions Hff)

homogeneous equation

(Pengrom)

—a(n+ V(P HO (r) = 0,

satisfy the

i=1,2 (8

It follows from straightforward differentiation that the denomi-
nator in (6) is independent of r, so that R(rg,r.) is symmetric
in 7o and 7,.

To specify the boundary conditions, it is convenient to
make a small caving in the center of the volume conductor,
with radius ry.1. On this spherical surface it is required
that the potential is constant. For the solution so obtained
the limit 7x47 — O is taken, yielding the solution for the
“massive” conductor. The functions Hy' are determined up to
a multiplicative constant. However, when they are substituted
into (6), this factor cancels. Therefore, the derivative of Hfll)
may be put equal to 1 at » = rx4;. Hence,

HM (rng1) =0

. 0 9
A (ne) =17 " # ®

where HT(LI)’(TN_H) denotes the derivative of H,(LI)(T)., evalu-
ated at r = TN41-

It follows from (8) that Hél)(r) = 1 is a solution of the
homogeneous equation for n = 0. With this choice for H, él) (r)
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we find, with r = 7r; is the outer surface of the volume
conductor:
(5 - grad ) - @) zeav
€(r) = d
= 2 1)—R,(rg.7)P, S Woe
y nzzo( n + )drg (70, 71) Pr(cos woe)
_e(n) =
T Ar Z

Il
o

(2n + 1) HY (ro)H (r1)
r3e(r))(HSD (r) HP (r1) — HD (r) H (1))
- Pp(cos wope)
_ 1
- 471’7‘%

10)

provided that H,(Iz)(rl) satisfies the following boundary con-
dition at v = 7ry:

HP () =1

, 0.
Py =0 " #

(1D
In (3) the derivative is taken and, since the term n = 0
is independent of &p, this term has no influence on the
dipole potential. In the following the zeroth term will not be
considered anymore.

As in [5] the solutions of (8) will be expressed as a series of
matrix multiplications. For this purpose it is noted that finding
a solution of the homogeneous equation is equivalent to finding
a 2 x 2 matrix M(ra,ry), which transfers HY(r,) and its
derivative into Hff)('rb) (and its derivative):

HO(ra) ) _ H ()
(i o) = e (b ) 02

For, if we have M(r,,7,) then the variables 7, or ry1,
which appear in the boundary conditions (9) and (11), can be
substituted for 7, and simultaneously r can be substituted for
Tq. In this way the solution at arbitrary r is expressed in terms
of the values at the boundaries.

For piecewise constant ¢(r) and 7(r) an explicit expression
for M (r,, ) can easily be found. Therefore it is assumed that
the conductivities change abruptly at 7 = ry11,7Nn, -, T1,
with N4l <1y < --- < r; and that

€(r) =¢;
n(r) =n;’

It can be verified that for ;.1 < r < rj, the functions r®s
and % ~! are two linear independent solutions of (8), with

Ti+1 <71 < Ty (13)

14+ 4n(n + 1)n;/e). (14)

Note that if ¢; = 7; then v; = n. So for isotropic shells
the two linear independent solutions of (8) become the well-
known functions r* and r~"~1. When 7, and r, are in the
same shell, so that r; 1 < 74,7 < 7j, the transfer matrix
will be denoted by M;(r,, 7). To find this matrix it is noted
that H{"(r) is a linear combination of r* and r—*~!, and in
particular for » = 7y,

HO(ry) = Ary? + Br, 7! (15)
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Je—1
Rn(TOsTe) = - ‘

1
{ II M](T]7Tj+1)MJe(7'JeyTe)} {MJO(TOa"'.IO-H II M]'(Tj,rjﬂ)}
22 12
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JO+1

N

2
Te

1T Mi(rsomic0)

1
=N

(26)

22

for certain A and B. By simple differentiation it is found that

e(m)H (ry) = €;(Avjry? ™" = Bluy + 1)r, %) (16)
Similarly we conclude that
H(ry) = Arls + Bry¥! (17)

and
e(ra)H,(f)’(ra) = e]-(Avj'ij_l —~ B(vj + l)ra—vf_z). (18)

By eliminating A and B from (15)—(18) the following expres-
sion for M; is found:

’I‘UJ vaj—l
a a
Mj(rq, ) = ( 1 —ufz)

€jura’ " —€;(v; + 1)rg

7.“1 T—vjfl inv
b

( S w-1 b _Uj—2> 19)
€557y —€;(v; + )y

From the definition of the transfer matrix it follows that

M]i'nv(’/‘a,Tb) = M]‘(’I‘b,’l‘a) (20)
and it can also be verified that
2
r
det Mj(Ta,'I‘b) = ;'% (21)

By substituting 7, and 7, for 7, and 7} respectively, (19)
can be used to transfer the boundary condition (11) to a
solution at the interface of the first and the second shell. Since
both elements in the column vectors in (12) are continuous
functions, Ma(r,r2) transfers this solution into the solution
for the second shell. By applying this argument repeatedly
and expressing (11) as the first column of the identity matrix,
we find for rj4, <7 < 7y

H?P(r) *
GJHr(Lz)’(T) *
=M;(r,r))My_1(ry,ryq) - Mi(ra,m). (22)
Application of (20) and (21) yields

* *
e HO () HO(r)
,,,2
= T—éMl(TI;TQ) s Myoa(ry-1rg)My(ry,r).(23)

In a similar way it is found that Hﬁl)(r) can be expressed as
a matrix element as follows

(0 )

= M;(r,ry41)Mypa(ras1,my42) - My(ry, ryg1).
(24)

Here we see the use of the assumption that ry1; # 0. For
if we had specified the boundary condition at » = 0, then in
(19) we had to divide by zero.

Finally, it is noted that the denominator in (6) can also be
expressed as a matrix element, by applying (22) and (24) to
-

(: ey W (D, Hff))>

= —riMi(r1,72) - My (TN, TN 31)- (25)

(25) shows that 72¢(r)W(H™, H®)) does not depend on r,
indeed.

Substituting (23)—(25) into (6) yields the coefficients of the
spherical harmonics expansion and in this way the potential is
expressed in terms of the radii and conductivities of the multi
layer model (see top of page), for

Tg <Te <T1 TJe+1 S Te < Tje

27
and similarly for o > 7.. From now on only the case 79 < 7.
will be considered. Note the difference in the definitions of J,
and Jy. Also note that if r, = r; then the 22-matrix element
in the numerator has to be replaced by unity.

With (4) and (26) the boundary value problem (1) is solved
formally. An interesting aspect of the solution method is that
it automatically yields the solution of the “dual” problem, i.e.
the case that the inner sphere is isolated whereas the outer
sphere is kept at a constant potential. Since in this case the
boundary conditions (9) and (11) are interchanged, its solution
results from interchanging the asterisks and the functions in
(22)—(25).

Although we now have a formal solution of our problem,
when rq approaches 7., the series converges only very slowly
and therefore many terms are needed to obtain accurate results.
The convergence behavior becomes apparent when R, (rg, 7.)
is written in a different way. By carrying out the matrix product
in (19), it is found that

rjo+1 < To < Tjo

—v;—2 v
My(ra,ms) = (7) 7o)+ (2) 87 o)

(28)
with
1
§j (rasm) = 20; + 1
Ta ,
v, — a
Ty e (29)
vj(v; +1) ;
j
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1 JO+1
T Uit rie)Use(rae,re) {UJO(TO,T]‘OH) | RZICTRTY ot
- vjo
= Med 22 N 12 v; Ag
Rn("‘Ov"‘e) = 1 : IJ—CI )‘]' )\zle (32)
-2 HU]‘(T]'7TJ+1)
j=N 99

and III. ADDITION-SUBTRACTION METHOD
g+ 1 In the previous section the functions v and ¢,0, have been
i (ra,m) = 20 + 1 expressed as an infinite series of spherical harmonics which
1 Tp have poor convergence for ro = r.. This implies that, in
v ;(v. 1) Y 30) particular for superficial sources, many terms are needed to
6Lt i P obtain accurate results. A strategy to reduce computation time
Ta Ta is to approximate the spherical harmonics expansion as well

The matrix U;(r,,rs) is defined as follows

—2v; -2
Uy(rars) = (—) ST (rm) + 8 (ravms), (1)

so that M = (r4/rp)"> U;. Finally, R, (o, 7.) is expressed in
terms of the matrix elements of U; (see top of page) with

Te

, |
<1 A=-Lc1 oy =l

TJe rJjo T

Ae =

<1

(33)

In the derivation of (32), (31) has been applied with r, > 7.
Therefore, for large n, the term with Sf is dominating, and the
matrix products in (32) tend to a rational function of v;. The
convergence of the spherical harmonics expansion is therefore
determined by the behavior of the product of the Aj. If all
layers between the source and the electrode are isotropic, this
product equals

JO—1 v n n n
\v A (TJe+1) (TJ6+2) 0 )

I I 020 o (et etz _TJ0o

Je A TJe TJesl rJo-1

(5 () =)
| — =(— (34)
TJjo TJe Te
from which the poor convergence for ro =~ r. is obvious.
In Section IV it is demonstrated that for anisotropic layers,
the Aj-product tends to AA™, with A — 1, for To — Te, SO
that also in the general case the convergence of the spherical
harmonics expansion is determined by the ratio of ry and ..
For the massive sphere, the limit of ry,; — 0 has to
be taken of (32). The dependence of (32) on rx41 is only
through the second column of the matrix Un(rn,rne1).
Since for 41 = 0, both the numerator and the denominator
vanish, 1’Hopitals rule has to be applied to calculate the limit.
Therefore, instead of using Uy (r,.0),

1
lim Uy (ra ) L 35)
m — ViTas = § Z
e 0 v (
Ta

has to be applied for the computation of R, (ro.7e)-

as possible with a formula which is known both in analytically
closed form and as a spherical harmonics expansion. This
approximation is added to the solution in closed form and
subtracted in the form of the infinite series. In this way a series
of differences results with a higher speed of convergence,
provided that the approximation is properly weighed.
To demonstrate the method, it is assumed that the function
¥ is expanded as follows,
fe o)
(A w) = fuh"Po(cos w) (36)
n=1
where the coefficients f,, are known and A is a function of T
and 7.. Furthermore, it is assumed that these coefficients can
be expanded in a finite number K of positive powers of n and
an infinite number of negative powers of 7,
Z kR L O(n=).

k=—-K

fn= 37)

In the next section it is shown that O(n~°°) result from terms
with A" A < 1. These terms are of order infinity, because
limn — coA"/n~% = 0, for any finite k. Therefore these
terms tend to zero very quickly for large n and they contribute
only to the first few terms of (36).

The kth asymptotic approximation is defined as

d®(A,w) = Z %Pn(cos w) (38)
n=1

and f(—K)¢(—K)+f(—K+l)¢(—K+1) ++f(0)¢(0)+f(1)¢(1)+

- is called asymptotic expansion of 1. For k < 2 we can
express ¢ (A,w) in closed form by taking appropriately
chosen partial derivatives and integrals of the infinite medium
potential. For instance, we obtain,

FD(A,w) = Acosw = A7 COS};_ A% (39a)
QA w)y=R1-1 (39b)
V(A w)=—1In 2(1-Acosw+R) (39¢)

where R is
R=1-2Acos w+ A2. (40)
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When K = 0 is the first nonvanishing term in (37) and if FO
and f() are known, v can be calculated as

'l/)(A,u)) :f(0)¢(0) + f(1)¢(l)

+ D (o = O — T fOYAR P, (cos w)(41)
n=1

Since P, (cos w) = O(n®), the series of differences converges
as ¥n~2A", instead of as YA™, which represents the conver-
gence of the original series. Therefore, much fewer terms are
necessary to compute (41) than (36), with the same precision.
The method is based on the knowledge of the expansion
coefficients f*), and therefore it will be considered in the
next section how to calculate them for the multilayer model.

IV. THE ASYMPTOTIC APPROXIMATION

In this section it will first be considered how the A -product
in (32) behaves for large n. For this purpose v; is expanded
in powers of n,

v; = 3(=1+ /1 4+ 4n(n+ L)a%)

~ajn+ 3(a; — 1) + %(a;l —a;)n"t + O(n=%)(42)

with
Gy = ‘/77]/9,‘ (43)
Hence we have for large n,
/\;] N )\j/Q(QJ‘l)/\?J"
and therefore
Jo-1 ,
v; /\8./0 n
IJ_I )‘j NI — AA
with
Jo-1 IV JOo~1 X\
A= 1] ’\3ng’ A=]] /\’j/\—f’ (44)
Je € Je €
o 2(a;~—1
Np= AT N = A, 45)

In Section II it has been shown that if all shells between the
source and the electrode are isotropic, A = 1 and A = Te/Te.

The behavior of the U; matrix product in (32) will be studied
next. It was already noted that in the application of (32), we
have r, > 7, so that

J1 J1
II Usriiriin) = [T SF(ryomjen) + O(m=>).  (46)
j=J2 j=J2

Here, the O(n="°) term results from (Ti41/7;)*" . From
(46) it becomes apparent that for large n we need to consider
products of S’; instead of products of U;. Tt is easily verified
from the definition of ;" (30) that rank (87) = 1. This notion
makes it possible to write the matrix element of a product as
a product of matrix elements, and therefore the approximation
of (32) can be largely simplified. We can express S;L as

S'-F(ra,'rb) =

p a;bl (47)

1
21}j+1
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with

0 = (‘i 4) b = ((”J “)9). “8)
VT, Tp

When (47) is substituted into (46) the associative property of

matrix multiplication can be applied:

71 I
JIL SH(rjiripn) = jEQ 20, 1 1“jb;T
N
B mrp v+l
“((anb)ans1bT 1) -+ (as2bDy))
no
- =72 2u; + 1

((bT1as141) -+ (bFy_1as2))as1bT,

-1 Jﬁl (i1 + Dejo1 +€5v;
2051 +1 P c]-(2vj +1)
(vy2 + )ego Tro41
€J1 €71
vii(vy2 + 1)eyo M
TJ1 "1

(49)

In the derivation of (49) it has been found that bJTajH is a
scalar, and for this reason it can be put in front of the matrix.

An important consequence of (49) is that the asymptotic ap-
proximation of Ry, (rq,r.) only depends on the conductivities
of the layers between source and electrode. The dependence
on the radii disappears, because this dependence is canceled
in bfajﬂ. Moreover, when (49) is substituted into (32), many
factors of the denominator cancel to factors of the numerator.
The only surviving factors depend on the conductivities of the
shells between 75941 and r7.. We find for Te =711 and Jyp > 1

1 2’01 + 1
€J0TeV1 2050 + 1

R, (ro,7.) = — AA"(

_
) ]1‘[ €ej+1(20541 + 1)
Jooy (it e + ¢4

+ O(n"w)) .
(50)

If Jo =1 the product has to be replaced by 1, so that in this
case R,(rg,re) = —AA"/(e1rev1). When v; are expanded in
powers of n, we finally arrive at

(2n + 1)R, (7o, Te)

i
g 28,41

2
= —AA" O(n~!
(TeﬂJo ng B; + Bi+1 +0ln ))

Te =T1

(51)
and
(2n + 1)Rn(rg, 7e)

j=Je
2841

1
= —AA" O(n™1!
(Te[fm J!_‘_[l B + Bi41 +O(n ))
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Te < T (52)

with

8; = /6. (53)

The reason why (51) and (52) are different is that for Te = T1
by definition M;(ry,7.) is the identity, so that the approxima-
tion presented in (46) is not valid for this case.

V. COMPUTATION OF THE DIPOLE POTENTIAL

In this section the theory derived in Sections II-IV will
be applied to the computation of the dipole potential and its
partial derivatives. The formulas will be presented in a way
which circumvents coordinate transformations from Cartesian
coordinates to spherical ones, and backwards. For this purpose
it is noted that

T
Vorp = =2 = i (54)
7o
and
To - T, 1
Vo cos wge = V Lo Te _ — (&, — o8 woedo) (55)
ToTe To

and where &, is the unit vector in the direction of the electrode.
When these two equations are applied to (3) and (4) it is found
that

4 = @ - {&o(S1 — cos woeSo) + &S0} (56)
with
So = %2(271 + 1) R(ro,7e) Pl (cos wo.)  (57)
and
8 = i(% + )R, (r0,7¢) Palcos wge).  (58)
n=1

Here P, denotes the derivative of the Legendre polynomial
and it can be computed recursively by [7]

P/ (cos w) = P, (cos w)

COS w

=nPp_1(cos w) + cos wP._;(cos w). (59)

In (58) R, (ro,7.) denotes the derivative of R, (r0,7¢) with
respect to rg. Obviously, So can be interpreted as the potential
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The computation of RJ (rg,r.) is rather easy, because it
appears as one of the matrix elements in (24). Therefore, to
compute Ry (r9,7.) we only need to change the 12-matrix
element in (32) into a 22-matrix element and to divide the
result by the local conductivity € ;¢ (see bottom of pa_ge). The
computation of the derivative of ¢ with respect to ¢} follows
immediately from (56). For the calculation of the derivatives
with respect to the dipole position we find, by applying (54)
and (55) systematically to (56):
{Q~£0<3005 u}osﬁ - i

7o To

4”87 :QAL'

+ 85 — 2¢0s wpeSs + cos? wgeS4>

+Q - . (—% + 83 — cos wm&)}

- S
+ 24 Q-2 (——0 + S5 — cos UJ()QS4)

To

(61)
with

Sy = Z(?n + I)R (70, 7e)Pn(cos woe) (62)

S3 = (70, 7¢) Py (cos woe) (63)

and

Sa = 2 2(2" + 1) Ry (ro,7e) Py (cos woe).

n=1

(64)

Here, the double primes denote the second derivative. The
second derivative of the Legendre polynomial can be easily
calculated by differentiating (59):

P!'(cos w) = nP,

_1(cos w) + cos wP!_;(cos w). (65)

For the computation of the second derivative of R, (ro,re) it
is convenient to return to the definition of R, (ro,7.) by the
differential equation. When ¢ and 7 are constant, it follows
from (5) that (since ro # 7.)

70
= n(n +
2 €70T3 (

R (rg,r 1R, (ro,7e)

caused by a unit dipole pointing in the radial direction, and _2 R (ro,7e). (66)
similarly S; corresponds to a tangential dipole. ro "
1 JO+1
{ II Uj(rjﬂ'ﬁl)UJe(we-,Te)} {UJO(T0~7"JO+1) II Uj(ijTj+1)} 0
Je—1 N 9 vjo
Ry (ro,re) = 122 2 H Ay x“e' (60)

—(_JOT? HU]‘(’I‘J“TJ'+1)

i=N

22
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With the above formulas the dipole potential can be calculated.
To reduce the number of terms required for the computation
of Sy to S4 asymptotic approximations will be derived next.
Simitlar to (51) we find for r. = r1:

(2n + 1)Ru(ro,me) —§ A
=1

2A 20;
Fo=— Pin (67)
reBro ;o7 Bi+ Biqa
3
(2n+ 1)R.(ro,re) —» nF1A™;,  Fy = Lo g 68)
T0EJQ
and
(2n+ DRL(ro,me) — n? A" Fp= S Fy. (69)
To€J0
If r. < r; then Fy has to be replaced by
A TEE 28,
Fy = G (70)

reBio ot Bi+ Bisr

With these equations the sums Sy to S4 can conveniently be
computed as

1 o0
So=— S {(2n+ 1)R, — FoA™} P!
i TO;{(”+ ) oA"} Py,

Fy Acos w — A?
+_

B an

S1=> {(2n+1)R;, = FinA™}P, + FIAR™®  (72)

n=1

Sy = i{(?n + 1)R, — Fon(n + 1)A™}P,

n=1
2cos w — 3A)R? —A)?
N F2A( cos w — 3 )RR-;— 3A(cos w — A) 73)
1 & / /
So =+ 2{(271 + 1R, — FinA"} P,
Fi 3A - :
4 3o w = A)+ R (74)
To R5
and
= 3FpA?
PR STt S T L e
P T6R

where R is defined by (40).

Finally it is noted that when the algorithm presented
here is used as a part of an inverse algorithm, many
dipole potentials have to be calculated with the same
volume conductor parameters and the same electrode grid.
In that case it is useful to take advantage from the fact
that the quantities {II},_, U;(r;,7;51)Use(7Je,7¢)}20 and
{H}zN U;j(rj,7j+1)}22, which appear in (32), are independent
of the dipole position, and therefore they need to be calculated
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TABLE 1
VOLUME CONDUCTOR PARAMETERS USED IN SIMULATIONS
shell index j 7 €, 15
white matter S 63 5 1
cortex 4 88 2 1
fluid 3 91 3 3
skull 2 95 0.004 0.04
skin 1 100 1 1

only once. Similarly, the quantities {IIx* " U;(r;,7j41)}12
and 117071 /\;]] need to be calculated only when the dipole
jumps from one shell to another. Thus, the calculation of
the potential in the multisphere model can be performed in
approximately the same amount of time as the potential in
the three sphere model, even when the addition-subtraction

method is not applied.

VI. RESULTS

In this section the use of convergence acceleration is demon-
strated by the application to a special example of a multilay-
ered volume conductor. It has been assumed that the volume
conductor consists of an anisotropic sphere representing the
white matter, surrounded by four concentric spherical shells,
representing respectively the cortex, the cerebrospinal fluid,
the skull, and the skin. The outer radii of the shells r; and the
conductivity parameters ¢; and 7n; are given in Table I. These
parameters are in arbitrary units, but they correspond roughly
to figures given in literature [10]-[13].

It has been assumed furthermore that the dipole was on the
z-axis, at a distance of 85 from the origin, and that it is directed
half radially, half tangentially. Four different positions of the
electrode have been assumed: on the z-axis with r. = 100
(A), on the z-axis with 7. = 100 (B), on the z-axis with
re = 90 (C), and on the z-axis with r. = 90 (D). In each of
the cases (A-D) the potential ¥,, was calculated using n terms
and the addition subtraction algorithm. We also calculated the
quantity 10/, which is similar to 1,, but omitting the addition
subtraction algorithm. Finally, we plotted (fig. 1) for each of
the cases A-D the relative errors |1200 — ¥n|/|%200| (solid
line) and |1200 — ¥/, 1/|%200| (dotted line) on a logarithmic
scale as a function of the number of terms n.

The dashed horizontal line in Fig. 1 denotes a relative error
of 1073. It appears that in case A (where 7. = 100) about
30 terms are needed to obtain and accuracy of 99.9% when
no convergence acceleration is used. With acceleration of con-
vergence this accuracy is obtained in 20 terms, and therefore
the decrease in computer time is about 30%. A similar gain in
computer time is obtained in case B. In case C and D, where
re = 90, the gain in computer time is more substantial. The
figure shows that without convergence acceleration 100 terms
are far from enough to compute the potential more accurate
than 99.9%. However, when acceleration of convergence is
used, 100 terms are enough for a precision of 99.9%.

VII. DISCUSSION

Compared to the derivation followed in [5], the present
derivation contains some important modifications. First, the
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The relative error in the potential is plotted on a logarithmic scale, against the number of terms used in the series expansion. The dotted lines

refer to the cases where the additional subtraction algorithm was used. In case A and B the electrode had a distance of 100 from the origin. In case
C and D this distance was 90. The electrode was either on the :-axis (case A and C) or on the .-axis (case B and D). In all cases the dipole was

on the :-axis, at a distance of 85 from the origin.

formulas are presented in such a way that they are valid
for any dipole position. In [5] the dipole was rotated to the
z-axis first, which makes it difficult to perform the partial
derivatives with respect to the dipole position, because in
the formula for the rotated dipole, the dependence on 7
is not explicitly present anymore. The second modification
of [5] is that in the present derivation the radii of the
layers appear in the formulas only as a ratio (see (33)).
Therefore, these quantities are automatically scaled so that
“overflow errors,” which could occur when r; 1s raised to
the power n, are avoided. The most important advantage
of the present formulation is, however, that the speed of
convergence of the series expansions is increased using the
addition-subtraction method and the asymptotic approxima-
tion.

The asymptotic approximation has some interesting proper-
ties concerning the dependence of 4 on r;.¢;. and 7;. From
Section 1V these properties occur.

1) The finite order approximation is a local one, since it
depends only on the radii and conductivities of the shells
between (and including) the source layer and the layer
containing the electrode.

2) When all layers between the source and the field point
are isotropic then the matching A is given by r¢/r.: if

one (or more) of those layers are anisotropic then the A
is distributed by that layer(s).

3) Under the conditions of 2), the finite order approxima-

tion is independent of the radii.

4) When the dipole is in an anisotropic layer, the weighing

coefficient of the first order approximation is different
for a radial and a tangential dipole. It follows from (68)
that their ratio equals the square root of the ratio of the
radial and tangential conductivity.

Since the asymptotic expansion is devised as an approxi-
mation of the true potential, properties 1)—4) shed some light
on the dependence of the potential on the volume conductor.
Note, however, that in this expansion the infinite order terms
are omitted, whereas they do have an influence on the lower
order terms of the spherical harmonic expansion.

It is possible to increase the speed of convergence still
further, by taking higher order approximations of (50). This
is worked out for the three sphere model in [8]. Another
possibility is to add and subtract the potentials of appropriately
chosen mirror sources. A third possibility is to apply addi-
tional transformations to the series of differences (71)—(75).
Examples of this are given in [9].

Apart from dipole source estimation, the theory presented
in this paper can be used to estimate the conductivities of
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the different layers by applying a known current to two of
the electrodes and measuring the potential distribution on the
remaining electrodes. This potential distribution depends on
the conductivities of the different layers and therefore the
conductivities can be estimated by a least squares fit with the
theoretical distribution given by the formulas derived here. In
this application, the current sources and the field points have
exactly the same radial coordinate, and hence the spherical
harmonics expansion does not converge if no precautions are
taken. With the addition-subtraction method this problem can
be solved adequately.
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