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Abstract—The spectral minutiae representation is a method to
represent a minutiae set as a fixed-length feature vector, which is
invariant to translation, and in which rotation and scaling become
translations, so that they can be easily compensated for. These
characteristics enable the combination of fingerprint recognition
systems with template protection schemes that require as an input
a fixed-length feature vector. Based on the spectral minutiae
features, this paper introduces two feature reduction algorithms:
the Column Principal Component Analysis and the Line Discrete
Fourier Transform feature reductions, which can efficiently com-
press the template size with a reduction rate of 94%. With reduced
features, we can also achieve a fast minutiae-based matching
algorithm. This paper presents the performance of the spectral
minutiae fingerprint recognition system and shows a matching
speed with 125 000 comparisons per second on a PC with Intel
Pentium D processor 2.80 GHz and 1 GB of RAM. This fast oper-
ation renders our system suitable as a preselector for a large-scale
fingerprint identification system, thus significantly reducing the
time to perform matching, especially in systems operating at
geographical level (e.g., police patrolling) or in complex critical
environments (e.g., airports).

Index Terms—Biometrics, fast minutiae matching, feature re-
duction, fingerprint identification, template protection.

I. INTRODUCTION

F
INGERPRINT recognition systems have the advantages

of both ease of use and low cost. The Unisys Security

Index released in December 2008 reveals that fingerprint is

the most acceptable biometric technology [1]. Most fingerprint

recognition systems are based on the use of a minutiae set.

Minutiae are the endpoints and bifurcations of fingerprint

ridges. They are known to remain unchanged over an indi-

vidual’s lifetime and allow a very discriminative classification

of fingerprints [2].

The spectral minutiae representation presented in [3] is a

method to represent a minutiae set as a fixed-length feature

vector, which is invariant to translation, and in which rotation
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and scaling become translations, so that they can be easily

compensated for. These characteristics enable the combination

of fingerprint recognition systems with recently developed

template protection schemes based on fuzzy commitment and

helper data schemes, such as [4] and [5], that require as an

input a fixed-length feature vector representation of a biometric

modality.1

The spectral minutiae algorithm in [3] received promising

results. The spectral minutiae feature is a 32 768-dimensional

real-valued feature vector. The large dimensionality of the spec-

tral minutiae feature can cause three problems. First, the storage

requirement for a spectral minutiae fingerprint system is very

high. Second, the high dimensionality leads to a computational

burden and the matching speed will be limited, which is not

desired for fingerprint identification systems with very large

databases. Third, the high dimensionality can lead to a small

sample size problem [7].

In this paper, we will introduce two feature reduction methods

in order to solve the above problems of the original spectral

minutiae algorithm: the Column Principal Component Analysis

(Column-PCA) and the Line Discrete Fourier Transform (Line-

DFT) feature reduction algorithms. By applying Column-PCA

and Line-DFT methods to the original spectral minutiae fea-

tures, we can effectively compress the spectral minutiae tem-

plates and increase the matching speed as well.

For a large Automated Fingerprint Identification System

(AFIS), the recognition accuracy, matching speed and its ro-

bustness to poor image quality are normally regarded as the

most critical elements of system performance. Due to the fact

that minutiae sets are unordered, the correspondence between

individual minutia in two minutiae sets is unknown before

matching. This makes it difficult to find the geometric transfor-

mation that optimally registers (or aligns) two minutiae sets.

For fingerprint identification systems with very large databases

[8], in which a fast comparison algorithm is necessary, most

minutiae-based matching algorithms will fail to meet the high

speed requirement. Compared with other AFIS vendors, our

spectral minutiae fingerprint recognition system has the speed

advantage: the experiment shows that our matching speed is

more than 15 times higher than that of another commercial

minutiae-based fingerprint matching algorithm (we will present

the details later). To satisfy the high speed requirement, some

AFIS vendors first use the global fingerprint characteristics

(image-based features) as the first stage matching, and then

use the minutiae matcher as the second stage matching [2].

However, this requires the original fingerprint images and such

1Other template protection systems exist [6] that do not pose this fixed-length
feature vector requirement.
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solutions cannot be integrated into the large amount of existing

minutiae-based fingerprint recognition systems, in which only

minutiae sets are stored as templates. The spectral minutiae

representation we present in this paper only needs the minutiae

templates as input, so that it can be easily integrated into any

arbitrary minutiae-based fingerprint recognition system. This

motivates us to consider our spectral minutiae algorithm as a

preselector (or pre-filter) for a large-scale AFIS to improve

the overall matching speed performance, especially in systems

operating at geographical level (e.g., police patrolling) or in

complex critical environments (e.g., airports). Besides the speed

advantage, our algorithm can also be combined with template

protection schemes, which gains more and more attention due

to the substantial privacy concerns.

This paper is organized as follows. First, the background of

the spectral minutiae representation is presented in Section II.

Next, in Section III and Section IV, we introduce the

Column-PCA and Line-DFT feature reduction algorithms.

Then, Section V presents the experimental results. Finally, we

draw conclusions in Section VI.

II. SPECTRAL MINUTIAE REPRESENTATION

The spectral minutiae representation is based on the shift,

scale and rotation properties of the two-dimensional continuous

Fourier transform. In [3], the concept of two representation

methods are introduced: the location-based spectral minutiae

representation (SML) and the orientation-based spectral minu-

tiae representation (SMO).

A. Location-Based Spectral Minutiae Representation (SML)

When implementing the Fourier transform there are two im-

portant issues that should be considered. First, when a discrete

Fourier transform is taken of an image, this results in a repre-

sentation of a periodic repetition of the original image. This is

undesirable because it introduces errors due to discontinuities at

the image boundaries. Second, the re-mapping onto a polar-log-

arithmic coordinate system after using a discrete Fourier trans-

form introduces interpolation artifacts. Therefore, we introduce

an analytical representation of the input minutiae, and then use

analytical expressions of a continuous Fourier transform that

are evaluated on a grid in the polar-logarithmic plane. These

analytical expressions are obtained as follows. Assume we have

a fingerprint with minutiae. With every minutia, a function

, is associated where

represents the location of the th minutia in the finger-

print image. Thus, in the spatial domain, every minutia is rep-

resented by a Dirac pulse. The Fourier transform of is

given by

(1)

and the location-based spectral minutiae representation is de-

fined as

(2)

In order to reduce the sensitivity to small variations in minu-

tiae locations in the spatial domain, we use a Gaussian low-pass

filter to attenuate the higher frequencies. This multiplication in

the frequency domain corresponds to a convolution in the spatial

domain where every minutia is now represented by a Gaussian

pulse.

Following the shift property of the Fourier transform, the

magnitude of is taken in order to make the spectrum invariant

to translation of the input and we obtain

(3)

Equation (3) is the analytical expression for the spectrum

which can directly be evaluated on a polar-logarithmic grid.

The resulting representation in the polar-logarithmic domain

is invariant to translation, while rotation and scaling of the

input have become translations along the polar-logarithmic

coordinates.

B. Orientation-Based Spectral Minutiae Representation

(SMO)

The location-based spectral minutiae representation (SML)

only uses the minutiae location information. However, including

the minutiae orientation as well may give better discrimination.

Therefore, it can be beneficial to also include the orientation

information in our spectral representation. The orientation of

a minutia can be incorporated by using the spatial derivative

of in the direction of the minutia orientation. Thus, to

every minutia in a fingerprint, a function is assigned

being the derivative of in the direction , such that

(4)

As with the SML algorithm, using a Gaussian filter and taking

the magnitude of the spectrum yields

(5)

C. Implementation

In the previous sections we introduced analytical expressions

for the spectral minutiae representations of a fingerprint. In

order to obtain our final spectral representations, the continuous

spectra (3) and (5) are sampled on a polar-logarithmic grid.

In the radial direction , we use samples between

and . In the angular direction , we use

samples uniformly distributed between and

. Because of the symmetry of the Fourier transform for
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Fig. 1. Illustration of the polar-logarithmic sampling (SML spectra). (a)
Fourier spectrum in a Cartesian coordinate and a polar-logarithmic sampling
grid. (b) Fourier spectrum sampled on a polar-logarithmic grid.

real-valued functions, using the interval between 0 and is suf-

ficient. This polar-logarithmic sampling process is illustrated

in Figs. 1 and 2.

The sampled spectra (3) and (5) will be denoted

by and , respectively, with

, . When no confusion can

arise, the parameter and the subscripts L and O will be

omitted. For each spectrum, the horizontal axis represents the

rotation angle of the spectral magnitude (from 0 to ); the

vertical axis represents the frequency of the spectral magnitude

(the frequency increases from top to bottom). It should be noted

that the minutiae spectrum is periodic on the horizontal axis.

D. Spectral Minutiae Matching

Let and be the two sampled minutiae

spectra respectively achieved from the reference fingerprint and

the test fingerprint. Both and are normalized

to have zero mean and unit energy. We use the two-dimensional

correlation coefficient between and as a measure of their

similarity.

In practice, the input fingerprint images are rotated and might

be scaled (for example, depending on the sensor that is used to

acquire an image). Assume that the scaling has already been

compensated for on the level of the minutiae sets [9]. Then we

only need to test a few rotations, which become the circular

shifts in the horizontal direction. We denote as

Fig. 2. Illustration of the polar-logarithmic sampling (SMO spectra). (a)
Fourier spectrum in a Cartesian coordinate and a polar-logarithmic sampling
grid. (b) Fourier spectrum sampled on a polar-logarithmic grid.

a circular shifted version of . We use the fast rotation

searching algorithm, based on variable stepsizes that was pre-

sented in [10]2 and choose the maximum score of the different

combinations as the final matching score between and

(6)

III. COLUMN-PCA FEATURE REDUCTION (CPCA)

The spectral minutiae feature is a

real-valued feature vector. This high dimensionality can cause

the small sample size problem [7]. Small sample size effects

are normally encountered in applications with high dimensional

features and a complex classification rule, while the number of

available training samples is inadequate. A sophisticated clas-

sifier relies on assumptions about the statistics of the feature

vectors that are obtained from training data. A mismatch be-

tween the actual statistics and the assumptions will lead to a loss

of recognition performance. We can increase robustness against

this type of mismatch by reducing the feature space dimension-

ality. PCA is a commonly used tool to achieve this, which at the

same time decorrelates the features [11].

2In [10], a total of nine rotations are tested in a range of ��� to ��� in
case of � � ��� samples between 0 to �.
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A. PCA Feature Reduction and Its Problem on Spectral

Minutiae Representation

In order to illustrate the problem of directly applying PCA on

the features and , let

denote the unreduced spectral minutiae feature vector, that is, a

one-dimensional form of the two-dimensional spectral minutiae

, with , , ( and

). Thus, the dimensionality of is

.

If we have samples in the training set, we can

create a data matrix consisting of all the samples,

as . PCA can be implemented by doing a

singular value decomposition (SVD) on the matrix

(7)

with a orthonormal matrix spanning the

column space of , a diagonal matrix of which the

(non-negative) diagonal elements are the singular values of in

descending order, and a orthonormal matrix spanning

the row space of . Let be the submatrix of consisting

of the first columns, then we can implement

PCA by

(8)

with the data matrix with reduced dimensionality.

However, there are two problems in performing PCA to im-

plement feature reduction on the minutiae spectra. The first is

the small sample size problem [7]. In case the feature vector is

an unreduced spectral minutiae representation, the dimension-

ality of the feature vector is . A reliable PCA fea-

ture reduction requires a large number of fingerprint samples to

implement the PCA training, which is difficult to acquire. The

second problem is that the minutiae spectra are not rotation-in-

variant. As we mentioned in the previous section, the rotation

of fingerprints becomes a circular shift of the minutiae spectra

in the horizontal direction. For the PCA training, all the minu-

tiae spectra must be aligned in order to get meaningful results.

Then both the training and matching processes become com-

plicated. To cope with the small sample size problem and to

avoid the rotation alignment of minutiae spectra, we introduce

the Column-PCA method to perform a feature reduction.

B. Column-PCA: Feature Reduction Without Small Sample

Size Problems

We first look at the spectral minutiae feature in the 2-D

case as we presented in Section II-C. From Figs. 1 and 2, we

can see that the minutiae spectrum is periodic on the horizontal

axis. Moreover, on the vertical axis, the spectra with different

frequencies are correlated. Therefore, we consider to use PCA

to decorrelate the spectra with different frequencies in the ver-

tical direction. To achieve this, we regard each column of

as a new feature vector (we will call

a column feature vector later in this paper), then each (sam-

pled) minutiae spectrum consists of feature vectors

, .

If we have samples in the training set, we can

create a ( , ) data matrix

consists of all the samples, as . In this case,

the dimensionality of the column feature vector , , is

N times smaller than the dimensionality of the spectral minutiae

. At the same time, the sample size

is N times bigger than the previous sample size . If we denote

as the rate of the sample size to the feature dimensionality ,

, we can see that in case the sample number keeps the

same, the of using the column feature vector is

times bigger than the one of using the original feature vector.

Therefore, by using column feature vectors of spectral minutiae

to implement PCA feature reduction, we can avoid the small

sample size problem.

As we indicated in the previous section, another problem

of directly using minutiae spectra to implement PCA feature

reduction is that a rotation alignment of the minutiae spectra

is needed, which is difficult to implement. In the spectral

minutiae representation, the rotation operator commutes with

column transformation. By using column feature vectors, the

rotation variation becomes the samples sequence difference

in the training procedure. This will not have any influence on

the PCA feature reduction results. Therefore, by using column

feature vectors to implement PCA feature reduction, we can

cope with both the small sample size problem and avoid the

rotation alignment of minutiae spectra as well. We call this

method as the Column-PCA feature reduction (CPCA).

To implement CPCA, we first subtract the sample mean

(column mean) from the data matrix . The next step is to

apply SVD on

(9)

with a orthonormal matrix spanning the column

space of , a diagonal matrix of which the (non-neg-

ative) diagonal elements are the singular values of in de-

scending order, and a orthonormal matrix span-

ning the row space of . Finally, we can obtain the CPCA trans-

form matrix by retaining the first

columns of . The CPCA transform on the minutiae spectra

is written as

(10)

with the data matrix with reduced dimen-

sionality. After the CPCA feature reduction, the relation of the

energy retainment rate and is

(11)

and

(12)
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Fig. 3. Illustration of the CPCA transform and the LDFT representation.
(a) Location-based spectral minutiae. (b) Minutiae spectrum after the CPCA
transform. (c) Magnitude of the LDFT representation of (b).

The CPCA transform is illustrated in Fig. 3(a) and 3(b) (here,

we define , that is, for a clear illus-

tration). We can see that after the CPCA transform, the main

energy of the original minutiae spectrum is concentrated in

the top lines of . By only retaining the top lines,

we perform the CPCA feature reduction, with a reduction rate

. Because the rotation operator

commutes with column transformation, the minutiae spectrum

remains periodic on the horizontal axis after the CPCA

transform.

IV. LINE-DFT FEATURE REDUCTION (LDFT)

The CPCA feature reduction method reduces the minutiae

spectrum feature in the vertical direction. In this section, we

will introduce the Line-DFT feature reduction (LDFT) method,

which will reduce the feature in the horizontal direction. This

method is based on the fact that the minutiae spectrum is

periodic on the horizontal axis. Therefore, it can be applied

both independently and in combination with the CPCA feature

reduction.

A. Line-DFT Representation of the Minutiae Spectrum

We denote each line of the minutiae spectrum (here

can be the original minutiae spectrum or the minutiae spectrum

after the CPCA feature reduction) as a line feature vector

, thus . Then we can regard

each line feature vector as a periodic discrete-time signal (or

sequence) with period , and we denote this signal as ,

( for the original minutiae spectrum

or for the spectrum after the CPCA feature re-

duction). The discrete Fourier transform [12] of is given

by

(13)

Because is periodic, by performing DFT (imple-

mented as FFT) on each line of the minutiae spectrum ,

we can obtain , ,

which is an exact representation of .

The LDFT representation is illustrated in Figs. 3(b) and 3(c)

(here, the LDFT representation after the CPCA feature reduc-

tion is presented). We can see that after the LDFT represen-

tation, the main energy is concentrated in the low frequency

part (the middle columns). Therefore, for each line of the LDFT

representation , we only retain the Fourier components

with a certain percentage of energy (for example, 80%) in the

lower frequency part. By reducing the number of Fourier com-

ponents, we implement the LDFT feature reduction. For each

line , the relation of the energy retainment rate after

the LDFT feature reduction and (which indicates that

only the Fourier components from the low frequency

part are retained) is

(14)

and

(15)

As mentioned in Section II-D, the rotation of the fingerprint

becomes the circular shift of the minutiae spectrum along the

horizontal axis in the space domain. To test different fingerprint

rotations (see Section II-D) after applying the LDFT represen-

tation, we will implement the shift operation in the frequency

domain according to the shift property of the discrete Fourier

transform. Thus, the Line-DFT transformation of

in (6) becomes

(16)
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B. Transform of Fourier Components to a Real-Valued Feature

Vector

Consider two discrete-time, periodic signals and ,

, with period ( is an even number),

and their discrete Fourier transform are and respec-

tively. The DFT is orthnormal, thus it preserves inner products.

Therefore, because of the symmetry properties of the DFT for

real-valued signals, the correlation of and becomes

(17)

where denotes the complex conjugate and denotes the real

part.

Because and are complex numbers, we can write

them as

(18)

with the real part, and the imaginary part. Then, (17)

becomes

(19)

Therefore, we can generate two one dimensional real-valued

feature vectors and from the Fourier components that are

(20)

The correlation of and is exactly the same as the cor-

relation of the real-valued signals and . There-

fore, by generating the new feature vectors as and ,

we can continue using the correlation-based spectral minutiae

matching algorithm. Moreover, by performing the correlation

of and , instead of implementing the complex number

multiplications as in (17), we can save about half of the real

multiplications.

In case the LDFT feature reduction, the reduced feature vec-

tors and become

(21)

For the matching algorithm presented in Section II-D, we

denote and as the reduced features of and

, respectively, then (6) becomes

(22)

V. EXPERIMENTS

A. Measurements

We test the spectral minutiae representation in a verification

setting. The matching performance of a fingerprint verification

system can be evaluated by means of several measures. Com-

monly used are the false acceptance rate (FAR), the false rejec-

tion rate (FRR), and the equal error rate (EER). In this paper,

we use FAR, EER and the genuine accept rate (GAR),

, as performance indicators of our scheme.

B. Experimental Settings

The proposed algorithms have been evaluated on MCYT [13]

and FVC2002-DB2 [14] fingerprint databases. The fingerprint

data that we used from MCYT are obtained from 145 individ-

uals (person ID from 0000 to 0144 and finger ID 0) and each

individual contributes 12 samples. We use samples from person

ID 0100 to 0144 for the CPCA and LDFT training (total 540

fingerprints) and samples from person ID 0000 to 0099 for test

(total 1200 fingerprints). We also tested our algorithms on the

FVC2002-DB2 because it is a public-domain fingerprint data-

base. Compared with MCYT, the fingerprints in FVC2002 have

lower quality and bigger displacements. For the FVC database,

we apply the same experimental protocol as in the FVC compe-

tition: the samples from finger ID 101 to 110 for the CPCA and

LDFT training (total 40 fingerprints) and samples from person

ID 1 to 100 for test (total 400 fingerprints).3 The minutiae sets

were obtained by the VeriFinger minutiae extractor [15].4

We test our algorithm in a verification setting. For matching

genuine pairs, we used all the possible combinations. For

matching imposter pairs, we chose the first sample from each

identity. We will further follow the same parameter setting

in [3].5

C. Results Without CPCA and LDFT Feature Reductions

For a comparison with the results after the CPCA and the

LDFT feature reductions, we first tested our algorithm without

feature reductions. The results are shown in Table I and the ROC

curves are shown in Figs. 4(a) and 5(a). From the results, we can

see that the MCYT database received much better results than

3We propose to use our algorithm in a high security scenario. In FVC2002
databases, samples 3, 4, 5, and 6 were obtained by requesting the users to pro-
vide fingerprints with exaggerated displacement and rotation. In a high security
scenario where the user is aware that cooperation is crucial for security reasons,
he will be cooperative. Therefore, only samples 1, 2, 7, and 8 are chosen. To
deal with the large rotations, an absolute pre-alignment based on core and its
direction can be applied.

4VeriFinger Extractor Version 5.0.2.0 is used.

5We will only present the sum-rule fusion results of SML and SMO in this
paper. We also use the singular points to assist the verification, following the
procedure in [3].
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TABLE I
RESULTS WITHOUT CPCA AND LDFT FEATURE REDUCTIONS

Fig. 4. ROC curves (MCYT database).

Fig. 5. ROC curves (FVC2002-DB2 database).

the FVC database. This shows that our algorithms are sensitive

to the minutiae quality and fingerprint quality.

D. Results After CPCA and LDFT Feature Reductions

In case of using SML and SMO fusion, the spectral minu-

tiae representation results in a 65 536 real-valued feature vector.

For fingerprint identification systems with very large databases,

using the spectral minutiae representation requires a big tem-

plate storage space and its matching speed is also limited. There-

fore, applying the proposed CPCA and LDFT feature reduc-

tion algorithms is needed. To evaluate the two feature reduction

methods, we tested them in three cases: 1) only applying the

TABLE II
PARAMETERS OF THE CPCA FEATURE REDUCTION

TABLE III
RESULTS AFTER THE CPCA FEATURE REDUCTION

TABLE IV
PARAMETERS OF THE LDFT FEATURE REDUCTION

CPCA feature reduction; 2) only applying the LDFT feature re-

duction; and 3) applying both the CPCA and the LDFT feature

reductions.

From our experiments, we noticed that the selection of the

energy retainment rates and are essential for a

high performance. When and are chosen, we

can calculate and using the fingerprints in the

training sets, according to (12) and (15).

1) Only Applying the CPCA Feature Reduction: When

only applying the CPCA feature reduction, the energy retain-

ment rates and the feature reduction rates for the two

databases are shown in Table II. The results we achieved are

shown in Table III and the ROC curves are shown in Figs. 4(b)

and 5(b). From Figs. 4(b) and 5(b), we can see that the CPCA

feature reduction does not degrade the recognition performance

of the system. At the same time, we reach a feature reduction

rate of more than 70% (the feature length is about four times

smaller). In the FVC2002-DB2 case, we only used 40 finger-

prints for the training and we still performed an effective feature

reduction. This illustrates that the CPCA feature reduction does

not suffer from the small sample size problem.

2) Only Applying the LDFT Feature Reduction: When

only applying the LDFT feature reduction, the energy retain-

ment rates and the feature reduction rates for the two

databases are shown in Table IV. From Table IV, we can see

that we achieved a higher reduction rate for SMO, at the same

time the energy retainment is also higher. The reason is that

for SMO, we used a Gaussian kernel to attenuate the higher

frequencies. The LDFT feature reduction can achieve a higher

reduction rate in case the minutiae spectra are with lower

frequencies.

The results we achieved after the LDFT feature reduction are

shown in Table V and the ROC curves are shown in Figs. 4(c)

and 5(c). From Figs. 4(c) and 5(c), we can see that the LDFT fea-

ture reduction does not degrade the recognition performance of

the system. At the same time, we reach a feature reduction rate
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TABLE V
RESULTS AFTER THE LDFT FEATURE REDUCTION

TABLE VI
PARAMETERS OF THE CPCA AND THE LDFT FEATURE REDUCTIONS

TABLE VII
RESULTS AFTER THE CPCA AND THE LDFT FEATURE REDUCTIONS

of about 84% (the feature length is more than 6 times smaller).

The same as the CPCA feature reduction, the LDFT feature re-

duction also does not suffer from the small sample size problem.

3) Applying Both the CPCA and the LDFT Feature Reduc-

tions: After testing the CPCA and the LDFT feature reductions

separately, we tested the combination of the two methods. We

applied the LDFT feature reduction after the CPCA feature re-

duction. The final energy retainment rates and ,

and the feature reduction rates for the two databases are shown

in Table VI. The results we achieved are shown in Table VII

and the ROC curves are shown in Figs. 4(d) and 5(d). From

Figs. 4(d) and 5(d), we can see that after applying the CPCA

and the LDFT feature reductions, the recognition performance is

not degraded. We finally reach a feature reduction rate of about

92%–94% (the feature length is more than 13–15 times smaller).

Comparing the three different feature reduction cases [the

ROC curves in Figs. 4(b)–(d) and 5(b)–(d)], we can see that all

these three cases show comparable recognition performances,

while the combination of CPCA and LDFT received the biggest

feature reduction rates.

For fingerprint identification systems with very large

databases, the matching speed is crucial. In case the feature

length is and rotation possibilities are tested (in our exper-

iments ), we need to implement real multiplications.

Therefore, applying the feature reductions to decrease will

improve the speed performance of our scheme. We tested the

matching speed for the fusion case of SML and SMO before

and after the CPCA and the LDFT feature reductions (using

the MCYT database). Without feature reductions, we can

implement 8,000 comparisons per second using optimized C

language programming on a PC with Intel Pentium D processor

2.80 GHz and 1 GB of RAM. After applying CPCA and LDFT,

TABLE VIII
RESULTS COMPARISON ON FVC2002-DB2

we can implement 125 000 comparisons (the speed is more

than 15 times higher) under the same setting.

E. Comparison

We compared our results with other well-known minutiae

matchers on the FVC2002-DB2 database: VeriFinger6 and

Fuzzy Vault according to the protocol in [6]. The results are

shown in Table VIII. We notice that the commercial minutiae

matcher VeriFinger received much better results than ours. One

reason is that the VeriFinger matcher uses some fingerprint

features that are not defined in the ISO minutiae template [9].

Another reason is that, with our global representation, we

cannot perform minutiae pair searching, which is a crucial step

for the minutiae-based matching. These two reasons may cause

the degradation of our algorithm compared with VeriFinger.

We also compared the performance of our method with a

minutiae-based fingerprint recognition system combined with a

template protection scheme based on fuzzy vault, which is pre-

sented in [6]. The reason of this comparison is that in [6] an

alignment between a fingerprint pair using minutiae information

is also not possible. It should be noted that [6] includes a tem-

plate protection scheme, whereas our system does not. More-

over, because [6] implemented an alignment using high curva-

ture points, this caused a 2% failure to capture rate (FTCR),

while our method does not suffer from this.

Regarding the speed performance,7 using the spectral minu-

tiae representation after the CPCA and the LDFT feature re-

ductions, we can implement 125 000 comparisons per second.

We also tested the VeriFinger matcher using the same PC set-

ting and the matching speed is 8,000 comparisons per second.

Our matching speed advantage is due to the fact that our algo-

rithm uses a fixed-length feature vector and avoids fingerprint

alignment. After applying CPCA and LDFT, the feature length

is greatly reduced, which leads to a promising matching speed.

In case of fingerprint identification systems with very large

databases, we might combine good identification performance

and speed by using the spectral minutiae as a preselector, that

finds a number of best matches and then use a standard minutiae

comparison for a good accuracy. As a preselector, the recogni-

tion performance in the area of high GAR is important. We show

the performance of the spectral minutiae in this area in Table IX.

From Table IX, we can see that in case of good quality finger-

prints (MCYT), we can use the spectral minutiae algorithm as a

preselector to speed up the minutiae-based matching algorithm.

6VeriFinger Extractor Version 5.0.2.0 and VeriFinger Matcher version 5.0.2.1
are used.

7For fingerprint identification systems with large databases, only matching
time is crucial. For the enrollment speed, because our algorithm only uses one-
sample enrollment, our enrollment time is comparable to the one from Veri-
Finger.

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on January 29, 2010 at 07:34 from IEEE Xplore.  Restrictions apply. 



426 IEEE SYSTEMS JOURNAL, VOL. 3, NO. 4, DECEMBER 2009

TABLE IX
PERFORMANCES AFTER CPCA AND LDFT FOR HIGH GAR

However, the spectral minutiae algorithm is not robust to the

low quality fingerprints. The fingerprint outliers will degrade the

recognition accuracy, which limits the application of the spec-

tral minutiae algorithm.

VI. CONCLUSIONS

The spectral minutiae representation is a novel method to rep-

resent a minutiae set as a fixed-length feature vector, which

is invariant to translation, and in which rotation and scaling

become translations, so that they can be easily compensated

for. Based on the spectral minutiae feature, this paper intro-

duces two feature reduction methods: the Column-PCA and the

Line-DFT feature reduction algorithms. The experiments show

that these methods effectively decrease the spectral minutiae

feature dimensionality with a reduction rate of 94%, while at

the same time, the recognition performance of the fingerprint

system is not degraded. The proposed spectral minutiae fin-

gerprint recognition system also shows a promising matching

speed with 125 000 comparisons per second. This algorithm

overcomes the speed disadvantage of most minutiae-based al-

gorithms and enables the application of a minutiae-based fin-

gerprint identification system with a large database.

The spectral minutiae representation also enables the combi-

nation of fingerprint recognition systems and template protec-

tion schemes. In order to be able to apply the spectral minutiae

representation with a template protection scheme, for example

based on a fuzzy extractor [16], the next step would be to extract

bits that are stable for the genuine user and completely random

for an arbitrary user. For example, we can apply 2-D Gabor fil-

ters for bit extraction, which has been used in iris codes [17].

Another possibility is to first apply additional dimensionality

reduction by a combination of PCA and LDA and then apply

single bit extraction according to the reliable component scheme

or multibit extraction [18].

In this paper, we presents the experimental results using

two fingerprint databases: the MCYT and the FVC2002-DB2

databases. The MCYT database gives much better results than

the FVC database. This shows that our algorithms are sensitive

to the minutiae quality as well as the fingerprint quality. To

cope with the low quality fingerprints and minutiae errors are

topics of our further research.
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