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Abstract 

Most gear fault diagnosis (GFD) approaches suffer from inefficiency when facing with multiple varying working condi-

tions at the same time. In this paper, a non-negative matrix factorization (NMF)-theoretic co-clustering strategy is pro-

posed specially to classify more than one task at the same time using the high dimension matrix, aiming to offer a fast 

multi-tasking solution. The short-time Fourier transform (STFT) is first used to obtain the time-frequency features from 

the gear vibration signal. Then, the optimal clustering numbers are estimated using the Bayesian information criterion 

(BIC) theory, which possesses the simultaneous assessment capability, compared with traditional validity indexes. 

Subsequently, the classical/modified NMF-based co-clustering methods are carried out to obtain the classification 

results in both row and column tasks. Finally, the parameters involved in BIC and NMF algorithms are determined 

using the gradient ascent (GA) strategy in order to achieve reliable diagnostic results. The Spectra Quest’s Drivetrain 

Dynamics Simulator gear data sets were analyzed to verify the effectiveness of the proposed approach.
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1 Introduction
In those large-scale rotating machines, wear and tear 

always comes out in the teeth surface of driving gears 

if the pressure is not even or some extra impurities are 

mingled in the lubricating oil. Health monitoring tech-

nology of mechanical components has been proved to 

be effective at discovering early abrasion and reducing 

the failure rate [1–5]. As one of the major tasks in health 

monitoring, gear fault diagnosis (GFD) aims to assess 

the current gear state based on the obtained measure-

ment data, then to inform users to take proper actions 

[6]. A GFD procedure generally consists of three main 

processes: (1) Data acquisition: data are collected from 

sensors to monitor the health status of gears; (2) Feature 

extraction: some feature extraction algorithms, such as 

wavelet transform (WT) [7] and least squares support 

vector machine (LSSVM) [8], are carried out based on 

the prior knowledge to provide recognizable features; (3) 

Fault recognition: classifiers are built to obtain gear faults 

with the analysis of the extracted features.

Clustering technology, one of unsupervised fault rec-

ognition approaches, has experienced long term devel-

opment from partition based clustering to graph theory 

based clustering as listed in Table  1. Most of these 

algorithms were applied to fault diagnosis of rotat-

ing machinery. For instance, Yuwono et  al. [9] com-

bined particle clustering with a Hidden Markov Model 

(HMM) for bearing fault diagnosis; Pacheco et al. [10] 

classified gear fault severities using rough set theory. 

�ese researches have provided effective clustering 

applications related to machine fault diagnosis. How-

ever, they have a non-negligible limitation: each feature 

vector is treated as independent and uncorrelated unit 

in these clustering methods. In fact, strong correla-

tion exists between machine working conditions and 
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targeted diagnostic tasks. �ere is no doubt that clus-

tering analysis in one dimension will lose significant 

information hidden in another dimension. To overcome 

this limitation, a co-clustering strategy for variable 

working conditions GFD is proposed in this paper. Co-

clustering was firstly utilized in the biology and medical 

domains since this concept was mentioned by Mirkin 

[11] in 1997. �e joint clustering of genes shapes and 

locations promoted the discovery of genetic structure 

sequence [12]. Subsequently, co-clustering has been 

expanded to other fields such as text analysis [13] and 

search engines [14], etc.

In this study, co-clustering applications for gear 

fault diagnosis have been developed. Compared with 

previous GFD based on joint clustering methods, two 

highlights in this paper can be obtained: (1) when one 

varying working condition (such as rotating speed or 

load) and one diagnostic task (such as fault severity) 

are jointed in the same matrix, their correlations are 

extracted, and the classification accuracy of the latter 

can adjust with the range of the former; (2) when two 

diagnostic tasks (such as fault severity and fault type) 

are jointed in the same matrix, they can be classified 

at the same time, which improves the diagnosis speed 

compared with independent GFD strategy and offer a 

fast multi-tasking solution.

�e remainder of this paper is organized as follows. 

Section  2 presents a brief summary about the appli-

cability of co-clustering. It also describes the princi-

ple and basic framework of co-clustering to solve the 

GFD problem. Section  3 addresses the preparatory 

work of GFD, especially a short-time Fourier trans-

form (STFT)-based feature extraction method. In Sec-

tion  4, the co-clustering numbers are estimated based 

on the Bayesian information criterion (BIC). �en in 

Section 5, the traditional and modified NMF-theoretic 

co-clustering process is discussed in detail. To assess 

these algorithms, the gradient ascend algorithm is also 

implemented for parameters regulation in Section  6. 

Section  7 concentrates on the varying working condi-

tion GFD experiments using the Drivetrain Dynamics 

Simulator (DDS) system, which especially shows the 

superiority of co-clustering compared with classical 

clustering strategy such as X-means algorithm. Con-

clusions are drawn in Section 8 with discussions on the 

future GFD application based on joint clustering.

2  Co-clustering Framework of GFD
Traditional clustering can be defined as: dataset X 

exists in a limited data space, which can be repre-

sented with a n × d matrix, is composed of n ele-

ments: xi = (xi1, xi2, · · · , xid)
T . �e purpose of general 

clustering is to segment dataset X into p categories: 

Ck(k = 1, 2, · · · , p).

where i ∈ {1, 2, . . . , n}.

Different from general clustering, co-clustering could 

be defined as: dataset X exists in a limited data space, 

which can be represented with a m × n × d matrix, is 

composed of m × n elements: xij =

(

xij1, xij2, · · · , xijd
)T

 . 

�e purpose of co-clustering is to segment dataset X into 

p and q categories in horizontal and vertical axis, respec-

tively: Ch
k (k = 1, 2, · · · , p) and Cv

k (k = 1, 2, · · · , q).

where i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . ,m}.

Currently, one challenge for fault diagnosis of gears is 

that they are often operated under the varying working 

conditions. To explain the influence of varying work-

ing conditions on the diagnosis performance, a typical 

example is given in Figure 1 to compare the classification 

results between classical and co-clustering strategies. In 

the extracted feature matrix, different colors represent 

different feature value. C1‒C5 represent different fault 

categories; D1‒D5 represent different working condi-

tions. R1‒R9 represent the 1st clustering result; r1‒r5 

represent the 2nd clustering result. It can be seen that 

the classical clustering results may be distorted due to the 

fact that different working conditions have direct influ-

ence on the extracted features, and this makes difference 

between final clustering categories (R1‒R9) and real fault 

categories (C1‒C5). On the contrast, the co-clustering 

can reflect the actual diagnosis results (R1‒R5), which 

shows the robustness of co-clustering in GFD under 

interference environment.

Notice that, co-clustering is not limited in the two 

dimensions. �eoretically, it can be generalized to 

higher dimension (n ≥ 3), thus giving an idea to solve 

(1)X =

[

x1 · · · xi · · · xn

]T
,

(2)X =

















x11 · · · x1i · · · x1n

.

.

.
. . .

.

.

. . .
. .

.

.

xj1 · · · xji · · · xin

.

.

. . .
. .

.

.
. . .

.

.

.

xm1 · · · xmi · · · xmn

















,

Table 1 Clustering technology lists

Category Algorithms

Partitional-based Graph theories [15]; K-means [16]; C-means 
[17]; FCM [18], etc.

Hierarchical-based Nearest neighbor [19]; Binary positive [20], etc.

Density and grid-based AGRID [21]; GCHL [22], etc.

Graph theory-based ACODF [23], etc.
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the more complex problem such as the gear fault diag-

nosis problem under multiple working conditions. Fig-

ure  2 explains the mechanism of co-clustering GFD 

models under two working condition factors, such as 

varying rotating speed and varying load. In Model (a), 

the 2D classification matrix is structured in two dimen-

sions: row for rotating speed and column for GFD task. 

In Model (b), the 3D classification matrix is structured 

in three dimensions: length for rotating speed, width 

for load and height for GFD task. Structured high 

dimension matrix is classified in each scale at the same 

time, which offers an idea for GFD under more than 

one working condition.

According to the description above, a co-cluster-

ing framework is constructed for gear fault diagnosis, 

which is shown in Figure  3. �e main process can be 

divided into four sub-frames. 

• Feature extraction sub-frame: as the input of this 

model, the gear vibration signals are collected using 

several tri-axial accelerometers installed in moni-

tored mechanical equipment, which may be oper-

ated in varying working condition environment. 

Figure 1 The comparison between classical clustering and 

co-clustering results: a extracted features, b classical clustering 

results, c co-clustering results

Figure 2 High dimension gear fault diagnosis models: a the 2D 

classification matrix; b the 3D classification matrix
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�en, the feature vectors {F} are obtained using 

the short-time Fourier transform (STFT) approach, 

aiming to gain differentiable time-frequency fea-

tures for effective co-classifier performance;

• Clustering number estimation sub-frame: the 

Bayesian information criterion (BIC) strategy is 

adopted to characterize the distribution character 

of all feature vectors {F} and then estimate their 

co-clustering numbers k & l in row and column, 

respectively;

• Co-clustering sub-frame: given co-clustering num-

bers, the conventional as well as modified NMF-

based co-clustering classifiers are put into practice 

to build the varying working condition GFD models 

and get the classification results in various tasks;

• Parameter regulation sub-frame: aiming to those 

adjustable parameters involved in BIC and the 

NMF algorithm, such as the weight factor � and the 

transitional dimension d , the gradient ascent (GA) 

algorithm is implemented to find the optimal val-

ues, which reaches a reliable diagnostic accuracy.

More details of these four sub-frames will be given 

from Section 3 to Section 6.

3  STFT-based Feature Extraction
�e performance of feature extraction algorithms 

depends critically on the characteristic of the input 

gear fault signals as well as the running environ-

ment of equipment. Because of the non-stationary 

property of the vibration signal, general algorithms, 

such as Fourier transform (FT), are not very useful in 

this regard [24]. As a kind of time-frequency analysis 

method, the main idea of short-time Fourier trans-

form (STFT) is to execute Fourier transform in short 

sequential signals, cut by a sliding temporal window 

function γ (t) , such as a Hanning or Hamming window 

[25]. When analyzing the non-stationary vibration sig-

nal s(t), (t = 1, 2, . . . , t0) , we supposed that it can be 

approximated as smooth among the window function 

γ (t) . �erefore, the STFT of s(t) is calculated by time-

frequency units STFT (t,w) and is given by

where τ means the position of window function γ (s) ; w 

represents the frequency parameter of STFT. Figure  4 

illustrates a STFT example for a chipped tooth signal 

with the Hamming window. It can be seen from Fig-

ure  4(d) that there are four main peaks (approximate 

120 Hz, 500 Hz, 1160 Hz, and 1770 Hz) appearing in the 

frequency domain of the STFT spectrogram. �e fre-

quency at 1770 Hz possesses the most obvious peak, up 

to 0.5 V, compare to other peaks.

Since the short time Fourier spectrum reflects a dis-

tribution of energies among all frequencies and tempo-

ral intervals, we have to seek those ‘meaningful’ values 

from the STFT graph. Without any known knowledge 

of the running equipment, an effective method is to 

find each maximum in the partitions of the STFT 

spectrogram to represent the feature of sub-window. 

Figure  5 gives an example of extracted features in the 

chipped gear in Figure 4, including 10 × 10, 40 × 40 and 

80 × 80 features. Generally, the row & column divided 

dimensions depends on the non-stationary degree of 

signal in time and frequency domain, respectively. �is 

figure indicates that more details are emerged in high 

dimension features compared with low dimension fea-

tures. However, the increase of dimension will bring the 

expansion of computational load as well as time con-

suming. �erefore, a middle dimension is suitable if the 

definition and dimension are both acceptable, such as 

the 40 × 40 features in Figure 5(c). Here STFT  matrix 

is composed of N 2 sub-matrixes st ij ∈ R(n/N × m/N ) , 

where i ∈ {1, 2, . . . ,N }, j ∈ {1, 2, . . . ,N }:

(3)STFT (t,w) =

+∞∫

−∞

s(τ )γ ∗(τ − t)e−jwτdτ ,

Figure 3 The co-clustering framework of GFD: a the feature 

extraction sub-frame; b the clustering number estimation sub-frame; 

c the co-clustering sub-frame; d the parameter regulation sub-frame
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Figure 4 A STFT example for a chipped tooth signal with the Hamming window: a X-axis primary signal; b varying rotating speed curve; c fault 

gear with a chipped tooth; d the STFT graph

Figure 5 An example of extracted features in the chipped gear: a the STFT graph; b 10 × 10 features; c 40 × 40 features; d 80 × 80 features
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where st ij represents coefficient at the location ( i, j ) int 

the sub-matrix of the STFT graph; �e dimension N will 

be updated in the real GFD experiments in Section  7. 

Finally, the feature vectors from STFT are obtained and 

are given by

 

4  BIC-based Clustering Number Estimation
In most practical gear fault diagnosis applications, it is dif-

ficult to know the estimated number of clusters in advance, 

but the input clustering numbers always have direct influ-

ence in final clustering results. An optimal numbers estima-

tion strategy based on the cluster validity indexes is found 

in historical literatures, including: the Calinski–Harabasz 

index [26], the Davies–Bouldin index [27], the weighted 

inter-intra index [28] and the in-group proportion index 

[29]. However, two drawbacks exist in the cluster validity 

indexes-based estimation strategy: (1) �e estimation pre-

cision depends on selected clustering algorithm, dataset 

as well as the validity index. For instance, both using the 

IGP index, the affinity propagation (AP) method has more 

credible optimal clustering-number compared with the 

k-means strategy on account of the randomness of the lat-

ter [30]. (2) It is hard to apply the cluster validity indexes-

based estimation strategy to 2D or higher dimension 

clustering like co-clustering because these validity indexes 

are mainly calculated according to the distance algorithms 

between different classes or within the same classes.

To find optimal numbers of co-clustering, an estimation 

algorithm based on Bayesian information criterion (BIC) is 

proposed. BIC is a statistical method which represents the 

descriptive power of a model to dataset [31], including: (1) 

the posterior likelihood of data estimation L ; (2) �e model 

complexity |Θ| . �e computational formula of BIC is given 

by 

where � means the weight factor; N  is the totality of sam-

ples. In clustering, the posterior likelihood of data esti-

mation L is represented using the ratio of the mutual 

information entropy between after-clustering I(S∗
; F

∗) 

and before-clustering I(S; F) . In Eq. (6), the entire 

(4)STFT =

















st11 · · · st1j · · · st1N

.

.

.
. . .

.

.

. . .
. .

.

.

st i1 · · · st ij · · · st iN

.

.

. . .
. .

.

.
. . .

.

.

.

stN1 · · · stNj · · · stNN

















,

(5)

F =

{

max(st11), . . . , max
(

st ij

)

, . . . , max(stNN )
}

.

(6)BIC = �L −
1

2
|Θ|logN ,

meaning of L is that a good clustering must maintain 

original information entropy as possible as it can,

But in 2D co-clustering, the BIC model requires to 

take row and column clustering into consideration 

at the same time. So we redefine the parameters as 

follows:

Direction Sample 
length

Sample size Clustering 
number

Row n m k

Column m n l

According to these definitions, the BIC model com-

plexity in co-clustering can be re-expressed as

Substituting Eq. (7) and Eq. (8) into Eq. (6), we get Eq. 

(9) as follows:

Further, this Bayesian information criterion can be 

extended to 3D field and is given by

where p is the clustering number of the 3rd classification; 

q is the size of the 3rd dimension. Based on the descrip-

tion of theory above, the details of BIC algorithm is given 

as:

Input:

a. For single variable working condition GFD, the sam-

ple matrix C is structured by

where 
[

x1 · · · x40

]T
 represents the STFT val-

ues in continuous approximate one minute, which 

depends on the change speed of working condition; 

i ∈ {1, 2, . . . , n} represents the random samples col-

lected from different fault type and n is the number 

of sample.

b. For double variable working condition GFD, the sam-

ple matrix C is structured by

(7)L = I
(

S
∗
; F

∗
)

/I(S; F).

(8)|Θ|r logm + |Θ|clogn = nklogm + mllogn.

(9)

BIC(k , l) = �I
(

S
∗
; F

∗
)

/I(S; F) −
(

nklogm + mllogn
)

/2.

(10)

BIC(k , l, p) = �I
(

S∗
; F∗

)

/I(S; F)

−
(

nqklogm + mqllogn + qplogp
)

/3,

(11)

C40×n =













x1

.

.

.

x40







1

· · ·







x1

.

.

.

x40







i

· · ·







x1

.

.

.

x40







n






,
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Process:

a. Select an matrix construction method to build C 

matrix according to the number of running environ-

ments;

b. Initialize the row clustering number k = 1 , the col-

umn clustering number l = 1 , the weight factor 

� = 0.5;

c. For k from 1 to m , l from 1 to n:

where p
(

s, f
)

 means the joint probability distribution 

between row and column; p(s) means the probability 

distribution in row vector; p
(

f
)

 means the probabil-

ity distribution in column vector.

d. Search the max value of BIC during the whole k and l 

domain:

Output:

a. For single variable working condition GFD, it outputs 

the number of final clustering numbers k and l;

b. For double variable working condition GFD, it out-

puts the number of final clustering numbers k , l , and 

p.

5  Modi�ed NMF-based Co-clustering
5.1  NMF Theory

Non-negative factorization (NMF) is a kind of efficient 

data compression strategy, aiming to describe the high-

dimensional data set using few base vectors with the help 

of the non-negative theory [32]. Different from the global 

(12)

Cn×40×40 =
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
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




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


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
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


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x40
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(13)

BIC(k , l) = �I
(

S
∗
; F

∗
)

/I(S; F) −
(

nklogm + mllogn
)

/2,

(14)

I(S; F) =

∑

s

∑

f
p
(

s, f
)

log2
[

p
(

s, f
)

/p(s)p
(

f
)]

,

(15)arg min
k ,l

BIC(k , l).

characteristics of vector quantization (VQ) and prin-

ciple component analysis (PCA) theory, NMF offers a 

good description about the local features, so specializing 

in searching the small scale information. Non-negative 

factorization has been investigated for feature extrac-

tion and recognition of rolling element bearing fault 

[33]. However, the unique advantage of co-clustering has 

not been explored for 2D or higher dimensions applica-

tion. �e basic NMF problem is stated as the following 

equation:

where Cn×m is a n × m non-negative matrix; the basis 

matrix W  and the gains matrix H are factorized from 

Cn×m ; d < (n × m)/(n + m) represents the reduced 

rank. �erefore, Cn×m can be linearly estimated by the 

sub-vectors W n×d and Hd×m . In order to obtain matrix 

W  and H , a large number of cost functions are defined to 

quantify the degree of approximation. In our strategy, the 

Euclidean distance is chosen as the cost function.

�e purpose of NMF is to find the W  and H , which 

possesses the smallest cost function: min
W ,H

D(C||WH) 

s.t.,W ,H ≥ 0 . An iterative multiplicative algorithm is 

carried out based on the updated rule of W  and H , and is 

given by

where ⊗ is the element-wise multiplication, � is the ele-

ment-wise division; r represents the iteration.

5.2  Classical NMF-based Co-clustering

Recently, the clustering application based on NMF 

has attracted much attention. Particularly, KIM, etc., 

explored the effective combination between cluster and 

NMF [34]. �is paper extends its application from single 

cluster to co-clustering, aiming to solve the varying work 

condition or multi-tasks problem. Rely on the compu-

tational W ∈ R
n×r and H ∈ R

r×m above, two objective 

functions J k & J l are defined as follows:

where Cr
= [c1, c2, . . . , ck ]

r
∈ R

m×k and C2 = [c1, c2, . . . ,

cl]
c
∈ R

n×l represent the centroid matrix in row and col-

umn, respectively; �e element cj , j ∈ [1, 2, . . . , k] of Cr 

means the cluster centroid of the jth cluster in Task I 

(16)Cn×m ≈ W n×dHd×m,

(17)D(C||WH) = C − WH
2
.

(18)
H r+1 = H r ⊗

[(

CH
T
r

)

�

(

W rH rH
T
r

)]

,

W r+1 = W r ⊗

[(

W
T
r C

)

�

(

W
T
r W rH r

)]

,

(19)

J k =

∥

∥W − CrBr
∥

∥

2
,

J l =

∥

∥

∥
HT

− CcBc

∥

∥

∥

2

,
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and the element cj , j ∈ [1, 2, . . . , l] of Cc means the clus-

ter centroid of the jth cluster in Task II; Br & Bc denote 

clustering assignment in Task I and Task II respectively. 

In Task I, Br
ij = 1 means the ith sample belongs to the jth 

cluster, otherwise Br
ij = 0 , and so is Task II.

�e purpose of co-clustering is to find sparse matrix Br
ij 

and Bc , which has only one in each row, with others being 

zero. Taking Task I and Task II as example, we redefine 

C
r and Cc as

where (Dr)
−1

= diag
(

|c1|
−r , |c2|

−r , . . . , |ck |
−r

)

∈ R
k×k , 

and (Dc)
−1

= diag
(

|c1|
−c, |c2|

−c, . . . , |cl |
−c

)

∈ R
l×l . 

Meanwhile, we set (Dr)
−1

= D
r

1
D

r

2
 , (Dc)

−1
= D

c

1
D

c

2
 , then 

Eq. (19) can be expressed as follows:

where Mr
=

(

D
r

1

)T
B
r , N r

=

(

D
r

2

)T
B
r , Mc

=

(

D
c

1

)T
B
c , 

N
c
=

(

D
c

2

)T
B
c
.

Finally, a second order NMF is applied in J k and J l , 

aiming to factorize W  to W (Mr)
T and N r , to factorize 

H
T to HT(Mc)

T and N c . �erefore, the Br and Bc matrix 

is obtained according to the second order NMF result. 

After that, the classifications in row and column are 

obtained from the Br and Bc matrix.

5.3  Modi�ed NMF-based Co-clustering

As described in Section  5.1, non-negative matrix C is 

factorized into two sub-matrices W  and H in conven-

tional non-negative factorization. Although the physi-

cal meanings of W  and H are clear: they represent the 

(20)
C

r
= W

(

B
r
)T(

D
r
)

−1
,

C
c
= H

T
(

B
c
)T(

D
c
)

−1
,

(21)

J k =

∥

∥

∥
W − W

(

Br
)T(

Dr
)

−1
Br

∥

∥

∥

2

=

∥

∥

∥
W − W

(

Br
)T

Dr
1D

r
2B

r

∥

∥

∥

2

=

∥

∥

∥
W − W

(

Mr
)T

N r

∥

∥

∥

2

,

(22)

J l =

∥

∥

∥
HT

− HT
(

Bc
)T(

Dc
)

−1
Bc

∥

∥

∥

2

=

∥

∥

∥
HT

− HT
(

Bc
)T

Dc
1D

c
2B

c

∥

∥

∥

2

=

∥

∥

∥
HT

− HT
(

Mc
)T

N c

∥

∥

∥

2

,

(23)

{

Lri = j,Br
ij = 1,

Lri �= j,Br
ij = 0,

{

Lci = j,Bc
ij = 1,

Lci �= j,Bc
ij = 0.

decomposition values in row and column respectively 

and promote the classification effect of co-clustering, the 

relation between two directions is still ill-defined. Hence, 

the typical NMF is improved and is given by

where Lk×l is named as ‘the relation matrix‘, the value Lij 

represents the link between the ith cluster in Task I and 

the jth cluster in Task II; k is the clustering number in 

the row vector and l is the clustering number in the col-

umn vector. In modified NMF, the cost function and the 

update functions can be re-written as

where ⊗ is the element-wise multiplication, � is the ele-

ment-wise division; r represents the iteration; W+ is the 

generalized inverse of W  : WW
+
W = W  ; H+ is the gen-

eralized inverse of H : HH
+
H = H .

By introducing the matrix L , the W  and H are not 

required to be orthogonal in modified NMF strategy. 

�erefore, it expands the optional range of W  and H and 

improves the factorization performance, which will be 

proved in Section 7.

6  GA-based Parameter Regulator
�ree parameters need to be designed in the co-cluster-

ing-based GFD strategy, including: (1) the feature-dimen-

sion N  in STFT; (2) the weight factor � in BIC algorithm; 

(3) the transitional dimension d in traditional NMF-

based co-clustering, which are listed in Table 2.

Among these three parameters, the feature-dimension 

N  in STFT can be decided from the GFD experiments. � 

and d will be adjusted using the gradient ascent (GA) reg-

ulatory mechanism [35, 36], whose fundamental is shown 

in Figure  6. �e main idea of gradient ascent algorithm 

is to follow the fastest changing direction to find the 

(24)Cn×m ≈ W n×kLk×lH l×m,

(25)D(C||WLH) = C − WLH
2
,

(26)H r+1 = H r ⊗

[(

CH
T
r

)

�

(

W rLrH rH
T
r

)]

,

(27)W r+1 = W r ⊗

[(

W
T
r C

)

�

(

W
T
r W rLrH r

)]

,

(28)Lr+1 = W
+

r+1
CH

+

r+1
,

Table 2 Three main parameters

Symbol Descriptions Range

N The feature-dimension in STFT N ≤ 80

� The weight factor in BIC 0 ≤ � ≤ 1

d The transitional dimension d ≤ min(m, n)
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maximum of diagnostic accuracy. In Figure 6, four differ-

ent initial points of (�, d) are listed as example, where the 

approximation curves ① and ② reach the global opti-

mum while ③ and ④ are limited in the local optimum.

Meanwhile, three concepts are included in the gradient 

ascent model:

• �e step length sl : it represents the speed 

along the gradient direction during the itera-

tion. We initialize the step length as 0.02 in the 

parameter � & d/min(m, n) , where 0 ≤ � ≤ 1 , 

0 < d/min(m, n) ≤ 1;

• �e learning function: it has been designed in NMF-

based co-clustering classifier as:

where xi represents extracted STFT feature vector 

from the ith sample; NMF(·) means the NMF-based 

co-clustering classifier, with three input parameters 
{

xi, �, [d/min(m, n)]
}

 ; Lr
i
 and Lc

i
 means the cluster-

ing results of the ith sample in row and column.

• �e validity function: it is calculated by the sum of 

correct classifications, and it assesses the effective-

ness of classification.

where yri  and yci  represents the label of the ith sample; 

zer(·) means the zero sign function. Notice that, the 

validity function can only be obtained in those train-

ing samples, whose classification labels are known. 

(29)
{

L
r
i , L

c
i

}

= NMF
{

xi, �, [d/min(m, n)]
}

,

(30)

Ac(�, [d/min(m, n)])

=

m
∑

i=1

zer
(

Lri − yri
)

+

n
∑

i=1

zer
(

Lci − yci
)

,

(31)zer(x) =

{

0, x �= 0,

1, x = 0,

�e optimal � and d/min(m, n) is gained according 

to the training samples and is used in others, called 

testing samples.

It should be noted that in real GFD application, when 

performing GA algorithm: (1) If the step length is too 

large, the optimal parameter result might be skipped. But 

if the step length is too small, the iteration speed will be 

slow and cause too large computational load. (2) It is easy 

for the GA algorithm to be deep in the local optimum 

rather than the global optimum, which relies on the initial 

location of 
{

�, d/min(m, n)
}

 . �erefore, it is necessary to 

take these two factors into consideration to balance the 

computational accuracy and the time consumption.

7  Experiments and Performance Analysis
7.1  DDS Experimental System

�e Spectra Quest’s Drivetrain Dynamics Simulator 

(DDS) was used in this study for experimental verifica-

tion, as shown in Figure  7. �is system is composed of 

six units including: (1) speed regulator; (2) the driving 

motor; (3) the planetary gearbox; (4) the reduction gear-

box; (5) brake device; (6) brake regulator. �e faults occur 

in those gears in planetary & reduction gearboxes, under 

varying rotating speed and load conditions, which are 

adjusted using the speed regulator and the brake regula-

tor, respectively. Four types of gear faults are studied: (1) 

root cracks; (2) missing teeth; (3) chipped teeth; (4) sur-

face wear. �e purpose of GFD is to classify these faults 

through 7 vibration sensors (3-axis for planetary gearbox; 

3-axis for reduction gearbox; 1-axis for driving motor). In 

addition, in order to put the co-clustering methods into 

effect, we define different levels in four task sets listed in 

Table 3, including: (1) the fault type task (C1‒C5); (2) the 

fault severity task (D1‒D4); 3) the speed regulator task 

(E1‒E5); (4) the load regulator task (F1‒F5). Specially, the 

rotating speed curve and the load curve in Figure 8 was 

also conducted.

7.2  GFD Experiments and Performance Analysis

7.2.1  Experimental Setup

�e varying rotating speed and load are designed using 

the regulator curves in Figure  8 for the experiment. In 

order to enlarge the data analytical ability of algorithms, 

10 repeat collections were implemented to increase the 

sample points to 10 times (5120 × 50× 10) in each group, 

which are segmented by the 2.5  s sub-signals. �ere-

fore, the sample number for fault type recognition can 

be gained in row clustering task (fault type) and column 

clustering tasks (rotating speed and load), and are listed 

in Table 4A and 4B.

In the fault type recognition experiments, several 

tests are compared using the models as follows: (1) 

X-means clustering; (2) Guassian Mixture Model (GMM) 

Figure 6 Fundamental of gradient ascent
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clustering; (3) NMF-based co-clustering; (4) Modified 

NMF-based co-clustering. For co-clustering, the related 

parameters were set as: � = 1 , d = 30.

7.2.2  Experimental Results and Discussion

Experiments are carried out, and the column task in 

Table 4 is considered to improve the effectiveness of row 

task in co-clustering method. In order to assess the qual-

ity of models, the Pr (Ci) and Re (Ci) indexes of clustering 

results are calculated and given by

where the Pr (Ci) index reflects the ability that a model 

identifies correct samples while the Re (Ci) index reflects 

the ability that a model finds all correct samples.

At first, we observed the fault type recognition results 

using the NMF-based co-clustering strategy under vary-

ing rotating speed and load environment, which are 

listed in Table 5. �is table indicates that the diagnostic 

accuracy of co-clustering strategy in various load condi-

tions (97.8%) is better than that in various rotating speeds 

(32)Pr (Ci) =

Corrected classfied Ci samples

All Ci samples
,

(33)Re(Ci) =

Corrected classfied Ci samples

All classfied Ci samples
,

Figure 7 The Drivetrain Dynamics Simulator (DDS) system: a the 

whole physical map of DDS system; b the internal structure image of 

DDS system; c transmission ratio of reduction gearbox

Table 3 De�ne levels in di�erent tasks

Task I C1 C2 C3 C4 C5

Fault type Health Root Missing Chipped Surface

Task II D1 D2 D3 D4

Fault severity Health Slight Medium Heavy

Task III E1 E2 E3 E4 E5

Speed regulator 
(Hz)

< 5 5‒15 15‒25 25‒35 > 35

Task IV F1 F2 F3 F4 F5

Torque regulator 
(N·m)

< 1.83 1.83‒5.49 5.49‒9.14 9.14‒12.80 > 12.80

Figure 8 The varying working condition curves
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(96.3%). �is can be explained by two possible reasons: 

(1) �e classify boundary of the latter is more clear 

than the former since that the rotating speed presents a 

gradual change characteristic from 0 Hz to 40 Hz while 

the brake load jumps from 0 to 14.63  N·m; (2) Chang-

ing the rotating speed has a stronger interference effect 

than just changing the load to collected vibration signal, 

which have been verified in our previous study. Secondly, 

to illustrate clustering performance in the varying rotat-

ing speed model, the NMF-based co-clustering results 

are listed in Table 6 (k = 6; l = 6) and Figure 9, where 200 

samples are tested in each category. Some details can be 

seen here: (1) the misclassification cases always appear 

between ‘Health’ and ‘Surface’ or between ‘Root’, ‘Miss-

ing’ and ‘Chipped’ because the time domain features of 

the former are more similar but the frequency domain 

features of the latter are alike. For example, the ‘Chipped’ 

type is easy to be classified as the ‘Missing’ type if the 

crack of chipped tooth is large enough; (2) �e 6th cate-

gory (R2 and R3) occurs in the C2 type when the number 

of clustering is set as 6, which means the discrete ability 

and the inconsistency exists inside the ‘Root’ samples. 

Interestingly, although the differences exist in local pre-

cision and recall index of different categories, the total 

precision and recall are very nearly the same in these two 

tables.  

Table 4 Sample number for (A) rotating speed fault recognition and (B) load fault recognition

A Column task (rotating speed)

E1 E2 E3 E4 E5

Row task (fault type)  C1 25 50 70 10 45

 C2 25 50 70 10 45

 C3 25 50 70 10 45

 C4 25 50 70 10 45

 C5 25 50 70 10 45

B Column task (load)

F1 F2 F3 F4 F5

Row task (fault type)  C1 40 40 40 40 40

 C2 40 40 40 40 40

 C3 40 40 40 40 40

 C4 40 40 40 40 40

 C5 40 40 40 40 40

Table 5 NMF-based co-clustering results for  fault type 

recognition (k  = 6)

Rotating speed Pr (%) Re (%) Load Pr (%) Re (%)

C1 92.0 99.5 C1 97.0 100

C2 95.0 99.3 C2 94.5 100

C3 96.5 93.7 C3 98.0 94.2

C4 98.5 97.5 C4 99.5 98.0

C5 99.5 93.0 C5 100 97.1

Total 96.3 96.5 Total 97.8 97.2

Table 6 Fault type classi�cation details under varying rotating speed (k = 6)

Rotating speed C1 C2 C3 C4 C5 Pr (%) Re (%)

R1 184 1 92.0 99.5

R2 1 138 95.0 99.3

R3 52 2

R4 10 193 3 96.5 93.7

R5 5 197 98.5 97.5

R6 15 199 99.5 93.0

Total 96.3 96.5
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Especially, we reclassify the fault types of testing sam-

ples in Table  4 using the modified NMF-based co-clus-

tering strategy. Here the normalized relation matrix Lk×l 

(k = l = 5) can be gained and given by

Table 4A: 0.0801 0.0918 0.2563 0.0965 0.3236

0.3285 3.7987 3.8255 3.2661 3.5314

0.2155 6.9619 6.5298 6.6931 7.0714

0.7031 6.8263 7.2954 6.7465 7.2176

0.2250 0.1191 0.0545 0.2875 0.4563

Table 4B: 3.7887 3.5302 4.1173 2.1937 2.4488

3.7157 0.1592 3.4741 1.9078 2.2279

1.9611 1.3846 1.5855 3.8276 3.2316

3.2774 0.2309 4.7511 3.9760 3.5468

0.8559 0.4857 0.1722 0.9344 3.7734

Notice that, the element lij represents the relevance 

between the ith category in row task and the jth cate-

gory in column task. In the Lk×l matrix, the lij rises up to 

approximate 7 in ‘Missing’ & ‘Chipped’ fault type with the 

increase of rotating speed. �e effect of speed regulator 

on different fault types presents the following rank: Miss-

ing≈Chipped>Root>Health≈Surface. However, there is 

a less link between load and fault types, seeing from the 

Lk×l matrix under changing load environment. In order 

to further verify the necessity for modified NMF, Table 7 

gives the evaluation indexes of this approach. It shows 

that an improved precision occurs in the varying rotat-

ing speed dataset but makes no difference in the varying 

load dataset. �at is because the Lk×l matrix in modified 

strategy cuts off the link between W and H in the for-

mer, which promotes the separation ability between row 

and column task. As can be seen in Table 7, the middle 

dimension of W and H is not limited in a single value, like 

traditional NMF method does, thus improving both the 

flexibility of selected dimension and the GFD precision 

(97.0% and 97.8%). Also, it can be known that the recog-

nition performance of various loads (100%) is superior 

to rotating speed (95.3%) on account of the continuity of 

speed regulator.

Finally, concentrating on the varying working condi-

tion GFD, the traditional clustering strategies, including 

the K-means and the GMM methods, and co-clustering 

approaches were compared using two selected indexes: 

the precision and the time consumption. �e perfor-

mance comparison results are listed in Table 8. Accord-

ing to this table, although the time complexity of single 

algorithm of 1D clustering is smaller than joint strategy 

(4.923  s < 7.991  s), the accumulation of computational 

load for two tasks is larger than co-clustering proposed 

(4.923 s + 4.856 s > 7.991 s). Meanwhile, the co-clustering 

have an apparent precision increase in varying working 

condition GFD, about 12.51% in varying rotating speed 

and 7.00% in varying load. �erefore, this experiment 

proves the superiority of co-clustering in gear fault diag-

nosis under variable working conditions.

7.3  Parameter Regulation Experiments

7.3.1  STFT Dimension Adjustment Experiments

During the STFT dimension adjustment experiments, we 

adjusted the feature dimension N from 10 to 80 one by 

one, and then the diagnostic precisions of Task I as well 

as the time consumptions of co-clustering model were 

observed and were drawn in Figure 10. It can be seen that 

the diagnostic accuracy increases from 78.76% to 97.54% 

when the feature dimension N increases from 10 to 80, 

meanwhile, the computational load indicates an expo-

nential increase from approximately 16.78 s to 48.45 s. 

It can be seen from Figure  10 that N = 42 is considered 

as an appropriate dimension, in which the diagnosis 

accuracy is satisfactory enough (97.02%), while the time 

consumption keeps at a low level (25.12 s). Although the 

precision will continue to improve up to 97.54% if we 

Figure 9 The scatter plot of the classification results (k = 6)

Table 7 Evaluation indexes of  modi�ed co-clustering 

(k = 6)

Experiments Pr (%) Re (%)

Varying rotating speed

 Row task (C1‒C5) 97.0 97.2

 Column task (E1–E5) 95.3 93.5

Varying load

 Row task (C1‒C5) 97.8 97.5

 Column task (F1‒F5) 100 100
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continuously increase the feature dimension, but compu-

tational cost will also increase quickly.

7.3.2  BIC Algorithm Experiments

Based on the dataset from Drivetrain Dynamics Simula-

tor (DDS) system, we tried to adjust the number of clus-

ter in row and column, respectively. Generally, the search 

range of clustering number is from 2 to 10: 2 ≤ k ≤ 10; 

2 ≤ l ≤ 10. Figure  11 illustrates an example of the BIC 

results in varying load GFD experiments when the clus-

tering number changes from 2 to 10. It can be seen that 

the peak of BIC value (− 8124) exists at the point (5,5), 

which means that the optimal co-clustering results hap-

pens when the row and the column clustering numbers 

both equal to five. According to the real dataset and the 

standard labels in Table 3, the BIC-based estimation algo-

rithm satisfies the requirements of practical gear fault 

diagnosis applications.

For further study on the BIC estimation algorithm, the 

BIC method was compared with a kind of traditional self-

adapting classification estimation algorithm: X-means, 

which is an improved strategy of K-means. �e estima-

tions of clustering number in BIC as well as X-means 

algorithm are listed in Table 9. On one hand, for the BIC 

algorithm, with the increase of clustering number k, the 

diagnostic precision presents an increasing trend from 

60.0% to 96.9% first, then it begins to slightly decrease 

when the clustering number k is larger than 5. On the 

other hand, by comparing the estimation results between 

X-means and BIC algorithm, we find the estimation of 

clustering number using the X-means is much larger than 

the normal (k = 12) and also its diagnostic precision is 

only 84.1%, which proves the superiority of BIC-based 

clustering number estimation.

7.3.3  GA Parameter Regulator Experiments

As shown in Figure 4, the gradient ascent algorithm was 

used in the varying working condition datasets to obtain 

the weight factor � and the transitional dimension d . 

�e regulator results of the gradient ascent algorithm 

are listed in Table  10. Here the final ( � , d ), the num-

ber of iterations as well as the precision of row task are 

observed using 4 initial ( � , d ) values: (0.5, 500), (0.5, 200), 

(0.7, 500), (0.7, 200). After gradient ascent, it could be 

seen that four initial values all reached the global opti-

mum in varying load experiments. But in varying rotat-

ing speed experiments, only two points reach the global 

optimum, which achieves 99.3% diagnostic accuracy. In 

addition, it can be found that the less iterations occur 

when the distance between initial and final ( � , d ) point is 

short. �erefore, these tests prove that the performance 

of GA algorithm depends on the selected initial point to 

a great extent.

Table 8 Performance comparison of di�erent GFD models

Model Varying rotating speed Varying load

Row clustering precision 
(%)

Time consumption (s) Row clustering precision 
(%)

Time consumption (s)

X-means 84.1 4.923 + 4.856 90.5 4.919 + 4.774

GMM methods 87.7 6.845 + 6.018 92.3 6.274 + 5.909

NMF 96.3 7.991 97.8 6.845

Modified NMF 97.0 9.362 97.8 8.647

Figure 10 Diagnostic precision and time consumptions of 

co-clustering model

Figure 11 Varying load BIC results
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8  Conclusions
A NMF-theoretic co-clustering strategy is presented in 

this paper to offer a fast multi-tasking solution to solve the 

gear fault diagnosis problem under variable working con-

ditions. Here the time-frequency features are extracted 

from the STFT spectrogram, and are utilized to structure 

the 2D matrix for joint clustering. Experiments indicate 

that 97.02% diagnostic precision can be achieved when 

the STFT dimension is set as 42. Meanwhile, seeing from 

the results of the BIC-based optimal clustering number 

estimation, they are close to the practical categories, no 

matter in varying rotating speed or varying load dataset. 

After NMF, row and column clustering task can be identi-

fied at the same time, with approximately 10% improved 

accuracy and less time cost compared with those single 

task clustering algorithms, such as X-means and GMM 

algorithm. �ere is an internal connection in most of gear 

failure signals. �e proposed co-clustering strategy has 

better performance than independent clustering strategy 

because the modified NMF helps to provide a relation 

matrix, which shows a strong correlation between differ-

ent rotating speeds and fault types. �erefore, the NMF-

based co-clustering has a good potential to apply in the 

gear fault diagnosis of large-scale rotating machines under 

varying working conditions. In the future, co-clustering 

with higher dimension will probably apply in the more 

complex working conditions or more diagnostic tasks to 

improve the gear fault diagnosis performance.
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Table 9 Estimation results of X-means and BIC algorithm

Algorithm Clustering 
number

Sub-clustering number of row task Precision 
of row task 
(%)Health Root Missing Chipped Surface

BIC & co-clustering k = 3 1 1 1 60.0

k = 4 1 1 1 1 79.8

k = 5 1 1 1 1 1 96.9

k = 6 1 2 1 1 1 96.3

k = 7 1 2 1 1 2 95.1

k = 8 1 2 2 1 2 94.0

k = 9 1 3 2 1 2 90.4

X-means k = 12 2 3 3 2 2 84.1

Table 10 Regulator results of gradient ascent algorithm

Dataset Initial ( � , d) Number of iterations Final ( � , d) Precision 
of row task 
(%)

Varying rotating speed (0.5, 500) 21 (0.46, 156) 99.3

(0.5, 200) 6 (0.46, 158) 99.3

(0.7, 500) 8 (0.80, 406) 90.5

(0.7, 200) 14 (0.80, 411) 91.4

Varying load (0.5, 500) 14 (0.60, 296) 97.0

(0.5, 200) 9 (0.60, 285) 96.9

(0.7, 500) 13 (0.64, 296) 97.0

(0.7, 200) 8 (0.64, 279) 96.3
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