
A Fast New DES Implementat ion in Software

Eli Biham

Computer Science Department

Technion - Israel Institute of Technology

Haifa 32000, Israel

Email: biham~cs, technion.ac.il

WWW: http://www.cs.technion.ac.il/~biham/

Abstract . In this paper we describe a fast new DES implementation.

This implementation is about five times faster than the fastest known

DES implementation on a (64-bit) Alpha computer, and about three

times faster than than our new optimized DES implementation on 64-bit

computers. This implementation uses a non-standard representation, and

view the processor as a SIMD computer, i.e., as 64 parallel one-bit pro-

cessors computing the same instruction. We also discuss the application

of this implementation to other ciphers. We describe a new optimized

standard implementation of DES on 64-bit processors, which is about

twice faster than the fastest known standard DES implementation on the

same processor. Our implementations can also be used for fast exhaustive

search in software, which can find a key in only a few days or a few weeks

on existing parallel computers and computer networks.

1 I n t r o d u c t i o n

In this paper we describe a new implementation of DES[4], which can be very

efficiently executed in software. This implementation is best used with a non-

standard order of the bits of the DES blocks. This implementation does not

suffer from high overhead of computing permutations of bits. Instead, we view a

processor with (for example) 64-bit words, as a SIMD parallel computer which

can compute 64 one-bit operations simultaneously, while the 64-bits of each block

are set in 64 different words (of which the first bit is always of the first block,

the second bit belongs to the second block, etc.).

The operations that DES uses are as follows: The XOR operation: in our view

the XOR operation of the processor computes 64 one-bit XORs. The expansion

and permutation operations: these operations do not cost any operation, since

instead of changing the order of words (or duplicating words), we can address

the required word directly. We remain with the S boxes. Usual implementations

of S boxes use table lookups. However, in our representation, table lookups are

very inefficient, since we have to collect six bits, each bit from a different word,

A Fast New DES Implementation in Software 261

Cipher Speed
DES (Eric Young's libdes) 28

Gost 8*
SAFER 22*
Blowfish 34*

Our DES Implementation 46
Our DES Implementation - triple DES 22
Our fastest DES 137
Our fastest DES - Triple DES 46

* Estimation, based on [9].

Table 1. The speeds of our implementations and of various ciphers on a 300MHz Alpha
8400 processor (in Mbps).

combine them into one index to the table, and after the table lookup take the four

resultant bits and put each of them in a different word.

We observed that there is a much faster implementation of the S boxes in our

representation: they can be represented by their logical gate circuit. In such an

implementation each S box is typically represented by about 100 gates, and thus

we can implement an S box by about 100 instructions.

We actually view the whole cipher by its gate circuit, and apply it in software.

In this implementation we actually compute the circuit 64 times in parallel (as

the size of the processor word), and thus can gain a high speedup even though

we use very simple operations. In average, on 64-bit processors, each S box costs

about 1.5 instructions for each encrypted block, while each instruction takes only

one clock cycle.

The full circuit of DES contains about 16000 gates (including the key schedul-

ing, which costs nothing), and thus we can compute DES 64 times in about

16000 instructions on 64-bit processors. In average we result with about 260

instructions for the encryption of each DES block. Conversion from and to the

standard block representation takes (together)about 40 instructions per block,

and thus encryption of standard representations with our implementation takes

about 300 instructions. For comparison, our fast standard implementation of

DES, described in this paper, requires about 634 instructions for each block.

Table 1 summarizes the speeds of our implementations, a standard fast DES

implementation (Eric Young's libdes), and of various fast ciphers.

The same idea can be applied to other ciphers. Our implementation of these

ciphers is efficient especially when the cipher does not use all the power of the

machine instructions (i.e., when each instruction mixes only a few of the bits, such

as S boxes or eight-bit additions on 32-bit processors), and when the word size of

the processor is large (such as 64 bits, when the cipher use shorter registers). For

262 Eli Biham

example, our implementation of Feal[ll] is expected to be about 2.5-5 times faster

than direct implementations. Both variants of Lucifer[i,12] and GOST[10] can

also be applied very efficiently using this implementation. Our implementation

of ciphers which use more complex operations (such as multiplication, or large

S boxes) requires more instructions to simulate the complex operations, and is

thus less efficient.

In Section 3 we describe an optimized standard implementation on 64-bit

computers. It uses the 64-bit registers of a 64-bit processor, and runs almost

twice faster than the fastest implementation (designed for 32-bit architectures)

on the same processor. It even runs faster than fast ciphers such as GOST[10],

SAFER[2], and Blowfish[10]. The speed is gained by using the long 64-bit re-

gisters effectively - - by all other means this is a standard implementation. We

suggest a new DES-like cipher, to which we call WDES, based on the structure

of this fast implementation, but is about 2.5 times faster.

In Section 4 we discuss using these fast implementations for exhaustive search,

and conclude that it is applicable even today using existing general purpose

parallel computers and computer networks.

2 T h e N e w N o n - S t a n d a r d D E S I m p l e m e n t a t i o n

This implementation uses a non-standard representation of the data in software,

and in particular it does not have any table lookup. Instead of encrypting many

64-bit words, one at a time, we encrypt simultaneously 64 words, and each op-

eration encrypts one bit in each of the 64 words.

Actually, we view a 64-bit processor as a SIMD computer with ~ 64 one-bit

processors. This implementation simulates a fast DES hardware whose number of

gates is minimal, and computes each gate by a single instruction. In particular, the

S boxes are computed by their gate-circuit, using the XOR, AND, OR, and NOT

operations, and the permutations and expansions do not require any instruction,

since they can be viewed as only changing the naming of the registers. Although

the S boxes are implemented in more instructions than in usual implementations,

the parallelism of this implementation speeds up the implementation much more

than the S box implementation reduces it. Moreover, some of the operations can

be optimized out in some cases, such as if some parts of the S boxes are similar

(same or complement).

We represent the S boxes by their gate circuit using the best-known XOR,

AND, OR and NOT operations, optimized to reduce the total number of gates.

Although the problem of finding the best such circuit is still open, we found the

following optimization which requires at most 132 gates per DES S box, and

only 100 gates in average. In the description we denote the six input bits by

A Fast New DES Implementation in Software 263

Instructions

Expansion 0

Key mixing 48

P 0
XOR with the left half 32
S boxes 8. 100 = 800 (in average)

load+store 8 �9 (6 -4- 6load + 4load + 4store) = 160

Total per round: 1040

Table 2. The number of instructions in each round on Alpha.

Total Average per Block

IP,FP 0 0

16 rounds: 16 �9 1040 = 16640 260

4 gates per bit

Conversion of representation 2500 40

Table 3. The number of instructions in DES on Alpha.

abcdef. We compute all the 16 functions of d and e into 14 registers (excluding

the constant 0 or constant 1). It requires two NOTs (d, $) and 10 additional

operations (0, 1, d, e, ~t, ~ are already known). This computat ion is done only once

for each S box. For each output bit of the S box we compute the result using these

functions. We use six operations for each line of the S box and six operations to

combine the results, together 30 operations for each output bit. In total we use

at most 12 + 4 �9 30 = 132 gates for each S box, but in average we need only

about 100 gates per S box. Each combination of four values (the four values of

b, c or the four values of a, f , e.g., combining the quarters of each of the four lines

((b = c = 0), (b = 0, c = 1), (b = 1,c = 0), (b = c = 1)), or combining the four

lines) are combined by (assuming the first case):

where the underlined values are known constants, and fbc = S(abcdef), where

d, e are the actual values of the input (fbc is one of the 16 values kept in registers

above), and a, f are the values assumed for a, f , to be instantiated in the next

step. More accurately, in the intermediate steps we compute the combinations of

S box entries as suggested by the above equation (e.g., f00, f00 @ f0:, f00 �9 fl0,

f00 @ f0: G fl0 @ f l :) , rather than the various values of the entries themselves.

Tables 2 and 3 describe the maximum number of gates per round and for the

full DES. Therefore, we expect the speed to be about 300 �9 22o/4 = 75Mbps on

264 Eli Biham

300MHz Alpha processors. In practice, we achieve speeds of about 137Mbps,

since the processor (EV5) has two independent integer instruction units. 1

Conversion between the standard and the non-standard representations can

also be done in about 1250 instructions. Doing this twice, before and after en-

cryption, takes about 2500 instructions, which are about 40 instructions for each

encrypted block.

This implementation can actually be applied to any cipher, but the efficiency

of the implementation depends on many factors, such as the efficiency of the ori-

ginal cipher, the word size of the processor, and the complexity of the operations

that the cipher uses. The implementation is especially attractive to ciphers whose

operations are simple (no multiplication for example), use only small S boxes

(thus their gate complexity is small), or use small register sizes (thus cannot use

the full power of modern processors). Examples of such ciphers are Lucifer[l,12],

GOST[10] and Feal[ll].

In the case of Feal, standard implementations require about 22 instructions

for each application of the round function (4 loads, 2 load + 2 XORs for key

mixing, 2 for XOR, 2 additions (So), 2 additions with carry ($1; each might take

two operations), 4 rotations and 4 XORS to mix with the left half of the data).

The right-round cipher takes thus about 8 �9 22 = 176 instructions (not counting

the initial and final key mixing which can take a few additional instructions).

Our implementation requires 34 or 35 instructions for an eight-bit addition

(one or two for the LSB, depends whether this is So or $I, 1 for the carry

and 2 for the second bit. We need three additional instructions for computing

each additional carry and two XORs for each additional bit: In total we need

1 + (1 + 2) + 6. (2 4.3) = 34 instructions for So and 35 for $1). In total the F

function requires 16 + 16 + 16 + 35 + 34 + 35 + 34 + 32 + 32 + 32 + 8 + 8 = 298

instructions (16 XORs, 16 key loads+mixings, four S boxes, 32 loads, 32 stores,

32 mixings with the left half, and 848 extra loads+stores if necessary). The eight

round Feal can then be implemented in 8. 298 + 64 + 64 = 2512 instructions (64

for each of the initial and final key mixings). In average we get that only about

2512/64 = 39 instructions per block, which is more than four times faster than

standard implementations. Even if we do the conversion f rom/to the standard

representation (which costs 40 instructions per block), our implementation takes

only about 39 + 40 = 79 instructions, which is more than twice faster than the

standard implementations.

Both variants of Lucifer[i,12] and GOST[10] can also be applied very effi-

ciently using this implementation.

1 The next generation of this processor, EV6, will have four independent integer in-
struction units, thus we expect that with the same clock frequency the speed of our
implementation will be about 250Mbps.

A Fast New DES Implementation in Software 265

This implementation can be used for fast encryption and decryption, using

the same key in all the 64 encryptions (i.e., the key words contain only 0 or - 1) ,

or for exhaustive search using the same plaintexts but different keys. We can

also use different plaintexts with different keys, if it is of an advantage to the

application.

This implementation can be used in three ways:

1. Encryption/decryption in standard representations, compatible to other DES

implementations.

2. Encryption/decryption of large blocks, such as of disk clusters, or large com-

munication packets. In this case, it is not important to use the standard

representation, and thus our implementation is even faster, since conversion

should not be done.

3. Application to exhaustive search.

It is easy to see that applications of this implementation in the ECB mode

is very fast, but as usual in ECB modes, it suffers from many disadvantages.

It would be preferable to use standard CBC, CFB and OFB modes with this

implementation, but this is impossible due to their sequential order. However, it

is possible to use this implementation for standard CBC decryption, since the

whole data can be decrypted in parallel, and then each result can be mixed with

the previous ciphertext. It is also possible to apply CFB decryption in a similar

way. Therefore, this implementation can be used for fast decryption in standard

modes, even when encryption is done by usual standard implementations.

64 parallel CBC encryption modes can be applied in this implementation by

choosing 64 initial values for the 64 block encrypted simultaneously, and apply

CBC on the full 642 = 4096-bit blocks. In this case we can also encrypt under

a different key in each of the 64 parallel CBC modes - - it might be especially

attractive when a server has to encrypt data to many clients in parallel.

This implementation is even faster when conversion f rom/ to standard rep-

resentation is not applied. In this case, DES is applied, but with a non-standard

order of the plaintext/ciphertext bits. To protect against multiple occurrence of

the same plaintexts (actually the 64 bits that enter one real DES in the non-

standard representation) we should use new modes.

The ECB mode of this implementation takes the 4096 bits of the data, and

encrypts them as is. A CBC-like mode can have an initial value of 4096 bits

(which can be derived from a 64-bit value), and apply CBC on the 4096-bit

cipher. This mode actually applies 64 standard CBC modes in parallel, one for

each of the DES applications in the non-standard representation. An improvement

of this mode can mix the bits of each register, for example by rotating register

i (containing the i ' th bits of the standard blocks) by i bits after adding i to

266 Eli Biham

the value of the register. A CFB-like and OFB-like modes can be designed in a

similar way.

3 A F a s t S t a n d a r d D E S I m p l e m e n t a t i o n o n 6 4 - b i t

P r o c e s s o r s

DES can be applied very efficiently on 64-bit processors. Unlike on 32-bit pro-

cessors, on 64-bit processors, the right half expanded to 48 bits can be stored in

one word. Moreover, by substituting every group of six bits entering into the S

boxes in a separate byte, we can directly access the S box table by referencing

via a single byte.

We apply the initial and final permutations by lookup tables from each byte

to 64-bits, and XORing the results of the various table lookups.

We apply each round by XORing the right half (represented as eight bytes,

in each six bits are used) by a subkey (represented in the same way). Then, eight

table lookups apply the eight S boxes, and the results are XORed. Each S box

already includes the P permutation and the E expansion in its 64-bit result. Note

that due to this representation, several (duplicated) bits of the two halves should

be omitted by the final permutation.

Tables 4 and 5 describe the number of operations required by this implement-

ation, with the number of instructions on an Alpha processor. We implemented

this code in C on a 300MHz Alpha and got encryption speed of 46Mbps. Triple

DES runs at 22Mbps (since some IP, FP's can be discarded). On the same pro-

cessor, Eric Young's libdes (single-DES) runs at 28Mbps.

Some comments on this implementation:

1. The eight S boxes are applied in parallel, and thus pipelining can use it

without pipeline stalls. In other ciphers and hash functions, like Feal[ll],

Khufu[3], ghafre[3], and MD417], MD518], SHA-I[5,6], each operation de-

pends on the output of the previous operation, and thus might result with

pipeline stalls, especially on newer or future processors which can compute

several instructions simultaneously.

2. All the tables and the variables take together about 4Kbytes, and enter easily

into the cache.

3. Still in DES the input of the next round depends on the output of the pre-

ceding one. Although in practice this does not slow the execution, we have

another solution. In DES, the input of each S box depends only on the output

of only six S boxes in the previous round. Thus, the code can be optimized

to start computing the next round while still computing the preceding one.

A Fast New DES Implementation in Software 267

Operations Number of Instructions

key XOR 1 load-FXOR 2

EPS 8 table lookups 8 .3 = 24 (extbl, add, lookup)

XORing L with the S boxes 8 XORs 8

Total 34

Table 4. The number of instructions in each round on Alpha.

Operations Number of Instructions

IP 5 times (3 XORs, 2 shifts, 1 AND) 5 �9 6 -- 30

E Initial Expansion 26
16 rounds each 34 instructions 16 �9 34 = 544

Removal of expansion 4

FP Final permutation 30

Total 634

Table 5. The number of instructions in DES on Alpha.

This can speed up implementations on pipelined processors, where we can

compute several instances in parallel.

4. Unlike some (although not all) DES implementations, we implement each S

box as one table lookup, rather than combining pairs of S boxes into one

lookup. The latter is more than twice slower, since the tables become larger

than the size of the on-chip cache. ~

3.1 W D E S

We can use this fast code to design a new, even faster, and more secure cipher,

to which we call WDES. We convert the code by removing IP, FP, and changing

the EPS operations (S boxes followed by P followed by E, as used in this im-

plementation) into S boxes from 8 bits to 64 bits. These S boxes can be much

better than the original, since each S box affects all the bits of all the S boxes in

the next round (rather than one bit in only six S boxes).

WDES has 128-bit blocks, and it runs much faster than DES, with the same

number of rounds (since the blocksize is larger, and the slow initial and final

permutations are discarded): its speed is 106Mbps on the same processor as in

Table 1.

2 On Pentium, however, the latter is twice faster using the same C code.

268 Eli Biham

4 E x h a u s t i v e S e a r c h o n P o w e r f u l C o m p u t e r s a n d

N e t w o r k s

In this section we study the possibilities of exhaustive search on several kinds of

machines and networks. We assume using the fast implementation described in

the previous section.

Note that results similar to the ones described here hold also for breaking

UNIX passwords, which are chosen from up to eight printable characters. In this

case the password space has 968 passwords, while each password trial requires

25 encryptions (the salt should not be taken into account, since it is known to

the attacker, and the encryption code can be justified to the specific value of the

salt). Therefore, about 25.968 ~ 287 passwords should be tried, or about 256 in

average.

4.1 Spec ia l P u r p o s e C o m p u t e r s

We can build a special purpose computer with very long registers, without the

expensive operations (such as multiplication and floating point operations), and

only with simple instructions, such as XOR, AND, OR, NOT. Assume that in a

Pentium processor we remove the expensive operations, and use the extra chip

space to increase the size of the registers to 1000 bits. Then, we need only 150

processors to search the keys exhaustively in one year in average (or six months

in average using the attack based on the complementation property).

It is possible theoretically to build a machine with million-bit registers. Unex-

pectedly, we now know that such a machine was actually built with the support of

the NSA: Cray Computers had announced in March 1995 about such a computer

that can apply 245 bit operations every second on a million one-bit processors (see

Figure 1). This computer can compute 245 bit-operations every second, and thus
can compute about 245/16000 = 245/214 = 231 DES encryptions every second.

Therefore, we can apply the searches on this machine with the following results:

Search of Time Notes

40 bits

43 bits

47 bits

56 bits

512 sec=8.5 rain, 4.25 min in av. Exportable ciphers

4096 sec=an hour, 1/2 an hour in av. Linear Cryptanalysis

216 sec=a day, 12 hours in av. Differential Cryptanalysis

225 sec=a year, 1/2 an year in av. Full key search

Cray Computers has bankrupted, since nobody had bought this computer.

Probably the NSA had a faster machine.

A Fast New DES Implementation in Software

4.2 G e n e r a l P u r p o s e P a r a l l e l C o m p u t e r s

269

It is known that Sandia National Labs has a parallel computer of 9000 Pentium-

Pro 200MHz processors, each has two independent integer instruction units. This

parallel computer can compute about 9000.2 �9 200 �9 220 �9 32 = 247 bit operations

every second. Thus, it can compute about 247/16000 = 247/214 = 233 DES

encryptions in each second. Therefore, we can apply the searches on this machine

with the following results:

Search of Time

40 bits 128 sec=2 min, 1 min in av.

43 bits 1024 sec=17 rain, 8 min in av.

47 bits 214 sec=5 hours, 2 hours in av.

Notes

Exportable ciphers

Linear Cryptanalysis

Differential Cryptanalysis

56 bits 223 sec=3 months, 7 weeks in av. Full key search

When we apply the attack using the complementat ion property, exhaustive search

of the full key space takes in average only about three weeks.

4 . 3 I n t e r n e t a n d t h e D E S W o r m

We can use the Internet for our exhaustive search, just as RSA factorization

teams are doing, and as recently attacks against the RSA-DES/RC5 challenge

are applied. Assume that an average computer on the Internet is a single 32-bit

133MHz RISC processor (this averages slower and faster processors, as well as

processors with several integer instruction units). Such a processor can encrypt

about 218 blocks every second. Therefore,

- Searching 40 bits takes about 24~ = 221 seconds in average, which are

about three weeks on a single processor. 1000 computers can do it in about

half an hours.

- Searching 43 bits takes about six months in average, i000 computers can do

it in six hours.

- Searching 47 bits takes about 8 years in average on a single processor. 1000

computers can do it in four days, and 4000 computers can do it in one day.

- Searching all the 56 bits takes about 4000 years in average on a single pro-

cessor. 4000 computers can do it in a year (or in six months using the com-

plementation property). It is practical to have this number of computers

participating legally over the Internet: this is about the same number of com-

puters as the RSA factorizations use. Million computers can do it in two days

in average (or in one day using the complementation property).

At this point it is possible in practice to achieve participation of several

thousands computers legally over the Internet. However, it is simpler, and faster

270 Eli Biham

to do it illegally 3. A worm, for which we call the DES worm, can break into many

computers over the Internet, and use their idle cycles for exhaustive search. The

worm verifies that only one copy of it is executed on each computer (of course

on computers with several processors it can execute several copies to increase

performance). The DES worm makes sure it cannot be easily noticed: it does not

need much memory anyway, and it is executed at the lowest possible priority, so

it does not disturb other applications on the same computer.

If the DES worm can get hold of about a million computers over the Internet,

and assuming that it get at least half of their cycles (people are usually not

working over nights), the DES worm can find a key in four days in average (or in

two days using the complementation property). Moreover, since most computers

over the Internet are not used in weekends (which last over 60 hours f rom Friday

evening to Monday morning), the DES worm can use all the cycles and find a

key in one weekend.

4 .4 In the F u t u r e

In five years the average computer on the Internet is expected to be much faster:

We estimate that it will have a 500MHz 64-bit processor with two independent

integer instruction units (this averages slower and faster processors, processors

with many integer instruction units, and computers with several processors). Such

a computer is expected to be about 16 times faster (in terms of bit-operations

per second) than todays average computer. Thus, using a million computers, the

DES worm is expected to finish the whole key search in about two hours.

5 Acknowledgements

We are grateful to Adi Shamir, Ross Anderson, Kevin McCurley and the referees

for their various remarks and suggestions that improved the results and exposition

of this paper. Some of this work has been done while the author was visiting the

computer laboratory at the university of Cambridge, and in particular using their

Alpha computer. This research was supported by the fund for the promotion of

research at the Technion.

References

1. H. Feistel, Cryptography and Data Security, Scientific American, Vol. 228, No. 5,

pp. 15-23, May 1973.

3 The Author does not recommend to do it, but we should always be aware that such

a threat exists.

A Fast New DES Implementation in Software 271

2. James L. Massey, SAFER-K6~: A Byte Oriented Block Ciphering Algorithm,
proceedings of Fast Software Encryption, Cambridge, Lecture Notes in Computer

Science, pp. 1-17, 1993.

3. Ralph C. Merlde, Fast Software Encryption Functions, Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of CRYPTO'90, pp. 476-501, 1990.

4. National Bureau of Standards, Data Encryption Standard, U.S. Department of

Commerce, FIPS pub. 46, January 1977.
5. National Institute of Standard Technology, Secure Hash Standard, U.S. Department

of Commerce, FIPS pub. 180, May 1993.

6. National Institute of Standard Technology, Secure Hash Standard, U.S. Department
of Commerce, FIPS pub. 180-1, April 1995.

7. Ronald L. Rivest, The MD~ Message Digest Algorithm, Lecture Notes in Computer

Science, Advances in Cryptology, proceedings of CRYPTO'90, pp. 303-311, 1990.
8. Ronald L. Rivest, The MD5 Message Digest Algorithm, Internet Request for

Comments, RFC 1321, April 1992.

9. Michael Roe, Performence of Block Ciphers and Hash Functions - One Year Later,
proceedings of Fast Software Encryption, Leuven, Lecture Notes in Computer

Science, pp. 359-362, 1994.

10. Bruce Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in
C, second edition, John Willey & Sons, 1996.

11. Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm FEAL,

Lecture Notes in Computer Science, Advances in Cryptology, proceedings of
EUROCRYPT'87, pp. 267-278, 1987.

12. Arthur Sorkin, Lucifer, a Cryptographic Algorithm, Cryptologia, Vol. 8, No. 1,

pp. 22-41, January 1984.

272 Eli Biham

OTC 03/07 1942 CRAY COMPUTER CORP. COMPLETES INITIAL TESTING

COLORADO SPRINGS, Colo., March 7/PRNewswire/- Cray Computer Corp. (Nas-

daq: CRAY) reported today the successful test and demonstration on March 2, 1995,

of an array of 256,000 single bit processors packaged using the company's multi-chip-

module technology. This array is a major technical component of the CRAY-3/Super

Scalable System (CRAY-3/SSS) that is being joint ly developed by the company,

the National Secur i ty Agency and the Supercomputing Research Center (SRC)

which was originally announced on August 17, 1994. This test and demonstration com-

pletes the first of a number of major tasks required under the Development Contract.

Researchers from the SRC verified correctness of operation of the 256, 000 single bit

processor array (approximately 4,000 individual Integrated Circuits), which is the first

half of a 512,000 singe bit processor array called for in the development contract. This

array is coupled to a CRAY-3. The CRAY-3/SSS utilizes the Processor-In-Memory

(PIM) chips, developed by the SRC. Both NSA and SRC are providing significant

technical assistance in both the software and hardware aspects of the system.

Once completed, the high performance system will consist of a dual processor 2,048

million byte CRAY-3 and a 512,000 single bit processor Single Instruction Multiple Data

(SIMD) array with a 128 million byte memory. This CRAY-3/Super Scalable System

will provide high-performance vector parallel processing, scalable parallel processing

and the combination of both in a hybrid mode featuring extremely high bandwidth

between the PIM processor array and the CRAY-3. The current schedule for completion

of the Development Contract is the end of July 1995 including a 90 day public lnternet

access demonstration.

For suitable applications, a SIMD processor array of 1 million processors would provide

up to 32 Trillion Bit Operations per Second and price/performance unavailable today
on any other high-performance platform. The CRAY-3 system with the SSS option

will be offered as an application specific product. The joint development contract is

part of the Federal Government's High Performance Computing and Communications

program.

Charles Breckenridge, executive vice president of Marketing at Cray Computer Corp.

said, "The CRAY-3/SSS will provide unparalleled performance for many promising

applications. We are pleased to participate in this transfer of government techno-

logy, and we are eager to help potential customers explore and develop appropriate

applications."

Cray Computer Corp. is engaged in the design, development, manufacture and market-

ing of the CRAY-3, CRAY-3/SSS and CRAY-4 high- performance computer systems.

CONTACT: Charles Breckenridge, executive VP of Marketing, or Terry Willkom, pres-

ident, of Cray Computer, 719-579-6464; or David Gould of Chip Shots Inc., 408-541-

8706

Fig. 1. Cray Computer Corp. press release of March 1995.

