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Abstract—Non-negative latent factor (NLF) models can 

efficiently acquire useful knowledge from high-dimensional and 
sparse (HiDS) matrices filled with non-negative data. Single latent 
factor-dependent, non-negative and multiplicative update 
(SLF-NMU) is an efficient algorithm for building an NLF model 
on an HiDS matrix, yet it suffers slow convergence. A momentum 
method is frequently adopted to accelerate a learning algorithm, 
but it is incompatible with those implicitly adopting gradients like 
SLF-NMU. To build a fast NLF model, we propose a generalized 
momentum method compatible with SLF-NMU. With it, we 
further propose a single latent factor-dependent, non-negative, 
multiplicative and momentum-incorporated update (SLF-NM2U) 
algorithm, thereby achieving a fast non-negative latent factor 
(FNLF) model. Empirical studies on six HiDS matrices from 
industrial application indicate that an FNLF model outperforms 
an NLF model in terms of both convergence rate and prediction 
accuracy for missing data. Hence, compared with an NLF model, 
an FNLF model is more practical in industrial applications. 

Index Terms—Big Data, Latent Factor Analysis, Non-negative 
Latent Factor Model, High-dimensional and Sparse Matrix, 
Recommender System, Missing Data Estimation. 

I. INTRODUCTION

BIG DATA-RELATED application commonly involves a 
huge amount of entities, e.g., millions of users are 

involved in a social network service system [1-3]. In such an 
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application, interactions among numerous entities result in 
high-dimensional relationships. Moreover, since each entity 
cannot establish complete interactions with the others, e.g., a 
user cannot touch all items in a recommender system [4-6], 
such high dimensional relationships can be very sparse. 
High-dimensional and sparse (HiDS) matrices, where 
numerous entries are unknown rather than zeroes, are 
frequently adopted to describe such relationships [1-10]. 

Although an HiDS matrix can be extremely sparse, it 
contains plenty of knowledge describing various patterns. For 
instance, a user-item rating matrix from a recommender system 
implicitly reflects users’ preferences on items [4-6], which are 
highly useful for important knowledge acquisition tasks like 
community detection [43-49]. Great efforts have been made to 
extract such useful knowledge from an HiDS matrix, resulting 
in various big-data analysis models [1-10]. Among them, latent 
factor (LF) models are highly efficient [11-17, 50]. 

An LF model works by extracting LFs from observed data of 
an HiDS matrix. It maps the involved entities into a unique 
low-dimensional LF space, builds a cost function based on the 
target matrix’s known entries and desired LFs, and then 
minimizes this cost function with regard to these LFs. The 
obtained LFs are treated as the entity features hidden in the 
observed part of an HiDS matrix, and can be applied to various 
data analysis tasks. For instance, in a recommender system, 
they form the low-rank approximation to an HiDS matrix for 
estimating its missing data, thereby predicting users’ potential 
preferences [11-17, 50].  

As shown in prior research [11-17, 50], current LF models 
are highly efficient in both computation and storage when 
addressing an HiDS matrix. However, most of them do not 
fulfill the non-negativity constraints. Note that industrial data 
like rating data in a recommender system [4-6] and interaction 
weights in protein interactome mapping [7-9] are commonly 
defined to be non-negative. When addressing a non-negative 
HiDS matrix, it is significant to constrain desired LFs to be 
non-negative for describing its non-negative data more 
precisely [18-20]. Moreover, non-negative LFs can precisely 
describe hidden patterns like community tendency and user 
preferences [1, 3, 19, 20]. Hence, it is vital to develop LF 
models which fulfill the non-negativity constraints.  

Given a complete matrix, non-negative matrix factorization 
(NMF) models can acquire non-negative LFs from it [18-26]. 
Paatero and Tappe [22] adopt alternating least squares (ALS) to 
build an NMF model. It truncates negative LFs to be zeroes 
during the ALS-based training process to maintain their 
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non-negativity. Lee and Seung [18, 21] derive the non-negative 
and multiplicative update (NMU) algorithm, which keeps the 
negativity of desired LFs if they are initially non-negative. Lin 
[23] proposes projected gradient decent to implement an NMF
model. It also works by truncating negative LFs to be zeroes
during the training process, but adopts the gradient descent as
the learning algorithm. These models and their extensions
[21-28] well analyze a complete matrix, but cannot address an
HiDS one with numerous missing data.

For adapting existing NMF techniques to HiDS matrices, 
Zhang et al. propose a weighted NMF (WNMF) [19] model. It 
constructs an intermediate matrix by filling the unknown 
entries of the target matrix with zeroes, and then applies the 
NMU algorithm to it to obtain non-negative LFs. Xu et al. [20] 
propose a non-negative matrix completion (NMC) model, 
which adopts a full approximation to the target matrix and then 
applies projected ALS to it for non-negative LFs. These models 
can address an HiDS matrix [21-28], but are defined on its full 
approximation. As a consequence, they suffer unacceptably 
high computational and storage costs. For example, the 
MovieLens 20M matrix [42] has 20,000,263 instances 
scattering in 138,493 rows and 26,744 columns. Its data density 
is 0.54% only, but its entry count (including the unknown ones) 
is more than 3.7 billion. To manipulate its full approximation 
with so many entries is extremely expensive in both 
computation and storage. Moreover, with careful model design, 
such burden can be greatly alleviated [20, 30]. 

For performing non-negative latent factor analysis on HiDS 
matrices efficiently, Luo et al. [20, 30] propose the single latent 
factor-dependent, non-negative and multiplicative update 
(SLF-NMU) algorithm. It relies on an HiDS matrix’s known 
data only, thereby alleviating the computational and storage 
burden greatly. Based on this algorithm, they further propose a 
non-negative latent factor (NLF) model. Given an HiDS matrix, 
NLF’s computational cost is linear with its known entry count 
only, and its storage cost is linear with the sum of its user and 
item counts only [20, 30].  

In spite of its low cost in both computation and storage, 
SLF-NMU makes an NLF model suffer low-tail convergence 
[20, 30], i.e., it takes many iterations to make the model 
converge. In industrial applications, a model’s convergence 
rate is vital. Hence, how to further accelerate an NLF model 
becomes an emerging issue. 

As unveiled by prior work [31, 32], a gradient descent 
(GD)-based algorithm’s convergence rate can be significantly 
improved by a momentum method. A momentum method 
works by recording the update of involved parameters in each 
iteration, and deciding their next update by linearly combining 
the current gradient and previous update [12, 31, 32]. However, 
it is designed for algorithms explicitly depending on gradients. 
In contrast, an SLF-NMU algorithm trains non-negative LFs 
multiplicatively for keeping their non-negativity. It depends on 
gradients implicitly. Therefore, an SLF-NMU algorithm is 
incompatible with a standard momentum method. 

Is it possible to accelerate an SLF-NMU algorithm by 
incorporating momentum effects into it, thereby achieving a 
fast non-negative latent factor (FNLF) model? To answer this 

question, this work proposes a generalized momentum method, 
which keeps the principle of a standard momentum method but 
implicitly depends on gradients. Based on this generalized 
momentum method, we propose a single latent 
factor-dependent, non-negative, multiplicative and 
momentum-incorporated update (SLF-NM2U) algorithm. With 
it, we further achieve an FNLF model for HiDS matrices. The 
main contributions of this paper include: 
a) A generalized momentum method which is compatible with
learning algorithms implicitly depending on gradients;
b) An FNLF model, which applies a generalized momentum
method with an NLF model to achieve better performance; and
c) Algorithm design and analysis for an FNLF model.
For validating the performance of an FNLF model, we have
conducted empirical studies on six HiDS matrices generated by
real applications. To the authors’ best knowledge, such efforts
have been never seen in any previous work.

The rest of this paper is organized as follows. Section II gives 
the preliminaries. Section III presents our methods. Section IV 
gives the experimental results. Section V discusses some 
related issues. Finally, Section VI concludes this paper. 

II. PRELIMINARIES

A. Problem Formulation

An HiDS matrix describes certain relationships among
entities involved in big data-related application, which is 
defined as follows: 
Definition 1: Let M and N be two large entity sets; R|M|×|N| be a 
matrix whose entry tm,n  describes certain relationship between 
m∈M and n∈N; Ʌ and Γ be known and unknown entry sets of R; 
R is an HiDS matrix if |Ʌ|≪|Γ|.  
An LF model tries to build a low-rank approximation to an 
HiDS matrix. Given R, it is defined as follows: 
Definition 2. Given R and Ʌ, an LF model builds R’s rank-d 
approximation R̂=PQT, where P|M|×d and Q|N|×d are LF matrices 
and d≪min{|M|, |N|}. 

Note that P and Q are defined as the LF matrices reflecting 
characteristics of M and N represented by Ʌ, and d is the 
dimension of the LF space. To obtain P and Q, an objective 
function is designed to measure the difference between R and R̂ 
with respect to Ʌ only. With the Euclidean distance, such an 
objective function is formulated by [20, 30]: 
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Meanwhile, LF analysis on an HiDS matrix is ill-posed [11-17, 
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D. Summery

An NLF model extracts non-negative LFs from an HiDS
matrix via SLF-NMU, which is actually implemented by 
manipulating the learning rates in a GD algorithm to obtain the 
multiplicative update rules (6). On the other hand, a momentum 
method combines the current gradient and latest update 
velocity vector to accelerate a GD algorithm. Intuitively, we 
expect to accelerate an NLF model’s training process via 
incorporating the momentum method into an SLF-NMU 
algorithm. Nonetheless, as shown in (6), the SLF-NMU-based 
learning rules in an NLF model depend on gradients implicitly, 
while momentum-incorporated learning rules (8) explicitly rely 
on the gradients of decision parameters in each iteration. Hence, 
we need to generalize the standard momentum method, making 
it depend on the decision parameters’ update increments rather 
than their gradients, thus compatible with an NLF model. Next 
we present our method. 

III. FAST NON-NEGATIVE LATENT FACTOR MODEL

A. Generalized Momentum Method

A standard momentum method is designed for a GD
algorithm [31, 32] which adopts gradients explicitly as in (8). 
However, from (8) we see that the parameter update in a 
momentum-incorporated GD algorithm naturally consists of 
the following components: 
a) Initial state of decision parameters, i.e., θt-1 in (8);
b) Update increment by the adopted algorithm. In (8), the
update increment by GD is η∇θJ(θ); and
c) Velocity momentum by the latest velocity, i.e., γvt-1 in (8).

Actually, in an algorithm implicitly depending on gradients,
we can also calculate the update increment by the adopted 
algorithm. Let θ't denote the expected state of the decision 
parameter on the adopted algorithm after the tth iteration, then 
we calculate the update increment as follows: 

1.t t t                                          (9) 
By replacing the gradient-dependent term in (8) with the 
parameter update (9), we obtain a generalized form of the 
update velocity vector in the tth iteration: 

 1 1 1 .t t t t t tv v v                             (10) 
For verifying (10), with GD as the optimization algorithm we 
have the following inferences: 
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where we see the equivalence of the velocity update rules in (8) 
and (10). Thus, by combining (8) and (10), we achieve a 
generalized momentum method: 
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By comparing (12) and (8), we see the main difference 
between a generalized momentum method and a standard one: a 
standard momentum method explicitly adopt the gradient of the 

objective function with respect to the decision parameter, while 
a generalized momentum method relies on the latest status of 
the decision parameter and the expected state of the decision 
parameter relying on an adopted learning algorithm. Hence, a 
generalized momentum method is compatible with an NLF 
model in the following aspects: 
a) As shown in (6), NLF adopts SLF-NMU as the learning
algorithm, which depends on gradients implicitly. With it, the
update increment of decision parameters can still be achieved.
Hence, we can deduce the expression for the velocity update in
(12) based on SLF-NMU, making the generalized momentum
method compatible with an NLF model; and
b) As shown in (6), SLF-NMU is also a gradient-dependent
learning algorithm: it adopts carefully-chosen learning rates to
achieve the multiplicative update. Consequently, it still suffers
ravine traps. By applying the generalized momentum method to
it, we can probably improve its convergence rate and prediction
accuracy for missing data by adjusting its learning direction
during the optimization process, following the principle of a
momentum method given in Section II(C).

B. SLF-NM2U Algorithm

By combining Sections II(A-B), we design the SLF-NM2U
algorithm. Let Pt-1 and Qt-1 denote the status of P and Q after the 
(t-1)th iteration, and P't and Q't denote the status after the tth 
iteration with SLF-NMU, respectively. Thus, we write the 
training process of the tth iteration as follows, 

   
SLF-NMU

1 1
,

, = arg min , .t t t t
P Q

P Q P Q        (13) 

Then the update caused by SLF-NMU is computed as: 
1

1

.t t

t

t t

P P

Q Q





   
        

     (14) 

On the other hand, based on (10) and (12), we calculate v1, i.e., 
the update velocity vector for the first iteration as: 

01
1 0 1

1 0

,
PP

v v
Q Q


   

           
     (15) 

where P0 and Q0 denote the initial state of P and Q. As shown in 
prior work [20, 30], P0 and Q0 are random and non-negative 
initial guesses for P and Q, which are generated before the first 
iteration. By combining (12) and (15), we achieve the 
expression of the update rule for P1 and Q1: 

0 0 01 1 1
1

1 0 0 1 0 1

.
P P PP P P

v
Q Q Q Q Q Q

           
                          

   (16) 

By substituting (16) into (15), we see that 
0 01 1

1
1 0 1 0

,
P PP P

v
Q Q Q Q

       
                 

     (17) 

which is consistent with the third equation in (12). Afterwards, 
considering the second iteration, we have: 

   
SLF-NMU

2 1
2 2 1 1 2

, 2 1

, = arg min , ,
P Q

P P
P Q P Q

Q Q


   
           

   (18) 

where P'2 and Q'2 denote the states of P and Q after the second 
iteration with SLF-NMU. By combining (12), (16) and (18), we 
achieve the update velocity vector v2 for the second iteration: 
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01 2 1
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  (19) 

By analogy, the update rules for the third~tth iterations with 
SLF-NM2U is similar to (19). Hence, with (16) and (18), we 
arrive at the following training scheme: 
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Note that with SLF-NMU, the parameter update should be 
taken with respect to each LF. Thus, by combining (6) and (20), 
we obtain the following update rule: 
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Velocity terms , ,
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 in (21) can 

become negative since we cannot guarantee that each LF is 
non-decreasing during the training process. For keeping 
resultant LFs non-negative, we truncate these velocity terms to 
zeroes once they become negative, resulting in the following 
training scheme: 
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(22) 
Based on (22), we achieve the SLF-NM2U algorithm. 

C. Incorporation of Linear Biases

As indicated in prior research [30], to incorporate linear
biases into an NLF model can make it achieve a stable training 
process as well as high prediction accuracy for missing data of 
an HiDS matrix [30]. Considering objective (3), with linear 
biases B|M| for M and C|N| for N, we reformulate it as follows: 

 

 

 
,

, , ,

2 2 2 2 2
, , , ,

1 1

, ,

arg min , , ,

1 ˆ ,
2

. . , , 1, 2,..., :
  0,  0, 0 0;

m n

B C P Q

d d

m n m n B m C n P m k Q n k

r k k

m n m k n k

B C P Q

r r b c p q

s t m M n N k d

b c p q

　

，



   
  

       
 

   

   

  

(23) 
where the approximation r̂m,n to each rm,n∈Λ is given by: 
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Based on the inferences shown in (13)~(20), we achieve the 
momentum-incorporated raining scheme for B, C, P and Q as: 
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Then based on (6), (22) and (25), we achieve the SLF-NM2U 
algorithm for a fast and biased non-negative latent factor 
(FBNLF) model. Its update rules are highly close to that of an 
FNLF given in (22), but is expanded with the update rules for 
linear biases in B and C. 

D. Algorithm Design and Analysis

From the previous sections, we design the Algorithm FNLF.
As shown in Algorithm FNLF, we adopt several auxiliary 
matrices for a) caching the training increment, and b) caching 
the intermediate results for computing the momentum effects. 
For instance, we adopt four auxiliary matrices, i.e., PU, PD, PO 

and PT for P. Among them, a) PU and PD cache the learning 
increment on each instance rm,n∈Λ, making the algorithm able 
to record the training increments on all involved LFs within a 
single traverse on Λ; and b) PO and PT cache the intermediate 
states of P in the (t-1)th and (t-2)th iterations, for helping the 
algorithm computing the momentum effects correctly. Similar 
settings are applied to B, C and Q. Hence, the storage cost of 
Algorithm FNLF relies on Λ, M, N, B, C, P and Q, along with 
the auxiliary arrays. Their costs sum up to: 

( ) ( )5 6 .FNLFS M N d M N= L + ´ + ´ + ´ +   (26) 
From (26), we see that the storage cost of FNLF is linear with 
the known entry count in R and number of involved entities. For 
industrial applications, such storage burden is easy to resolve. 

Based on Algorithm FNLF, we summarize FNLF’s 
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computational cost as follows, 
( )( ) ( ).FNLFT n M N d n d n d=Q ⋅ + ⋅ + ⋅ L ⋅ »Q ⋅ L ⋅     (27) 

Algorithm FNLF 
Input: M, N, Λ, f, γ,  
Operation Cost 
initialize P|M|×d, PU|M|×d, PD|M|×d, PO|M|×d=PT|M|×d=P, λP Θ(|M|×d) 
initialize Q|N|×d, QU|N|×d, QD|N|×d, QO|N|×d=QT|N|×d=Q, λQ Θ(|N|×d) 
initialize t = 0, Max-training-round = n  Θ(1) 
if biased then - 

initialize B|M|, BU|M|, BD|M|, BO|M|=BT|M|=B, λB Θ(|M|) 
initialize C|N|, CU|N|, CD|N|, CO|N|=CT|N|=C, λC Θ(|N|) 

end if - 
while not converge and t≤n do  ×t 

reset PU=0, PD=0, QU=0, QD=0 Θ((|M|+|N|)×d) 
if biased then -

reset BU=0, BD=0, CU=0, CD=0 Θ(|M|+|N|) 
end if - 

/-Recording train increment-/ 
for each rm,n in Λ ×|Λ| 

, , ,
1

ˆ
d

m n m k n k

k

r p q


 Θ(d) 

if biased then - 
, ,ˆ ˆ +m n m n m nr r b c  Θ(1) 

end if - 
for k=1 to d ×d 

, , , ,m k m k n k m npu pu q r  Θ(1) 

, , , , ,ˆ
m k m k n k m n P m kpd pd q r p   Θ(1) 

, , , ,n k n k m k m nqu qu p r  Θ(1) 

, , , , ,ˆ
n k n k m k m n Q n kqd qd p r q   Θ(1) 

end for -
if biased then - 

,m m m nbu bu r  Θ(1) 
,ˆ

m m m n B mbd bd r b   Θ(1) 
,n n m ncu cu r  Θ(1) 
,ˆ

n n m n C ncd cd r c   Θ(1) 
end if - 

end for -
/-Updating-/ 

for m∈M ×|U| 
if biased then - 

bm=bm⸱(bum/bdm)+max{0, γ⸱(bom-btm)} Θ(1) 
end if - 
for k=1 to d ×f 

pm,k=pm,k⸱(pum,k/pdm,k)+max{0, γ⸱(pom,k-ptm,k)} Θ(1) 
end for -

end for -
for n∈N ×|I| 

if biased then - 
cn=cn⸱(cun/cdn)+max{0, γ⸱(con-ctn)} Θ(1) 

end if - 
for k=1 to d ×f 

qn,k=qn,k⸱(qun,k/qdn,k)+max{0, γ⸱(qon,k-qtn,k)} Θ(1) 
end for  - 

end for -
/-Recording state of current LFs for momentum-/ 

PT= PO, PO=P, QT=QO, QO=Q Θ((|M|+|N|)×d) 
if biased then - 

BT= BO, BO=B, CT=CO, CO=C Θ((|M|+|N|)) 
end if - 
t=t+1 Θ(1) 

end while -
Output P, Q for FNLF 

B, C, P, Q for FBNLF 

Note that (27) adopts the condition |Λ|≫max{|M|,|N|} to drop 
the lower-order-terms, which is constantly fulfilled in industrial 
applications. Since both n and d are positive constants in 
practice, the computational cost of FNLF is linear with |Λ|.  

Based on the above inferences, we see that Algorithm FNLF 
is highly efficient in both computation and storage. Next we 
validate the performance of FNLF and FBNLF on HiDS 
matrices generated by industrial applications.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. General Settings

Evaluation Protocol. For industrial applications, one major
motivation to analyze an HiDS matrix is for missing data 
estimation, owing to the great desire for discovering the full 
connections among involved entities [1-9]. Hence, we adopt it 
as the evaluation protocol, where a tested model’s prediction 
accuracy for missing data of an HiDS matrix is concerned. It 
can be measured by root mean squared error (RMSE) [11-17, 
20, 30, 37]: 

( )
,

2
, ,ˆ  | |,

u v

u v u v

r

RMSE r r
ÎG

æ ö÷ç ÷ç= - G÷ç ÷ç ÷çè ø
å        (28) 

where Γ denotes the validation set and is disjoint with Λ, r̂u,v 
denotes the estimated value generated by the tested model 
corresponding to the instance ru,v∈Γ, and |∙| calculates the 
cardinality of a given set, respectively 

Meanwhile, we are also interested in the computational cost 
of each tested model. We have recorded their converging 
iteration count and time cost per iteration. All experiments are 
conducted on a Tablet with a 2.6 GHz i7 CPU and 16 GB RAM, 
and implemented in JAVA SE 7U60. 

Datasets. Six HiDS matrices are adopted in our experiments. 
Note that for validating the feasibility of the FNLF model in 
addressing big data from real applications, all of them are real 
datasets collected by industrial companies. Their details are 
summarized in Table I.  

TABLE I 
DETAILS OF EXPERIMENTAL DATASETS 

No. Name |Λ|+|Γ| |M| |N| Source 
D1 ML20M 20,000,263 138,493 26,744 MovieLens [42] 
D2 Flixter 8,196,077 147,612 48,794 Flixter [38] 
D3 Douban 16,830,839 129,490 58,541 Douban [40] 
D4 EM 2,811,718 72,916 1,628 EachMovie 
D5 Dating 17,359,346 135,359 168,791 LibimSeTi [41] 
D6 NetFlix 54,782,019 478,350 10,000 NetFlix [11-13] 

As shown in Table I, all datasets are a) high-dimensional, b) 
extremely sparse, and c) collected by industrial applications in 
use. Hence, results on them are highly representative.  

The known entry set of each HiDS matrix is randomly split 
into five equally-sized, disjoint subsets. In all experiments, we 
adopt the 80%-20% train-test settings and five-fold 
cross-validations, i.e., each time we select four subsets as the 
training set Λ to train a model predicting the remaining one 
subset as the testing set Γ. This process is sequentially repeated 
for five times to obtain the final results. The training process of 
a tested model terminates if a) the number of consumed 
iterations reaches a preset threshold, i.e., 1000, and b) the 
model converges, i.e., the error difference between two 
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As shown in Fig. 7, all LFs extracted by M1-M4 on D2 are 
scattering in the non-negative real field. Hence, SLF-NM2U 
guarantees the non-negativity of output LFs.  

TABLE IV 
LOWEST RMSE OF M1-M4 ON D1-D6 

Dataset. M1 M2 M3 M4 
D1 0.7820 0.7808 0.7847 0.7823 
D2 0.9058 0.9044 0.8827 0.8812 
D3 0.7151 0.7139 0.7102 0.7084 
D4 0.2271 0.2267 0.2298 0.2278 
D5 1.878 1.853 1.841 1.831 
D6 0.8333 0.8314 0.8366 0.8344 

TABLE V 
TIME COST PER ITERATION OF M1-M4 ON D1-D6 (MILLISECONDS) 

Dataset. M1 M2 M3 M4
D1 1,701 1,804 1,892 1,987
D2 657 782 772 826
D3 1,597 1,741 1,679 1,855
D4 226 237 257 269
D5 3,127 3,285 3,879 4,115
D6 94,107 99,261 108,009 113,035

D. Summary

Based on the experimental results, we summarize that by
incorporating the momentum effects into the training process, 
an FNLF/FBNLF model outperforms an NLF/BNLF model in 
both convergence rate and prediction accuracy for missing data 
of an HiDS matrix. However, their performance relies on hyper 
parameters λ and γ, which should be chosen with care. In 
general, the optimal values of γ on different datasets scatter 
around 1.0, which is quite stable. So we can adopt such 
empirical values in practice. However, like in an NLF/BNLF 
model, optimal value of λ in an FNLF/FBNLF model varies 
significantly on different datasets. How to make λ self-adaptive 
remains an open issue. We plan to address it in the future. 

V. DISCUSSIONS

A generalized momentum method. A standard momentum 
method is initially designed for a learning algorithm explicitly 
depending on gradients. It is inapplicable to learning algorithms 
implicitly depending on gradients, like an SLF-NMU algorithm 
for NLF models. In contrast, the proposed generalized 
momentum method calculates the components of ‘current 
update’ in an iteration via subtracting the initial state of the 
parameters from their expected state by the adopted algorithm. 
With it, we successfully integrate the momentum effects into 
SLF-NMU. In this work we empirically validated the effects by 
a generalized momentum method in non-negative LF analysis 
on HiDS matrices. However, it would be highly significantly to 
show its soundness by rigorously theoretical study. We plan to 
investigate this issue in the future. 

Effects of momentum terms in FNLF/FBNLF. As shown 
in Section IV, the momentum effects in an FNLF/FBNLF 
model are significant. Compared with the original NLF/BNLF 
model, an FNLF/FBNLF model converges much faster with 
higher prediction accuracy for missing data of an HiDS matrix. 
Note that the momentum method works by making the 
searching process navigate across ravines, as shown in Fig. 1. 
Hence, it turns out that the original SLF-NMU algorithm can be 

easily affected by encountered ravines, but an SLF-NM2U 
algorithm is less sensitive to them. It makes an FNLF/FBNLF 
model achieve better local optima with much higher 
convergence rate. 

As indicated by prior research, LBs in an LF model can be 
extended in various aspects [51, 52]. Deep learning-based 
approaches [53, 54] are also becoming increasingly attractive in 
LF analysis. Moreover, Hessian-free optimization based LF 
analysis is also highly efficient [6]. It would be interesting to 
validate the compatibility between the principle of this work 
and these recent techniques. 

VI. CONCLUSIONS

A non-negative latent factor (NLF) model adopts the single 
latent factor-dependent, non-negative and multiplicative update 
(SLF-NMU) as the learning algorithm. It suffers slow 
convergence on high-dimensional and sparse (HiDS) matrices. 
Meanwhile, due to its implicit dependence on gradients, it is 
incompatible with a standard momentum method, which proves 
to be highly effective in accelerating a learning algorithm 
explicitly depending on gradients. 

We firstly design a generalized momentum method 
compatible with learning algorithms implicitly depending on 
gradients. We subsequently apply it to the SLF-NMU algorithm, 
thereby achieving a single latent factor-dependent, 
non-negative, multiplicative and momentum-incorporated 
update (SLF-NM2U) algorithm. With it, we further propose the 
fast non-negative latent factor (FNLF) model and its biased 
version, along with careful algorithm design and analysis. 
Empirical studies show that an FNLF model outperforms an 
NLF model in terms of both convergence rate and prediction 
accuracy for missing data. Hence, it is highly useful for 
industrial applications desiring highly efficient, accurate and 
non-negative latent factor analysis. 
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