
ED&TC ’96
0-89791-821/96 $5.00  1996 IEEE

A Fast Optimal Robust Path Delay Fault Testable Adder

Bernd Becker1 Rolf Drechsler1 Rolf Krieger2 Sudhakar M. Reddy3�

1Institute of Computer Science 2Department of Computer Science 3Department of ECE

Albert-Ludwigs-University Johann Wolfgang Goethe-University University of Iowa

79110 Freiburg i.Br., Germany 60054 Frankfurt a.M., Germany Iowa City, IA 52242, USA

Abstract

In this paper we explore the test complexity of the

adder function with respect to the robust path delay

fault model. A lower bound of
(n2) for the cardi-

nality of a complete test set for a combinational n-bit

adder is proven. This result is valid for any adder de-

sign known until now. In addition we present a fast

O(
p
n)-time adder that is fully robust path delay fault

testable with a test set of size �(n2).

1 Introduction

Even if chips are correctly designed, a non negligi-

ble fraction of them will have physical defects caused

by imperfections occurring during the manufacturing

process (e.g., open connections induced by dust par-

ticles). Therefore, there has to be a test phase in

which `production' veri�cation is performed, i.e., in

which the `good' chips are sorted from the `bad' ones.

For a detailed treatment of the topic see [2]. Due to

the variety of possible defects restrictions on a subset

of the possible faults are necessary; these simplifying

assumptions based on experience of many years are

manifested in fault models. Since tests are generated

to test for the fault mechanisms described by the as-

sumptions, the reliability of the chip is at least par-

tially determined by the accuracy and e�ectiveness of

the fault model (measured, e.g., in detected physical

failures). However, it has been observed by many au-

thors that a large amount of defects typical of today's

VLSI technologies are not covered by static fault mod-

els, like the stuck-at [12] or cellular fault model [7].

In many cases dynamic fault models which allow to

model stuck-open faults or timing issues are neces-

sary [16, 19, 23]. Therefore in this paper we consider

the Robust Path Delay Fault Model (RPDFM) as in-

troduced in [19]. The RPDFM is a very powerful fault

model whose objective is to check the propagation de-

lay of every path in the circuit. It has already been

*This author has been supported by a von Humboldt Foun-

dations Senior Research Fellowship.

observed in [18] that delay fault coverage is quite poor

for many combinational circuits and thus many paths

are not robust path delay fault testable. In [14, 8] it

was shown that not all possible path delay faults of

a circuit have to be tested to ascertain correct timing

behavior and methods to approximate sets of Robust

Dependent (RD) paths, that need not to be considered

for testing, were given [20, 14].

In order to reduce the test costs, testability is-

sues have to be considered from the very beginning

of the design process to guarantee the testability

of the circuit at the end of the manufacturing pro-

cess. This requires a detailed analysis of the rela-

tion between structural properties of the circuit design

and testability properties. Several successful steps in

this direction can be observed: Relevant subclasses

of circuits, which, due to their structural proper-

ties, allow to generate complete and small test sets

e�ciently. Typical examples of classes which have

been successfully treated by this method are PLAs,

memories, arithmetical units and tree-like structures,

e.g. [1, 6, 5, 9, 21, 22].

Over the years various VLSI designs for fast ad-

dition have been proposed [21, 22]. The delays of

the adders presented are optimal from the asymp-

totic point of view. In [3, 4] the testability of adders

based on the Conditional Carry principle or the Con-

ditional Sum principle are investigated. Especially,

it was shown that these time-optimal adders have a

complete test set of size �(n2 � log(n)) with respect

to RPDFM where n denotes the size of the operands.

On the contrary in [11] it was shown that the standard

design of a Carry Ripple Adder has a complete test set

of size O(n2). Therefore two questions arise:

1. Is there any fast adder having test complexity

O(n2)?

2. Is O(n2) optimal for the test complexity of the

adder function?

To answer the �rst question we show that the Carry

Select Adder (CSA), whose run time is bounded by

O(
p
n), can be tested by O(n2) patterns. Moreover

we show that any realization of the adder function

with Immediate Operand Reconvergence (IOR) has a

test complexity of
(n2). IOR is a very reasonable

property ful�lled by all adder designs known until now.

This answers the second question and shows that the

test complexity of the carry select adder is optimal.

The paper is structured as follows: We start with

some preliminaries in Section 2. The CSA is described

in Subsection 2.1. Subsection 2.2 provides an intro-

duction to the RPDFM. The testability of the CSA

is examined in Section 3. We show that the CSA is

completely testable with respect to the RPDFM in-

dependent of the word size. In Section 4 we prove a

tight lower bound for the test size of any adder with

respect to the RPDFM. The proof on testability is in-

dependent of the real structure of the adder up to the

fact that IOR is required. We end with a discussion

of the results in Section 5.

2 Preliminaries

2.1 The Carry Select Adder

We start with a description of the Carry Select
Adder (CSA). Let a, b and s be three binary numbers

with

a =

n�1X
i=0

ai2
i

b =

n�1X
i=0

bi2
i

s =

nX
i=0

si2
i

where s is the sum of a and b. The relation between

the sum s and the operands a and b can be described

by the following equations:

ci =

�
0 if i = 0

aibi _ aici�1 _ bici�1 otherwise

for i; 0 � i � n� 1, and

si = ai � bi � ci�1

for i; 0 � i � n. The bit ci, 0 � i � n � 1, is called

carry bit.

The overall structure of an adder is shown in Figure

1. The primary input to which the input bit ai (bi) is

assigned is denoted by Ai (Bi), 0 � i � n � 1. The

primary output at which the sum bit si is computed

is denoted by Si, 0 � i � n. The n-bit CSA is split

up into k ni-bit adders ADDni
, so that

n =

kX
i=1

ni:

ADDER

� � � B0A0Bn�1An�1

S0Sn

Figure 1: Structure of an adder

The choice of k and the size of the ni's, 1 �
i � k, determine the structure of the adder. The

computation scheme is shown in Figure 2. In

the sequel we describe the structure of an ni-bit

adder ADDni
, 1 � i � k. Thereby, we assume

that pi =
P

i�1

l=1
nl. The adder ADDni

receives

(api+ni�1; bpi+ni�1; . . . ; api ; bpi) and cpi�1 as inputs

and computes the sum bits (spi+ni�1; . . . ; spi) and the

carry bit cpi+ni�1 as output. ADDni
is realized using

a Carry Ripple Stage (CRS), that is de�ned next. The

basic component of a CRS is a Full Adder (FA) that

adds three bits aj, bj and cj�1 and computes the sum

bit sj and the carry bit cj according to

sj = aj � bj � cj�1 cj = ajbj _ ajcj�1 _ bjcj�1:

Figure 3 depicts an implementation of a FA based on

AND, OR and NOT gates. It will be proved later

that this implementation is fully testable using the

RPDFM. Based on the FA we construct a Full Adder
Circuit (FAC) that is used to de�ne the CRS. The FAC
consists of two FAs and a multiplexer that selects the

correct result dependent on the carry of the less sig-

ni�cant positions cpi�1 as shown in Figure 4. The up-

per FA (FAu) computes sj under the assumption that

cpi�1 is 1. The lower FA (FAl) computes sj under the

assumption that cpi�1 is 0. Using this de�nition it is

possible to combine several FACs. If we connect the

rightmost upper (lower) carry input Cpi�1;1 (Cpi�1;0)

to constant 1 (0), the linear composition of ni such

cells realize a CRS. At the leftmost position an addi-

tional cell is needed to select the correct carry value

dependent on the value of cpi�1. Therefore we use the

Carry Cell (CC) shown in Figure 5. This cell is func-

tionally equivalent to a multiplexer, since the value

(0; 1) cannot be applied to the northern inputs of the

cell. A multiplexer is not used because of the redun-

dant value (0; 1) at the northern inputs the multiplexer

is not fully testable [4].

By the construction described above we obtain the

ADDnk
ADDn2

ADDn1

r r

Figure 2: Computation scheme of the CSA

� 1

� 1

c

&

� 1

� 1

c

&

� 1

&

FA

q

q q

q

q

qq

Aj Bj

Cj�1Cj

Sj

1 2

4

3 7 6

5 8

Figure 3: Realization of an FA

� 1

&&

FAu

FAl

FAC

c

q q

Aj Bj

Sj

Cj�1;1

Cj�1;0

Cpi�1;in

Cj;1

Cj;0

Cpi�1;out

Figure 4: Realization of the FAC

� 1

&

Cpi+ni�1;1Cpi+ni�1;0

Cpi�1;in

Cpi+ni�1

Figure 5: Realization of the CC

circuit in Figure 6 consisting of one CC and ni FACs.

As mentioned before this circuit is called a carry ripple

stage. If we cascade k carry ripple stages of bit length

ni, 0 � i � k, we obtain the n-bit CSA.

The choice of k determines the structure and as a

consequence the runtime of adder. If we choose k =

O(
p
n) and ni = O(

p
n) for all i we obtain an n-bit

adder of runtime O(
p
n).

2.2 The Robust Path Delay Fault Model

The fault model adopted in this paper is the Path
Delay Fault Model (PDFM) [19]. In this model it is

checked whether the propagation delays of all paths in

a given combinational circuit are less than the system

clock interval.

A CSA can be viewed as a directed acyclic graph

whose vertices correspond to the gates (AND, OR,
NOT) and primary inputs and outputs. The edges

correspond to the leads. A (pyhsical) path � is then

given by an alternating sequence of nodes and edges

(v0; e0; v1; . . . ; vn; en+1; vn+1) starting at a PI v0 and

ending at a PO vn+1. Inputs of nodes on the path

where no edge ei of the path ends are called side in-
puts.

As usual in delay fault test generation we will as-

sociate two logical paths with each physical path. A

CC

FAC FAC FAC

� � �
� � �

� � �

1

0

� � �

SpiSpi+ni�2Spi+ni�1

Cpi�1

Api
Bpi

Bpi+ni�2Api+ni�2Api+ni�1Bpi+ni�1

Cpi+ni�1

Figure 6: Realization of the CRS

logical path is given as a tuple (�; t) with t being a

transition at the PI v0 of �. A transition (0 ! 1 =

rising or 1 ! 0 = fal ling) propagates along �, if a se-
quence of transitions t0; t1; . . . ; tn+1 occur at the nodes

v0; v1; . . . ; vn+1, such that ti occurs as a result of ti�1.

� has a Path Delay Fault (PDF), if the actual propa-
gation delay of a (rising or falling) transition along �

exceeds the system clock interval. For the detection of

such a fault a pair of patterns (I1; I2) is required rather

than a single pattern as in case of static faults: The

initialization vector I1 is applied and all signals of the

circuit C are allowed to stabilize; then the propagation
vector I2 is applied and after the system clock interval

the outputs of C are controlled. A two-pattern test is

called a robust test for a PDF on �, if it detects that

fault independently of all other delays in the circuit

and all other delay faults not located on �. For de-

tailed classi�cation of PDFs see [15, 17]. In this paper

we focus our attention on the robust testing of PDFs.

If each path of C is robustly testable, C is called fully
testable with respect to the RPDFM.

It has already been observed in [18] that delay fault

coverage is quite poor for many combinational circuits

and thus many paths are not robust path delay fault

testable. In [14, 8] it was shown that not all possi-

ble path delay faults of a circuit have to be tested

to ascertain correct timing behavior and methods to

approximate a set of Robust Dependent (RD) paths,

that need not to be considered for testing, were given

[20, 14]. A set of robust tests is called a complete
RPDF test set for a circuit, if it contains a robust test
for a set of paths, that guarantees the correct timing

of the whole circuit. That is, all paths that are not

RD are robust testable by a complete RPDF test set.

3 Test Complexity of the Carry Select

Adder

In this section we prove an upper bound for the

complexity of a complete RPDF test set for a CSA.

The bound is valid for any CSA independent of the

choice of k and ni, 0 � i � k. We also show that each

CSA can be made fully testable with respect to the

RPDFM by a slight modi�cation of the upper FAs in

each FAC.

The proof will be done by constructing tests (I1; I2)

which ful�ll the following property: (I1; I2) sets all

side inputs to the non controlling values on applica-

tion of I1, that remain stable during application of I2,

i.e., the values on the side inputs are not subjected to

hazards or races.

First, we prove the testability of the FA and of the

FAC (see Subsection 2.1) which are basic components

of a CSA.

Lemma 1 The FA as shown in Figure 3 is fully

testable with respect to the RPDFM. The test set con-

sists of 15 patterns given in Table 1.

Proof: The proof is given by generating the test pat-

terns. In doing so we look at each path seperately. In

Table 1 a complete test set is enumerated. The paths

are described by the input variable and a sequence of

numbers corresponding to the labels at the basic cells

as shown in Figure 3 where the path to be tested runs

through. The value 0=1 describes the transition at the

input to be tested. Each row in the table describes a

paths aj bj cj�1 sj cj

Aj ,1,4,6,8 0/1 1 1 0/1 1

Aj ,1,4,7,8 0/1 1 0 1/0 0/1

Aj ,2,4,6,8 0/1 0 1 1/0 0/1

Aj ,2,4,7,8 0/1 0 0 0/1 0

Aj ,1,5 0/1 1 0 1/0 0/1

Aj ,2,3,5 0/1 0 1 1/0 0/1

Bj ,1,4,6,8 1 0/1 1 0/1 1

Bj ,1,4,7,8 1 0/1 0 1/0 0/1

Bj ,2,4,6,8 0 0/1 1 1/0 0/1

Bj ,2,4,7,8 0 0/1 0 0/1 0

Bj ,1,5 1 0/1 0 1/0 0/1

Bj ,2,3,5 0 0/1 1 1/0 0/1

Cj�1,6,8 1 1 0/1 0/1 1

Cj�1,7,8 1 0 0/1 1/0 0/1

Cj�1,3,5 1 0 0/1 1/0 0/1

Table 1: Complete test set for the FA

test pattern consisting of two test vectors for exactly

one path in the circuit. 2

Lemma 2 The FAC described is fully testable by 2 �
15 = 30 patterns with respect to the RPDFM.

Proof: The proof uses the result of Lemma 1. The

FAC consists of two FAs and a multiplexer whose se-

lect input is controlled by a less signi�cant ripple stage.

Thus the select input can be directly controlled inde-

pendent of the inputs to be tested. Since the paths

cannot branch out in the multiplexer each FA is tested

by 15 test patterns. The select input itself is tested

by two patterns. 2

We now consider the paths running through several

FACs. Special attention will be required for paths

running from from a PI Ai (Bi) through gates 1 and

5 of the upper FA (see Figures 3 and 4) across at least

one CC cell to a PO Sj (j > i). We call these paths

Upper CC paths (UCC paths).

The following lemma proves the most important

property for the upper bound.

Lemma 3 All logical paths from an arbitrary input

to an arbitrary output, that are not UCC paths with a

rising transition, can be tested by a test set of constant

size.

Proof: We assume w.l.o.g. that the input Ai is the

input to be tested. For the output Si the assertion

holds by Lemma 2. Thus, we only have to examine

the outputs Sj , i + 1 � j � n. It follows easily from

the construction of the adder that the pyhsical paths

from Ai to Sj can only branch out at bit position i

or bit position j. Thus, the number of logical paths

from Ai to Sj can be bounded by a constant. The

construction of the tests for all paths except the UCC

paths (with rising transition) now is straightforward.

2

We now consider the rising transition on UCC

paths. Let � be a UCC path � from Ai to Sj , j > i.

To test a rising transition it is necessary to apply 1 to

Bi. This directly leads to the propagation of a rising

transition also in the lower FA of bit postion i. A test

for a rising transition on � then simultaneously prop-

agates a rising transition also through the lower FAs.

Both paths meet at the OR gate of the carry cell CC.

Thus, a rising transition on � is not robustly testable.

On the other hand, the propagation of a rising tran-

sition within the given clock interval is guaranteed,

as long as the path through the lower FAs is robustly

testable. We conclude that the logical path with rising

transition on � is RD.

Lemma 4 A test set containing robust tests for all

paths except the rising transition on UCC paths is a

complete RPDF test set for the CSA of Figure 2.

From Lemmas 1 through 4 we obtain an upper

bound for the size of a complete RPDF test set for

a CSA. (Notice that the upper bound is independent

of the real structure of the adder, i.e., the choice of k.)

Theorem 1 The CSA is completely RPDF testable

by a test set of size O(n2).

Proof: The number of test patterns from one input

to all outputs is bounded by O(n) using Lemma 3.

Since the adder has 2 � n inputs O(n2) clearly is an

upper bound for the size of the complete test set. 2

Next, we point out, that full RPDF testability of

the CSA can be obtained by a slight modi�cation of

the upper FA in each FAC. Similar to the methods

proposed in [3], all UCC paths can be isolated by du-

plication of gates, such that no Sj 's are reachable be-

fore a carry cell is visited. Then the untestable ris-

ing transition corresponds to a redundant stuck-at 0

fault. This fault can be removed without introducing

new redundancies. We give the resulting modi�cation

of the FA cell in Figure 7. Compared to Figure 3 the

carry lines Cj�1; Cj are duplicated to Cj�1;s; Cj;s and

Cj�1;c; Cj;c. Cj�1;s; Cj;s (Cj�1;c; Cj;c) are responsible

for the computation of the sum outputs (computation

of the top left carry input of the carry cell CC). A

detailed analysis shows that not only the untestable

� 1

� 1

c

&

� 1

� 1

c

&

� 1

&

FA

q

q q

q

q

qq

Aj Bj

Cj�1;sCj;s

Sj

1 2

4

3 7 6

5 8

&

q

Cj�1;c

Cj;c

Figure 7: Realization of a modi�ed FA

paths have been removed but also all other paths are

RPDF testable. We summarize

Theorem 2 The (modi�ed) CSA is fully RPDF

testable by a test set of size O(n2).

In the following we show that this is an asymptot-

ically optimum bound for the size of the test set.

4 Lower Bound of the Test Complexity

In this section, we prove a lower bound for the car-

dinality of a test set for an adder with respect to the

RPDFM. We make almost no assumptions about the

realization of the function. That is, we assume that

an adder is a black box that contains circuitry per-

forming the addition of two binary numbers a and b

as illustrated by Figure 1. the assumptions we make

are:

1. The circuit consists of primitive gates.

2. We have Immediate Operand Reconvergence
(IOR), i.e. for all i Ai is connected to the same

gates with two inputs as Bi.

3. The structure has a complete RPDF test set.

Property 2 is an assumption ful�lled by all practically

relevant adder designs [13], e.g., all adders making use

of generate and propagate bits have IOR.

To prove the lower bound we use a basic property

of any RPDF test.

Lemma 5 Let C be a combinational circuit with n

primary inputs. If (I1; I2) with I2 = (tn�1; . . . ; t0) is

an RPDF test for the path � from the i-th primary

input of C to a primary output of C then (I 0
2
; I2) with

I
0

2 = (tn�1; . . . ; ti+1; �ti; ti�1; . . . ; t0) is also a robust

test for this fault.

The correctness of this lemma was proven in [15]. Us-

ing this lemma we can prove a lower bound for the test

complexity of any adder which ful�lls the assumptions

above. Let 0 � i; i1; i2 � n � 1 and 0 � j; j1; j2 � n.

Lemma 6 If i � j, then there is a path from Ai (Bi)

to Sj.

Proof: Consider any input with al = bl = 0, 0 � l �
i � 1, al 6= bl, i < l � j and bi = 1. If ai = 0, we get

sj = 1 and if ai = 1, we get sj = 0. Consequently,

there must be a path from Ai to Sj . Analogously it

can be shown that there is a path from Bi to Sj . 2

Now we de�ne the parity of a path as follows:

De�nition 1 The parity of a path � is even (odd) if
the number of inversions on the path is even (odd).

Lemma 7 If i � j then there is a non RD path �

from Ai (Bi) to Sj having an even parity.

Proof: Consider any input with al = bl = 0, 0 � l �
i � 1, al 6= bl, i < l < j, aj = bj = 0, bi = 1 if i 6= j

and bi = 0 if i = j. If ai = 0, we get sj = 0 and if

ai = 1, we get sj = 1. Consequently, there must exist

paths from Ai to Sj with even parity. Of course, at

least one of these paths is non RD. Analogously it can

be shown that there is a non RD path from Bi to Sj

having an even parity. 2

Lemma 8 Let (I1; I2) be a test for a path from

an input Ai (Bi) to an output Sj . Then I2 =

(an�1; bn�1; . . . ; a0; b0) satis�es al 6= bl for all i < l <

j.

Proof: W.l.o.g. we consider the path � from Ai to

Sj . According to Lemma 5 it follows that (Iai2 ; I2)

with I
ai

2 = (a2;n�1; b2;n�1; . . . ; ai; bi; . . . ; a0; b0) is also

test for the path � with respect to the RPDFM. Now

assume that there exists an l with i < l < j and

al = bl. Then it follows that the carry cl computed by

cl = albl _ alcl�1 _ blcl�1

is independent of cl�1. Therefore the bits sm, l <

m � n, are independent of the value assigned to Ai.

It follows that (Iai
2
; I2) is not a test for �. Moreover

using Lemma 5 we can conclude that (I1; I2) is not a

test for �. But this contradicts the assumption and

proves the lemma. 2

Lemma 9 Let (I1; I2) be a test for a path from

an input Ai (Bi) to an output Sj . Then I2 =

(an�1; bn�1; . . . ; a0; b0) satis�es

aibi _ aici�1 _ bici�1 6= �aibi _ �aici�1 _ bici�1

(Remark: This means the ith carry bit implied by I1

is unequal to the carry bit ci implied by I2. Moreover

if and only if ai = 1 (bi = 1) it holds cl = 1, i < l �
j � 1.)

Proof: W.l.o.g. we consider a path � from Ai to Sj .

To prove the lemma we construct the test (Iai
2
; I2) as

described in the previous lemma. Let ~cl, 0 � l � n�1,
and ~sl, 0 � l � n, be the carry bits and sum bits

implied by I
ai

2 , respectively.

Obviously we get:

~ci = aibi _ aici�1 _ bici�1

It follows ~ci � ci if ai = 1 and ~ci � ci otherwise. Now

assume that ~ci = ci. Then ~sl = sl , i < l � n and

applying (Iai
2
; I2) we have no transition at Sj . But

this is a contradiction since (Iai2 ; I2) is a test for the

path from Ai to Sj . Therefore it must hold ~ci 6= ci

and we get ci = 1 if ai = 1 and ci = 0 otherwise.

According to Lemma 8 it holds al 6= bl, i < l < j.

Consequently, we get cl = 1 if ai = 1 and cl = 0

otherwise, i < l < j. 2

Lemma 10 Let (I1; I2) be a test for a path �

from Ai (Bi) to Sj with even parity. Then I2 =

(an�1; bn�1; . . . ; a0; b0) satis�es aj = bj.

Proof: W.l.o.g. we consider a path fromAi to Sj hav-

ing even parity. Assume that aj 6= bj. We distinguish

two cases:

Case 1: ai = 0

We have a falling transition at Ai. According to

Lemma 9 cj�1 must be 0. Evaluating

sj = aj � bj � cj�1

we get sj = 1 if aj 6= bj. Therefore we must have

a rising transition at Sj since (I1; I2) is a test for

�. But this contradicts the assumption that the

parity of � is even.

Case 2: ai = 1

We have a rising transition at Ai. According to

Lemma 9 cj�1 must be 1. Evaluating

sj = aj � bj � cj�1

we get sj = 0 if aj 6= bj. Therefore we must have

a falling transition at Sj since (I1; I2) is a test for

�. But this contradicts the assumption that the

parity of � is even.

This completes the proof of the lemma. 2

Lemma 11 Let 0 � i1; i2 � bn=2c n � j1; j2 > bn=2c
with j1 6= j2, �1 be a path from Ai1

to Sj1 and �2 be

a path from Ai2
to Sj2 . If both, �1 and �2, have an

even parity, then �1 and �2 have disjoint test sets.

Proof: W.l.o.g. we assume that i1 � i2, j2 < j1.

Any test (I1; I2) for �2 having an even parity with

I2 = (an�1; bn�1; . . . ; a0; b0) must satisfy the equation

aj2 = bj2 according to Lemma 10. Due to Lemma 8,

a test for �1 must satisfy the inequation aj2 6= bj2.

Therefore, (I1; I2) cannot be a test for the path �1. 2

Lemma 12 Let 0 � i1; i2 � bn=2c with i1 > i2, n �
j1; j2 > bn=2c. Then there exist non RD paths �1; �2
with even parity and rising transitions from Ai1

to Sj1
and from Ai2

to Sj2 , respectively, whose test sets are

disjoint.

Proof: According to Property 2 Ai1
is combined

with Bi1
at the �rst gate on �1. Assume w.l.o.g. that

this is an AND gate and thatBi1
is non inverted. Then

a robust test of �1 for the falling transition requires

the �nal values 1 at Ai1
and Bi1

. Using Lemma 8,

it follows that path �2 cannot be tested at the same

time.

2

Based on Lemmas 11 and 12, we can now prove

a lower bound for the cardinality of a test set for an

adder with respect to the RPDFM.

Theorem 3 The cardinality of a test set for any com-

pletely testable adder with respect to the RPDFM is

(n2).

Proof: There are at least bn2=2c physical paths with
even parity from a primary input Ai (Bi), i � bn=2c,
to a primary output Sj , j > bn=2c. According to Lem-

mas 11 and 12, testing these paths requires
(bn2=2c)
di�erent tests. 2

Notifying this general result we directly obtain:

Theorem 4 The test size of the (modi�ed) n-bit CSA

is asymptotically optimal.

5 Conclusion and Open Problems

We presented a completely testable adder with run

time O(
p
n) using the powerful robust path delay fault

model. We have proven this adder to be optimally

testable by a test set of size �(n2). In addition we have

proven a lower bound of
(n2) which is valid for all

combinational n-bit adders with immediate operand

reconvergence.

We want to mention that even if IOR is not ful-

�lled, we can show a lower bound of
(n
p
n) by the

consideration of paths with even parity to a �xed out-

put. It is an open problem whether this bound can

be improved to
(n2) in this case. Nevertheless, to

our knowledge this is the �rst result concerning the

test complexity of an important class of Boolean func-

tions which makes completely no assumptions about

the logical realization of the functions.

References

[1] M. Abadir and H. Reghbati. Functional testing

of semiconductor random access memories. Com-
puting Surveys, 15:175{198, 1983.

[2] M. Abramovici, M. Breuer, and A. Friedman.

Digital Systems Testing and Testable Design.
Computer Science Press, 1990.

[3] B. Becker and R. Drechsler. A time optimal ro-

bust path-delay-fault self-testable adder. In Eu-
ropean Design Automation Conf., pages 376{381,
1992.

[4] B. Becker, R. Drechsler, and P. Molitor. On the

generation of area-time optimal testable adders.

IEEE Trans. on CAD, 14(9):1049{1066, 1995.

[5] B. Becker and U. Sparmann. A uniform test ap-

proach for rcc-adders. In Proceedings of the 3rd
Aegean Workshop on Parallel Computation and
VLSI Theory, LNCS 319, pages 288{300, 1988.

[6] R. Brent and H. Kung. A regular layout for par-

allel adders. IEEE Trans. on Comp., 31:260{264,
1982.

[7] M. Breuer and A. Friedman. Diagnosis & reli-
able design of digital systems. Computer Science

Press, 1976.

[8] K.-T. Cheng and H.-C. Chen. Delay testing

for non-robust untestable circuits. In Int'l Test
Conf., pages 954{961, 1993.

[9] W. Daehn and J. Mucha. A hardware approach

to self-testing of large PLA's. IEEE Trans. on
Circ. and Systems, 28, 1981.

[10] S. Devadas and K. Keutzer. Synthesis of robust

delay - fault - testable circuits: Practice. IEEE
Trans. on CAD, 11(3):277{300, 1992.

[11] S. Devadas and K. Keutzer. Synthesis of robust

delay - fault - testable circuits: Theory. IEEE
Trans. on CAD, 11(1):87{101, 1992.

[12] R. Eldred. Test routines based on symbolic logi-

cal statements. Journal of the ACM, 6(1):33{36,

1959.

[13] I. Koren. Computer Arithmetic Algorithms. Pren-
tice Hall, Englewood Cli�s, New Jersey, USA,

1993.

[14] W.K. Lam, A. Saldanha, R.K. Brayton, and A.L.

Sangiovanni-Vincentelli. Delay fault coverage and

performance tradeo�s. In Design Automation
Conf., pages 446{451, 1993.

[15] C.-J. Lin and S.M. Reddy. On delay fault testing

in logic circuits. IEEE Trans. on CAD, 6(5):694{
703, 1987.

[16] E. Lindbloom, J. Waicukauski, B. Rosen, and

V. Iyengar. Transition fault simulation by paral-

lel pattern single fault propagation. In Int'l Test
Conf., pages 542{549, 1986.

[17] A. Pramanick and S. Reddy. On the design of

path delay fault testable combinational circuits.

In Int'l Symp. on Fault-Tolerant Comp., pages
374{381, 1990.

[18] S.M. Reddy, C.J. Lin, and S. Patil. An automatic

test pattern generator for the detection of path

delay faults. In Int'l Conf. on CAD, pages 284{
287, 1987.

[19] G. Smith. Model for delay faults based upon

paths. In Int'l Test Conf., pages 342{349, 1985.

[20] U. Sparmann, D. Luxenburger, K.-T. Cheng, and

S.M. Reddy. Fast identi�cation of robust depen-

dent path delay faults. In Design Automation
Conf., pages 119{125, 1995.

[21] E. Swartzlander. Computer Arithmetic (Volume
I). IEEE Computer Society Press Tutorial, 1990.

[22] E. Swartzlander. Computer Arithmetic (Volume
II). IEEE Computer Society Press Tutorial, 1990.

[23] R. Wadsack. Fault modeling and logic simula-

tion of CMOS and MOS integrated circuits. Bell
System Technical Jour., 57, 1978.

