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Abstract. A parallel algorithm is presented that accepts as input a graph G and produces a maximal 
independent set of vertices in G. On a P-RAM without the concurrent write or concurrent read features, 
the algorithm executes in G((10gn)~) time and uses 0((n/(logn))3) processors, where n is the number of 
vertices in G. The algorithm has several novel features that may find other applications. These include 
the use of balanced incomplete block designs to replace random sampling by deterministic sampling, 
and the use of a “dynamic pigeonhole principle” that generalizes the conventional pigeonhole principle. 
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merical Algorithms and Problems 
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1. Introduction 

An independent set in a graph is a set of vertices, no two of which are adjacent. A 
maximal independent set is an independent set that is not properly contained in 
any independent set. In his survey of parallel computation [6] Valiant suggested 
the problem of finding a maximal independent set as an example of a computa- 
tionally trivial problem that appears difficult to parallelize. He discussed a sequen- 
tial algorithm that has up to n stages, and concluded that “it is difficult to see how 
the problem can be solved in substantially fewer stages, such as O(A) or @log n)“. 
The problem is also mentioned by Cook in his survey of computational complexity 
theory [ 11. 

We give an algorithm to solve the maximal independent set problem in 
O((logn)4) time using O(n3/(lognj3) processors (all logarithms in this paper are to 
the base 2). A randomized version of our algorithm runs in O((logn)‘) expected 
time with 0(n*) processors. Our model of computation is the weakest version of a 
P-RAM, in which concurrent reads or concurrent writes of the same location are 
disallowed. 

The maximal independent set problem has the unusual property that it is 
specified by an input-output relation, rather than a function. This is the case 
because a graph may have many maximal independent sets, any one of which is 
acceptable. To formalize this situation, let us say that an algorithm satisfies the 
relation R C {O, I)* x (0, I)* if, on every input x E (0, I]*, it produces an output 
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y such that (x, y) E R. A relation is said to lie in the class F%Z (the analog of the 
standard class NC) if there exists a P-RAM algorithm that satisfies the relation and 
operates in (logn)“” time using no(‘) pr_ocessors. Our main result is that the 
maximal independent set problem lie%in NC. 

Several problems can be placed in NC through NC-reductions [2] to the maximal 
independent set problem. These include: 

(i) The Maximal Set Packing Problem. Given a collection of sets { Si , &, . . . , 
S,l, find a maximal subcollection in which all the sets are disjoint. 

(ii) The Maximal Matching Problem. Finding a maximal matching in a graph 
G is equivalent to finding a maximal independent set in the line graph of G. 
Lev [5] shows that the maximal matching problem for bipartite graphs is in 
NT. 

(iii) The 2Satisfiability Problem. Given a conjunctive normal form Boolean 
formula F with two literals per clause, either produce a truth-value assignment 
satisfying F or determine that F is unsatisfiable. It was previously known [4] 
that the decision problem for 2-CNF formulas is in co-NSPACE(logn), and 
hence in NC, but it appears to_be a new result that the problem of constructing 
a satisfying assignment is in NC. 

Throughout the paper we concentrate on the combinatorial arguments that make 
the algorithm work. Implementation details will be omitted because of their 
simplicity. Essentially, the algorithm uses only the ability of the model to perform 
an associative operation (e.g., sum, min, or) on y1 values in time O(logn), using n 
processors. 

2. Graph-Theoretic Terminology 
Let G = (I’, E) be an undirected graph without loops or multiple edges. For any 
set S !Z V, let N(S), the neighborhood of S, be defined as 1 w E V] for some u E S, 
(u, WI E El. Then S is independent if S tl N(S) = 0; that is, no two vertices in S 
are adjacent. An independent set S is called a maximal independent set if S is not 
properly contained in any independent set. Equivalently, S C V is a maximal 
independent set ifs II N(S) = 0 and S U N(S) = V. 

We often deal with induced subgraphs of G. If K C I’, then K is also used to 
denote the subgraph induced by K. This subgraph has vertex set K, and its edge set 
E(K) consists of those edges from E that have both their end points in K. So, E(K) 
=((U,lCKII u, w) E E]. It is useful to denote the set ((u, w) c KI (u, w) 6! El 
by E(K). Together, E(K) U E(K) will be referred to as the edge slots of K. Also, for 
u E K, dK(u) denotes the degree of vertex u in subgraph K, and, for S C K, N&S) 
= N(S) n K. 

3. The Sequential Algorithm 
Let G be a graph with vertex set ( 1, 2, . . . , n). The following sequential algorithm 
constructs a maximal independent set I. 

begin 
It0 
fori= 1 tondoifi@N(I)thenIcIU (i) 
end 

There is no apparent way to make the sequential algorithm run in o(n) time 
through the use of no(‘) processors. The intuition that this algorithm is inherently 
sequential is supported by the following theorem due to Cook [2]. 
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THEOREM 1. The problem of deciding whether vertex n lies in the independent 
set created by the sequential algorithm is complete in P with respect to logspace 
reducibility. 

Since problems that are logspace complete in P are not believed to lie in NC, it 
is clear that our maximal independent set algorithm cannot simply emulate the 
sequential algorithm. 

4 Top-Level Description of the Parallel Algorithm 
A top-level description of our algorithm is as follows: 

Algorithm 1 

begin 
Zc0;Hc v, 
while H # 0 do 

begin 
S c an independent set in induced subgraph H; 
zczus; 
HcH-(SUNI,( 
end 

end 

Before each execution of the body of the while loop, the following invariant 
assertion holds: the sets 1, N(Z), and H are disjoint, and together they exhaust the 
vertex set I/. It follows that, upon termination, I is a maximal independent set 
in G. 

Once S is chosen, I and H can easily be updated in O(logn) time. We show 
below that in O((logn)‘) time, an independent set S can be chosen such that 
1 S U NH(S) 1 = Q ( 1 H l/log 1 H 1). It follows that the number of iterations is 
O((log n)2), and hence that the whole algorithm runs in O((log n)4) time. 

5. Procedure INDFIND 
A graph with 1 VI vertices and 1 E 1 edges contains an independent set of size at 
least 1 V 1 - 1 E 1. Our algorithm uses a procedure called ZNDFIND to find such a 
set. Given a set of vertices T, INDFIND (7’) constructs an independent subset of 
T by “killing” one end-point of each edge occurring in T. In this procedure, one 
processor is assigned to each pair (u, w ) C T. The processor assigned to (u, w ) does 
the following: 

if (u, w ] E E( 7’) then kill (arbitrarily) u or w. 

Then a set INDFIND (7’) is constructed, consisting of those vertices in T that were 
not killed by any processor. It is clear that INDFIND (7) is an independent set, 
and that INDFIND (7’) can be executed in O(log n) time. 

Incorporating INDFIND into Algorithm 1, we obtain the following algorithm: 

Algorithm 2 
begin 
Zc0; Hc V; 
while H # 0 do 

begin 
T c a set of vertices in H; 
S t INDFIND (T); 
zczus; 
H c H - (S U NH(S)); 
end 

end 
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6. A Scoring Function 

165 

The fundamental problem in the implementation of Algorithm 2 is rapidly to 
construct a set T such that 

1 INDFIND (T) U NH(INDFIND (T)) 1 (1) 
is Q( 1 H l/log 1 H 1). An upper bound on (1) is Cues (1 + dH(u)). This bound is 
tight only when T is an independent set and no two elements of T have a common 
neighbor. In this section we derive a useful lower bound on (1). This bound includes 
correction terms that account for the vertices killed by INDFIND and for the 
double counting of common neighbors. 

Let K C H be a set of vertices. With every vertex u E K, we associate a profit 
profK(u) = 1 + dK(u). With every edge slot (u, w) G K, we associate a cost 

where 

cost&l, w)) = 
1’ 

kWb, w)) if (u, w) E E(K), 
doubleK({u, w)) if (u, w) E E(K), 

and 

killK({u, wl) = 1 + max(d&u), dK(w)], 

double& (u, w)) = I NK(u) n NK(w) I . 

For every set T G K, define, 
ScoreK( T) = C prof,(u) - 1 costK( (u, w 1). 

MET lU,WlC_T 

LEMMA 1. For every T, K with T G KG H, 

ScoreK( T) I ( ZNDFZND( T) U NH(INDHND( T)) 1. 

PROOF. Let S = INDFIND(T). Note that the first two terms in the Inclusion- 
Exclusion formula give a lower bound on 1 N&S) 1: 

I NK(S) I 2 Es I NK(U) I- ,,& I N&u) n NK(W) I. 

1 INDFIND( T) U N,r,(INDFIND( T)) 1 

=SlJNff(S)) 

= ISI +INdS)I 2 ISI + INK( 
r ISI +U&d&+ 1 INdu)nNdW)l 

lu,wlCS 
= ,& 1 + dK(u) - ,u & I N&u) n Ndw) l 

2 C l+dK(u)- C_ 1 x4~) n N&) I 
Le.7 lu,wP=(T) 

= c 1 +dK(u) - 1 1 +dK(u)- C-double~(~u, w)) 
UET UET-S lu,+E(T) 

2 u~TProfdu) - C 1 + max(dK(u), dK(w)] 
lu,wlEE(T) 

- C doubleK( (u, w)) 
lu,wlEE(T) 

= ulTwofdu) - C costK( 1 u, w 1) = ScoreK( T). 
lU.WlCT 

0 
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7. A Rating Function 
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We need to show the existence of a set T C K, say of cardinality 1 T 1 = t, such that 
ScoreK( T) is large. It is clearly sufficient to prove, that for some R G K, the average 
of ScoreK(T) over all t-subsets of R is large. It turns out that this average has a 
simple expression as a function of t and the average profits and costs of vertices 
and edge slots (respectively) in R. We proceed to define this function, and prove 
that its value is indeed the required average. 

For any R G K, let 

Then profK(R) is the average profit of a vertex in R and costK(R) is the average 
cost of an edge slot in R. Let the positive integer t be fixed. Define the function 

RatingK(R) = t prof&R) - (i) cask(R). 

Note that if 1 R 1 = t, then Score&R) = Rating,(R). 

LEMMA 2. The average of ScoreK(T), as T ranges over all t-subsets of R, is 
RatingK(R). (Hence, for some T G R, 1 T I = t, scm?K( T) 2 kZtingK(R).) 

PROOF 

p&j zR ScoreKtT) = &j ( TFR u~TProfK(@ - x c costK((u, w)) 
t TGR {u,wlET 

I TI=t ) TI=t I TI=t 

= &j uzR TsR profK@) - 1 1 costKk-(h WI)) 
lu,wlCR 7CR 

I TI=f I TI=t 
UET lU,WlGT 

= wUzRprot(u) - w x- costK((& WI) 
t t lu,wlCR 

= t PI-Of&?) - (:)cost,(( u, W]) = RatingK(R). cl 

The next lemma implies that if K contains many vertices of nearly maximum 
degree, then K contains subsets with a high rating. 

LEMMA 3. Let A be the maximum degree of a vertex in K. Call a vertex u E K 
heavy if dK(u) r A/2. Let M be a set of heavy vertices in K, with 1 MI = m. 
Let t be a positive integer less than m, and let E = tA/m. Then RatingK(M) I 
((42) - 2~~) m. (Note that this lower bound is maximized tf c = l/8 and 
t = m/8A. For th is choice of c and t the lower bound is independent of A.) 
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PROOF 

(3 
-3% C. killdu, 4) + L double&u, 4) (2) 

lU.Wb%W lu,~lEmo 

We now bound each of the three summations in (2) separately. 

x killK((u, w)) = E 1 + max(&(u), &(w)J 
lu,e=mw lu,wlEma 

I 2 l+A=(E(M)l(l+A)= 
lu,~lEmJ) 

y(l +A). 

z- doubleK( 1 u, w 1) = c- I NK(U) n NK(W) I 
lu,wl~E(M) b,wlEE(M) 

= ,u IF& I NK(U) f-l NK(W) I = Iz ,,( I Nx(~;~iMI)~ 

Note that 

(i) 1 NK(z) fl M 1 I d&z) 5 A, and 
(ii) =:, I NI&) n MI 5 mA, 

so by convexity 

I NI&) n MI 
1 0 

5m A = y (A - 2 2 1). 

Plugging these bounds back into (2), we get 

Rating&M) z i F - I)+!+- 1) 
I 

tA t2A2 c 2 m2 
z- 

2 
--~-m-~ -> 

m-l 2 m-l- 
m. 0 

8. Procedure HEA VYFZND 

At a general step within Algorithm 2 we are given a subgraph H and are required 
to find a set T such that 1 INDFIND(T) U N”(INDF’IND(T)) 1 is large. Lemma 1 
tells us that, for every KG H, Scorex( T) is a lower bound on this quantity. Lemmas 
2 and 3 say that, if K contains many heavy vertices, then, for some T C K, 
ScoreK( T) will be large. Thus, the remaining task for our algorithm is twofold: first, 
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to find a subgraph K of H with a large number of heavy vertices and, second, to 
find a set T within K such that ScoreK( T) is large. 

For the first task we use a dynamic pigeonhole principle. Suppose we have 
pigeonholes A,, AZ, . . . , A, that collectively contain b pigeons. After the contents 
of pigeonhole Ai is inspected, Ai and the pigeons it contains disappear, and the 
remaining pigeons redistribute themselves among the remaining pigeonholes. The 
dynamic pigeonhole principle asserts that, if the pigeonholes are inspected one-by- 
one, then one of them will contain at least b/a pigeons at the time of its inspection. 
The principle is easily proved from the ordinary pigeonhole principle. 

In our application the pigeons are the vertices in H and the degree of a vertex 
determines the pigeonhole. Initially vertex u is placed in pigeonhole i if 2’-’ - 1 5 
dH(u) < 2’ - 1. The number of pigeonholes is flog 1 H 11. Thus, in this case, 
b= lH1 anda= lloglHl1. 

At each step the pigeonhole corresponding to the highest range of degrees is 
inspected. If it contains at least b/a pigeons (i.e., vertices), then the process halts. 
Otherwise, the pigeons in this pigeonhole are released (i.e., the vertices with degrees 
in the highest range are deleted). The remaining pigeons then redistribute them- 
selves (i.e., the deletion of these vertices causes the degrees of some of the remaining 
vertices to be reduced), and the step is repeated. If Kdenotes the vertices remaining 
when the process terminates, then all the vertices in the last pigeonhole inspected 
are heavy in K; hence K contains at least 1 H l/llog 1 H I 1 heavy vertices. 

A more precise description of this process is the following: 

Procedure HEA VYFIND (H) 
KC H; i c rlog I H 11; success c FALSE; 
while success = FALSE do 

begin 
iti- 1; 
if I{~Id~(u)z2~- 111 2 IHI/rlogIHIl 
then success c TRUE 
elseKt{uId&u)<2i- 1) 
end 

end 

Procedure HEAVYFIND (H) produces a subgraph Kwith at least I H I /llog 1 H I 1 
heavy vertices. It requires O(log 1 H 1) executions of the body of the while loop, 
and each of these executions can be performed in O(log ( H 1) time using 1 HI * 
processors. 

9. Procedure SCOREFIND 
Having found a set K with many heavy vertices, the maximal independent set 
algorithm proceeds to find a set T within K such that ScoreK( 7’) is large. Lemma 3 
tells us that, if M is a set of heavy vertices within K and t is a suitably chosen 
positive integer, then the average value of ScoreK( T), as T ranges over all t-element 
subsets of A4, is Q( 1 M 1). Our task is to find a specific set T C A4 of cardinality t 
with at least an average score. 

One natural approach is repeatedly to choose random t-element subsets of M 
until an acceptable one is found. A randomized algorithm along these lines can 
indeed be given. This algorithm runs in time O(log3n) and requires O(n*) proces- 
sors. This can be seen informally as follows. Vertices are eliminated at an average 
rate of Q(n/logn) vertices per iteration. Hence, with high probability, the process 
terminates after O(log*n) iterations, each of which requires O(log n) parallel time 
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and o(n*) processors. Since similar considerations will occur in bounding the 
resources required by the deterministic algorithm, we omit details. 

Our next goal is to show that the set Tcan be found efficiently in parallel without 
randomization. The main idea behind our deterministic approach is the use of 
balanced incomplete block designs. 

A Balanced Incomplete Block Design [3] with parameters v, b, k, r, h is a family 
of subsets B,, B2, . . . , Bb of a finite set B such that: 

(1) JBI = v. 
(2) For all i, 1 B; 1 = k. 
(3) For every x E B, the number of sets Bi containing x is r. 
(4) For every two distinct elements x, y E B, the number of sets Bi containing 

both x and y is h. 

The sets Bi are called the blocks of the design. Note that the parameters are not 
independent, namely, the relations bk = vr and b(5) = X(;) hold. 

Example 1. B = (1, 2, 3, 4, 5, 6, 7) and the blocks are (2, 4, 61, (1, 4, 51, 
(3, 4, 71, (1, 2, 31, (2, 5, 71, { 1, 6, 7), (3, 5, 6). In this case v = b = 7, k = r = 3, 
A= 1. 

Example 2. B is the set of all nonempty subsets of a nonempty set X. The 
blocks are also in one-to-one correspondence with the nonempty subsets of X. For 
each such A C X, A # 0, the corresponding block BA is defined as (C C X 1 C # 0, 
1 A II Cl is even). Then v = b = 21XI - 1, k = r = 21XI-’ - 1, and X = 21XI-* - 1. 

Example 3. B is a finite v-set, and B,, B2, . . . , Bb are all the k-subsets of B. 
Then b = (Z), r = (;;I;), X = (I-3). 

In Lemma 2 we proved that the average of ScoreK( T) over all t-subsets of the set 
R (the design of Example 3) is RatingK(R). A close look at the proof shows that it 
depended only on the fact that every element in R appears in the same number of 
t-subsets, and that every pair of distinct elements in R appear in the same number 
of t-subsets. Therefore, it immediately follows, from the definition of a block 
design, that the same lemma will hold if the average is taken over the blocks of 
any design. 

LEMMA 4. Let B G K, and let B,, B2, . . . , Bb be a balanced incomplete block 
design over B, with 1 Bi I = t. Then l/b Cf=, ScoreK(Bi) = RatingK(B). 

The natural way to use Lemma 4 in our algorithm is to take B = M, a set of 
heavy vertices, compute in parallel Score,y(Bi) for all blocks Bi, and take T to be 
the block that achieves the highest score. 

To be able to carry out this procedure, three conditions must be satisfied: 

(i) Since m and t may be arbitrary, we need a class of designs with v = m, k = t 
for all integers m, t, such that m 2 t. 

(ii) Since the number of processors in our model is limited, the number of blocks 
in the design must be bounded by a polynomial in v. 

(iii) Since time in the model is limited, the blocks of the design must be computable 
in time polylog in v. 

The design of Example 3 satisfies conditions (i) and (iii). However, the number 
of blocks will in general be superpolynomial in v. Our aim is to use the class of 
designs given by Example 2. Elementary combinatorial arguments show that these 



770 R. M. KARP AND A. WIGDERSON 

a.re indeed balanced incomplete block designs with the given parameters. Condition 
(ii) is clearly satisfied. For condition (iii), the following describes how to compute 
the blocks in time @log v) using v2 processors. For each ordered pair (A, C) of 
nonempty subsets of X, a processor tests whether 1 A rl C 1 is even, and if so, 
records that C E BA. 

The problem is, however, that this class of designs always have parameters 
b = 2’ - 1, k = 2’-’ - 1, and therefore violate condition (i). Our final observation 
is that a stronger version of Lemma 4, which is given below, eliminates the need 
for condition (i). Together with the leeway in choosing m and I, guaranteed by 
Lemma 3, it gives rise to a homing-in strategy to find a subset T with a high score, 
using only designs defined in Example 2. 

LEMMA 5. Let B G K, and let B,, B2, . . . , Bb be any balanced incomplete block 
design over B. Then l/b Cf=, RatingK(Bi) = RatingK(B). Hence, for some i, 
RatingK(Bi) 2 RatingK(B). In particular, $1 Bi 1 = t, then ScoreK(Bi) = Rating&Bi) 
2 RatingK(B). 

PROOF. Let the design have parameters v, b, k, r, A. 

I, i, Rating&) = i iiI t ZfK(Bi) - C 
[ 

i”, (i) ZdBi)] 

(3 
= t-&prof&u)--i;r Z- costK(IW WI) 

2 lu,e=B 

= tprofK(B) - i z&B) = Rating&B). 
0 

The following procedure selects T. 

i’rocedure SCOREFIND (K) 
begin 
fn+-rnF!ll;ll’ integer and 2” - 1 E [ 1, ( 1 HI/Hog 1 H 1 l)]!; 

A4 t an arbitrary set of m heavy vertices in K, 
for every u E M, compute prof,(u); 
for every (u, w) C M compute costK({u, w)); 
A t maximum degree of a vertex in K; 
s c max (~‘1s’ integer and 2”’ - 1 E [l, rm/l6Al]); 
tc2s- 1; 
U, + M; 
forj=fdowntos+ 1 do 
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begin 
construct a block design with set of elements 

U, and parameters v = b = 2’ - 1, 
r=k=2j-1- l,x=p-*- 1; 

for each block R compute RatingK(R); 
(/I-, c the block for which RatingK( . ) is largest 
end 

T+ U, 
end 

LEMMA 6. Let T be the set produced by SCOREFIND( Then ScoreK(T) 2 
(~/2~6)(I~ll~wl~I). 

PROOF. By Lemma 5, 

ScoreK( T) = RatingK( T) 

= RatingK( U,) > RatingK( U,+,) > . . . 1 RatingK( Uj) = Rating&V). 

By Lemma 3, 

m, 

where 

IHI and 
tA 1 1 

m z 210g IHI 
t=-* 

m --% 32 - 

SO 

IHI 1 IHI 
. 210g IHJ =256log IHI’ 

0 

The construction of the block design on the vertices in Uj requires the construc- 
tion of a bijection between these vertices and the nonempty subsets of a 2j-set. This 
is easily done by numbering the vertices from [ 1, 2’ - I] (using sorting, say), and 
considering the binary representation of each number as the characteristic vector 
of a subset of the 2j-set. 

The dominant requirements for processors in SCOREFIND occur during the 
sorting, the parallel computation of costK({u, VI) for all (u, v) and of RatingK(R) 
for all blocks R. In each case O(m3) = O(n3/(log n)3) processors suffice to perform 
the computation in O(log n) time. The running time is dominated by the O(log n) 
executions of the body of the for loop, each of which requires O(logn) time. 

10. The Overall Algorithm 
The following is a complete statement of our algorithm for constructing a maximal 
independent set. 
Maximal Independent Set Algorithm 
begin 
It@, Ht V; 
while H # 0 do 

begin 
Kc HEAVYFIND( 
T c SCOREFIND( 
S c INDFIND( T); 
ICZUS; 
H+H-(SUNH(S)) 
end 

end 



772 R. M. KARP AND A. WIGDERSON 

The number of executions of the while loop is O((logn)‘) and each such 
execution requires O((log n)*) time using 0(n3/(log r~)~) processors. The overall 
execution time is @(log n)4). 

11. An Application-2-Satisfiability 

We show that the following problem is in I+%?: given a conjunctive normal form 
Boolean formula F(x,, x2, . . . , x,,) with two literals per clause, either find a truth- 
value assignment satisfying For determine that none exists. 

Each clause in F is of the form a U b where a and b are literals; that is, they lie 
in the set (xi, x2, . . . , xnl U (X, , X2, . . . , &]. Such a clause is logically equivalent 
to either of the following two implications: Lz + b, b+ a. 

The first step in our algorithm is to construct an implication digraph G. The 
vertex set of G is (XI, x2, . . . , x,,) U (Xi, 32, . . . , %,I-,). For each clause a U b, the 
directed edges (a, b) and (b, a) are edges of G. 

The second step is to construct G*, the transitive closure of G. This can be done 
in O((logn)*) time with n3 processors. The new edges added to G represent 
implications that follow from the original set. They also correspond to the new 
clauses that can be derived from the original set by repeated application of the 
resolution rule: from a U b and B U c infer b U c. 

The third step is to construct from G* an undirected conflict graph C. The vertex 
setofCis(x,,x;! ,..., xnJU(Zl,& ,..., ~7~1. For each directed edge (a, b) in G*, 
C contains the edge {a, b]; in addition, C contains the edges (xi, Xi;.), i = 1, 2, . . . , 
~1. Each edge of C indicates a conflict between two literals that cannot both be true 
in any satisfying assignment. 

It is left to the reader to verify that, when F is satisfiable, the maximal independent 
sets of vertices in C are in one-to-one correspondence with the truth-value assign- 
ments that satisfy F. Each maximal independent set contains exactly n literals, and 
F can be satisfied by making these literals true. On the other hand, if F is not 
satisfiable, then the size of every independent set is less than n. It follows that 
constructing a satisfying assignment is reducibk to the maximal independent set 
problem, and thus the former problem lies in NC. 

12. Discussion and Open Problems 

In view of the growing importance of parallel computation, it is essential to 
understand the characteristics that make a problem amenable to parallelism and 
discover useful strategies for the construction of parallel algorithms. Of special 
interest are problems for which the exploitation of parallelism requires the invention 
of entirely new algorithms, rather than the conversion of known sequential algo- 
rithms to parallel form. 

The main contribution of our paper is in introducing combinatorial design 
theory as an algorithmic technique. This theory originated more than a century 
ago, and is still a major research area among combinatorialists. It has applications 
in statistics, coding theory, and agriculture. The original motivation for studying 
combinatorial designs was to replace random sampling by deterministic sampling; 
this is exactly the way our algorithm makes use of the designs. We believe that 
combinatorial designs will find many applications in the design of efficient deter- 
ministic algorithms, and particularly in parallel algorithms, where they seem to fit 
so naturally. 
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A word of caution about our algorithm. If it is ever to be programmed, we 
strongly recommend using the randomized version-it would save programming 
time, running time, and processors. 

There are many other problems that are not known to lie in I$? although they 
are solvable sequentially by simple polynomial-time algorithms. Examples include 
the construction of a maximal simple path in a graph (Mayr), the construction of 
a minimal hitting set for a family of sets, and, in general, finding locally optimal 
solutions to various combinatorial optimization problems endowed with a neigh- 
borhood structure. Also of interest is fast parallel construction of combinatorial 
objects whose existence is guaranteed by famous theorems in graph theory. Ex- 
amples of such objects are an edge coloring with A + 1 colors in a graph with 
maximum degree of A (Vizing’s Theorem) and a vertex coloring with A colors in 
a graph that is neither complete nor an odd cycle (Brooks’ Theorem). The sequential 
algorithms for these problems seem to offer no obvious parallelization, and, 
therefore, it seems that new techniques will be needed for their solution. 
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