
A Fast Parallel Algorithm for the Maximal Independent
!Set Problem

RICHARD M. KARP AND AVI WIGDERSON

IJniversity of California at Berkeley, Berkeley, California

Abstract. A parallel algorithm is presented that accepts as input a graph G and produces a maximal
independent set of vertices in G. On a P-RAM without the concurrent write or concurrent read features,
the algorithm executes in G((10gn)~) time and uses 0((n/(logn))3) processors, where n is the number of
vertices in G. The algorithm has several novel features that may find other applications. These include
the use of balanced incomplete block designs to replace random sampling by deterministic sampling,
and the use of a “dynamic pigeonhole principle” that generalizes the conventional pigeonhole principle.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Block designs, graph theory, independent sets, parallel computation

1. Introduction

An independent set in a graph is a set of vertices, no two of which are adjacent. A
maximal independent set is an independent set that is not properly contained in
any independent set. In his survey of parallel computation [6] Valiant suggested
the problem of finding a maximal independent set as an example of a computa-
tionally trivial problem that appears difficult to parallelize. He discussed a sequen-
tial algorithm that has up to n stages, and concluded that “it is difficult to see how
the problem can be solved in substantially fewer stages, such as O(A) or @log n)“.
The problem is also mentioned by Cook in his survey of computational complexity
theory [11.

We give an algorithm to solve the maximal independent set problem in
O((logn)4) time using O(n3/(lognj3) processors (all logarithms in this paper are to
the base 2). A randomized version of our algorithm runs in O((logn)‘) expected
time with 0(n*) processors. Our model of computation is the weakest version of a
P-RAM, in which concurrent reads or concurrent writes of the same location are
disallowed.

The maximal independent set problem has the unusual property that it is
specified by an input-output relation, rather than a function. This is the case
because a graph may have many maximal independent sets, any one of which is
acceptable. To formalize this situation, let us say that an algorithm satisfies the
relation R C {O, I)* x (0, I)* if, on every input x E (0, I]*, it produces an output

This research was supported by the National Science Foundation under grant MCS 81-05217 and by
DARPA Grant N00039-82-C-0235.
Authors’ present addresses: R. M. Karp, Computer Science Division, University of California at
Berkeley, Berkeley, CA 94720; A. Wigderson, Mathematical Sciences Research Institute, 1000 Centen-
nial Drive, Berkeley, CA 94720.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/1000-0762 $00.75

Journal of the Association for Computing Machinery. Vol. 32, No. 4, October 1985. pp. 762-773.

Parallel Algorithm for Maximal Independent Set Problem 763

y such that (x, y) E R. A relation is said to lie in the class F%Z (the analog of the
standard class NC) if there exists a P-RAM algorithm that satisfies the relation and
operates in (logn)“” time using no(‘) pr_ocessors. Our main result is that the
maximal independent set problem lie%in NC.

Several problems can be placed in NC through NC-reductions [2] to the maximal
independent set problem. These include:

(i) The Maximal Set Packing Problem. Given a collection of sets { Si , &, . . . ,
S,l, find a maximal subcollection in which all the sets are disjoint.

(ii) The Maximal Matching Problem. Finding a maximal matching in a graph
G is equivalent to finding a maximal independent set in the line graph of G.
Lev [5] shows that the maximal matching problem for bipartite graphs is in
NT.

(iii) The 2Satisfiability Problem. Given a conjunctive normal form Boolean
formula F with two literals per clause, either produce a truth-value assignment
satisfying F or determine that F is unsatisfiable. It was previously known [4]
that the decision problem for 2-CNF formulas is in co-NSPACE(logn), and
hence in NC, but it appears to_be a new result that the problem of constructing
a satisfying assignment is in NC.

Throughout the paper we concentrate on the combinatorial arguments that make
the algorithm work. Implementation details will be omitted because of their
simplicity. Essentially, the algorithm uses only the ability of the model to perform
an associative operation (e.g., sum, min, or) on y1 values in time O(logn), using n
processors.

2. Graph-Theoretic Terminology
Let G = (I’, E) be an undirected graph without loops or multiple edges. For any
set S !Z V, let N(S), the neighborhood of S, be defined as 1 w E V] for some u E S,
(u, WI E El. Then S is independent if S tl N(S) = 0; that is, no two vertices in S
are adjacent. An independent set S is called a maximal independent set if S is not
properly contained in any independent set. Equivalently, S C V is a maximal
independent set ifs II N(S) = 0 and S U N(S) = V.

We often deal with induced subgraphs of G. If K C I’, then K is also used to
denote the subgraph induced by K. This subgraph has vertex set K, and its edge set
E(K) consists of those edges from E that have both their end points in K. So, E(K)
=((U,lCKII u, w) E E]. It is useful to denote the set ((u, w) c KI (u, w) 6! El
by E(K). Together, E(K) U E(K) will be referred to as the edge slots of K. Also, for
u E K, dK(u) denotes the degree of vertex u in subgraph K, and, for S C K, N&S)
= N(S) n K.

3. The Sequential Algorithm
Let G be a graph with vertex set (1, 2, . . . , n). The following sequential algorithm
constructs a maximal independent set I.

begin
It0
fori= 1 tondoifi@N(I)thenIcIU (i)
end

There is no apparent way to make the sequential algorithm run in o(n) time
through the use of no(‘) processors. The intuition that this algorithm is inherently
sequential is supported by the following theorem due to Cook [2].

764 R. M. KARP AND A. WIGDERSON

THEOREM 1. The problem of deciding whether vertex n lies in the independent
set created by the sequential algorithm is complete in P with respect to logspace
reducibility.

Since problems that are logspace complete in P are not believed to lie in NC, it
is clear that our maximal independent set algorithm cannot simply emulate the
sequential algorithm.

4 Top-Level Description of the Parallel Algorithm
A top-level description of our algorithm is as follows:

Algorithm 1

begin
Zc0;Hc v,
while H # 0 do

begin
S c an independent set in induced subgraph H;
zczus;
HcH-(SUNI,(
end

end

Before each execution of the body of the while loop, the following invariant
assertion holds: the sets 1, N(Z), and H are disjoint, and together they exhaust the
vertex set I/. It follows that, upon termination, I is a maximal independent set
in G.

Once S is chosen, I and H can easily be updated in O(logn) time. We show
below that in O((logn)‘) time, an independent set S can be chosen such that
1 S U NH(S) 1 = Q (1 H l/log 1 H 1). It follows that the number of iterations is
O((log n)2), and hence that the whole algorithm runs in O((log n)4) time.

5. Procedure INDFIND
A graph with 1 VI vertices and 1 E 1 edges contains an independent set of size at
least 1 V 1 - 1 E 1. Our algorithm uses a procedure called ZNDFIND to find such a
set. Given a set of vertices T, INDFIND (7’) constructs an independent subset of
T by “killing” one end-point of each edge occurring in T. In this procedure, one
processor is assigned to each pair (u, w) C T. The processor assigned to (u, w) does
the following:

if (u, w] E E(7’) then kill (arbitrarily) u or w.

Then a set INDFIND (7’) is constructed, consisting of those vertices in T that were
not killed by any processor. It is clear that INDFIND (7) is an independent set,
and that INDFIND (7’) can be executed in O(log n) time.

Incorporating INDFIND into Algorithm 1, we obtain the following algorithm:

Algorithm 2
begin
Zc0; Hc V;
while H # 0 do

begin
T c a set of vertices in H;
S t INDFIND (T);
zczus;
H c H - (S U NH(S));
end

end

Parallel Algorithm for Maximal Independent Set Problem

6. A Scoring Function

165

The fundamental problem in the implementation of Algorithm 2 is rapidly to
construct a set T such that

1 INDFIND (T) U NH(INDFIND (T)) 1 (1)
is Q(1 H l/log 1 H 1). An upper bound on (1) is Cues (1 + dH(u)). This bound is
tight only when T is an independent set and no two elements of T have a common
neighbor. In this section we derive a useful lower bound on (1). This bound includes
correction terms that account for the vertices killed by INDFIND and for the
double counting of common neighbors.

Let K C H be a set of vertices. With every vertex u E K, we associate a profit
profK(u) = 1 + dK(u). With every edge slot (u, w) G K, we associate a cost

where

cost&l, w)) =
1’

kWb, w)) if (u, w) E E(K),
doubleK({u, w)) if (u, w) E E(K),

and

killK({u, wl) = 1 + max(d&u), dK(w)],

double& (u, w)) = I NK(u) n NK(w) I .

For every set T G K, define,
ScoreK(T) = C prof,(u) - 1 costK((u, w 1).

MET lU,WlC_T

LEMMA 1. For every T, K with T G KG H,

ScoreK(T) I (ZNDFZND(T) U NH(INDHND(T)) 1.

PROOF. Let S = INDFIND(T). Note that the first two terms in the Inclusion-
Exclusion formula give a lower bound on 1 N&S) 1:

I NK(S) I 2 Es I NK(U) I- ,,& I N&u) n NK(W) I.

1 INDFIND(T) U N,r,(INDFIND(T)) 1

=SlJNff(S))

= ISI +INdS)I 2 ISI + INK(
r ISI +U&d&+ 1 INdu)nNdW)l

lu,wlCS
= ,& 1 + dK(u) - ,u & I N&u) n Ndw) l

2 C l+dK(u)- C_ 1 x4~) n N&) I
Le.7 lu,wP=(T)

= c 1 +dK(u) - 1 1 +dK(u)- C-double~(~u, w))
UET UET-S lu,+E(T)

2 u~TProfdu) - C 1 + max(dK(u), dK(w)]
lu,wlEE(T)

- C doubleK((u, w))
lu,wlEE(T)

= ulTwofdu) - C costK(1 u, w 1) = ScoreK(T).
lU.WlCT

0

766

7. A Rating Function

R. M. KARP AND A. WIGDERSON

We need to show the existence of a set T C K, say of cardinality 1 T 1 = t, such that
ScoreK(T) is large. It is clearly sufficient to prove, that for some R G K, the average
of ScoreK(T) over all t-subsets of R is large. It turns out that this average has a
simple expression as a function of t and the average profits and costs of vertices
and edge slots (respectively) in R. We proceed to define this function, and prove
that its value is indeed the required average.

For any R G K, let

Then profK(R) is the average profit of a vertex in R and costK(R) is the average
cost of an edge slot in R. Let the positive integer t be fixed. Define the function

RatingK(R) = t prof&R) - (i) cask(R).

Note that if 1 R 1 = t, then Score&R) = Rating,(R).

LEMMA 2. The average of ScoreK(T), as T ranges over all t-subsets of R, is
RatingK(R). (Hence, for some T G R, 1 T I = t, scm?K(T) 2 kZtingK(R).)

PROOF

p&j zR ScoreKtT) = &j (TFR u~TProfK(@ - x c costK((u, w))
t TGR {u,wlET

I TI=t) TI=t I TI=t

= &j uzR TsR profK@) - 1 1 costKk-(h WI))
lu,wlCR 7CR

I TI=f I TI=t
UET lU,WlGT

= wUzRprot(u) - w x- costK((& WI)
t t lu,wlCR

= t PI-Of&?) - (:)cost,((u, W]) = RatingK(R). cl

The next lemma implies that if K contains many vertices of nearly maximum
degree, then K contains subsets with a high rating.

LEMMA 3. Let A be the maximum degree of a vertex in K. Call a vertex u E K
heavy if dK(u) r A/2. Let M be a set of heavy vertices in K, with 1 MI = m.
Let t be a positive integer less than m, and let E = tA/m. Then RatingK(M) I
((42) - 2~~) m. (Note that this lower bound is maximized tf c = l/8 and
t = m/8A. For th is choice of c and t the lower bound is independent of A.)

Parallel Algorithm for Maximal Independent Set Problem 767

PROOF

(3
-3% C. killdu, 4) + L double&u, 4) (2)

lU.Wb%W lu,~lEmo

We now bound each of the three summations in (2) separately.

x killK((u, w)) = E 1 + max(&(u), &(w)J
lu,e=mw lu,wlEma

I 2 l+A=(E(M)l(l+A)=
lu,~lEmJ)

y(l +A).

z- doubleK(1 u, w 1) = c- I NK(U) n NK(W) I
lu,wl~E(M) b,wlEE(M)

= ,u IF& I NK(U) f-l NK(W) I = Iz ,,(I Nx(~;~iMI)~

Note that

(i) 1 NK(z) fl M 1 I d&z) 5 A, and
(ii) =:, I NI&) n MI 5 mA,

so by convexity

I NI&) n MI
1 0

5m A = y (A - 2 2 1).

Plugging these bounds back into (2), we get

Rating&M) z i F - I)+!+- 1)
I

tA t2A2 c 2 m2
z-

2
--~-m-~ ->

m-l 2 m-l-
m. 0

8. Procedure HEA VYFZND

At a general step within Algorithm 2 we are given a subgraph H and are required
to find a set T such that 1 INDFIND(T) U N”(INDF’IND(T)) 1 is large. Lemma 1
tells us that, for every KG H, Scorex(T) is a lower bound on this quantity. Lemmas
2 and 3 say that, if K contains many heavy vertices, then, for some T C K,
ScoreK(T) will be large. Thus, the remaining task for our algorithm is twofold: first,

768 R. M. KARP AND A. WIGDERSON

to find a subgraph K of H with a large number of heavy vertices and, second, to
find a set T within K such that ScoreK(T) is large.

For the first task we use a dynamic pigeonhole principle. Suppose we have
pigeonholes A,, AZ, . . . , A, that collectively contain b pigeons. After the contents
of pigeonhole Ai is inspected, Ai and the pigeons it contains disappear, and the
remaining pigeons redistribute themselves among the remaining pigeonholes. The
dynamic pigeonhole principle asserts that, if the pigeonholes are inspected one-by-
one, then one of them will contain at least b/a pigeons at the time of its inspection.
The principle is easily proved from the ordinary pigeonhole principle.

In our application the pigeons are the vertices in H and the degree of a vertex
determines the pigeonhole. Initially vertex u is placed in pigeonhole i if 2’-’ - 1 5
dH(u) < 2’ - 1. The number of pigeonholes is flog 1 H 11. Thus, in this case,
b= lH1 anda= lloglHl1.

At each step the pigeonhole corresponding to the highest range of degrees is
inspected. If it contains at least b/a pigeons (i.e., vertices), then the process halts.
Otherwise, the pigeons in this pigeonhole are released (i.e., the vertices with degrees
in the highest range are deleted). The remaining pigeons then redistribute them-
selves (i.e., the deletion of these vertices causes the degrees of some of the remaining
vertices to be reduced), and the step is repeated. If Kdenotes the vertices remaining
when the process terminates, then all the vertices in the last pigeonhole inspected
are heavy in K; hence K contains at least 1 H l/llog 1 H I 1 heavy vertices.

A more precise description of this process is the following:

Procedure HEA VYFIND (H)
KC H; i c rlog I H 11; success c FALSE;
while success = FALSE do

begin
iti- 1;
if I{~Id~(u)z2~- 111 2 IHI/rlogIHIl
then success c TRUE
elseKt{uId&u)<2i- 1)
end

end

Procedure HEAVYFIND (H) produces a subgraph Kwith at least I H I /llog 1 H I 1
heavy vertices. It requires O(log 1 H 1) executions of the body of the while loop,
and each of these executions can be performed in O(log (H 1) time using 1 HI *
processors.

9. Procedure SCOREFIND
Having found a set K with many heavy vertices, the maximal independent set
algorithm proceeds to find a set T within K such that ScoreK(7’) is large. Lemma 3
tells us that, if M is a set of heavy vertices within K and t is a suitably chosen
positive integer, then the average value of ScoreK(T), as T ranges over all t-element
subsets of A4, is Q(1 M 1). Our task is to find a specific set T C A4 of cardinality t
with at least an average score.

One natural approach is repeatedly to choose random t-element subsets of M
until an acceptable one is found. A randomized algorithm along these lines can
indeed be given. This algorithm runs in time O(log3n) and requires O(n*) proces-
sors. This can be seen informally as follows. Vertices are eliminated at an average
rate of Q(n/logn) vertices per iteration. Hence, with high probability, the process
terminates after O(log*n) iterations, each of which requires O(log n) parallel time

Parallel Algorithm for Maximal Independent Set Problem 169

and o(n*) processors. Since similar considerations will occur in bounding the
resources required by the deterministic algorithm, we omit details.

Our next goal is to show that the set Tcan be found efficiently in parallel without
randomization. The main idea behind our deterministic approach is the use of
balanced incomplete block designs.

A Balanced Incomplete Block Design [3] with parameters v, b, k, r, h is a family
of subsets B,, B2, . . . , Bb of a finite set B such that:

(1) JBI = v.
(2) For all i, 1 B; 1 = k.
(3) For every x E B, the number of sets Bi containing x is r.
(4) For every two distinct elements x, y E B, the number of sets Bi containing

both x and y is h.

The sets Bi are called the blocks of the design. Note that the parameters are not
independent, namely, the relations bk = vr and b(5) = X(;) hold.

Example 1. B = (1, 2, 3, 4, 5, 6, 7) and the blocks are (2, 4, 61, (1, 4, 51,
(3, 4, 71, (1, 2, 31, (2, 5, 71, { 1, 6, 7), (3, 5, 6). In this case v = b = 7, k = r = 3,
A= 1.

Example 2. B is the set of all nonempty subsets of a nonempty set X. The
blocks are also in one-to-one correspondence with the nonempty subsets of X. For
each such A C X, A # 0, the corresponding block BA is defined as (C C X 1 C # 0,
1 A II Cl is even). Then v = b = 21XI - 1, k = r = 21XI-’ - 1, and X = 21XI-* - 1.

Example 3. B is a finite v-set, and B,, B2, . . . , Bb are all the k-subsets of B.
Then b = (Z), r = (;;I;), X = (I-3).

In Lemma 2 we proved that the average of ScoreK(T) over all t-subsets of the set
R (the design of Example 3) is RatingK(R). A close look at the proof shows that it
depended only on the fact that every element in R appears in the same number of
t-subsets, and that every pair of distinct elements in R appear in the same number
of t-subsets. Therefore, it immediately follows, from the definition of a block
design, that the same lemma will hold if the average is taken over the blocks of
any design.

LEMMA 4. Let B G K, and let B,, B2, . . . , Bb be a balanced incomplete block
design over B, with 1 Bi I = t. Then l/b Cf=, ScoreK(Bi) = RatingK(B).

The natural way to use Lemma 4 in our algorithm is to take B = M, a set of
heavy vertices, compute in parallel Score,y(Bi) for all blocks Bi, and take T to be
the block that achieves the highest score.

To be able to carry out this procedure, three conditions must be satisfied:

(i) Since m and t may be arbitrary, we need a class of designs with v = m, k = t
for all integers m, t, such that m 2 t.

(ii) Since the number of processors in our model is limited, the number of blocks
in the design must be bounded by a polynomial in v.

(iii) Since time in the model is limited, the blocks of the design must be computable
in time polylog in v.

The design of Example 3 satisfies conditions (i) and (iii). However, the number
of blocks will in general be superpolynomial in v. Our aim is to use the class of
designs given by Example 2. Elementary combinatorial arguments show that these

770 R. M. KARP AND A. WIGDERSON

a.re indeed balanced incomplete block designs with the given parameters. Condition
(ii) is clearly satisfied. For condition (iii), the following describes how to compute
the blocks in time @log v) using v2 processors. For each ordered pair (A, C) of
nonempty subsets of X, a processor tests whether 1 A rl C 1 is even, and if so,
records that C E BA.

The problem is, however, that this class of designs always have parameters
b = 2’ - 1, k = 2’-’ - 1, and therefore violate condition (i). Our final observation
is that a stronger version of Lemma 4, which is given below, eliminates the need
for condition (i). Together with the leeway in choosing m and I, guaranteed by
Lemma 3, it gives rise to a homing-in strategy to find a subset T with a high score,
using only designs defined in Example 2.

LEMMA 5. Let B G K, and let B,, B2, . . . , Bb be any balanced incomplete block
design over B. Then l/b Cf=, RatingK(Bi) = RatingK(B). Hence, for some i,
RatingK(Bi) 2 RatingK(B). In particular, $1 Bi 1 = t, then ScoreK(Bi) = Rating&Bi)
2 RatingK(B).

PROOF. Let the design have parameters v, b, k, r, A.

I, i, Rating&) = i iiI t ZfK(Bi) - C
[

i”, (i) ZdBi)]

(3
= t-&prof&u)--i;r Z- costK(IW WI)

2 lu,e=B

= tprofK(B) - i z&B) = Rating&B).
0

The following procedure selects T.

i’rocedure SCOREFIND (K)
begin
fn+-rnF!ll;ll’ integer and 2” - 1 E [1, (1 HI/Hog 1 H 1 l)]!;

A4 t an arbitrary set of m heavy vertices in K,
for every u E M, compute prof,(u);
for every (u, w) C M compute costK({u, w));
A t maximum degree of a vertex in K;
s c max (~‘1s’ integer and 2”’ - 1 E [l, rm/l6Al]);
tc2s- 1;
U, + M;
forj=fdowntos+ 1 do

Parallel Algorithm for Maximal Independent Set Problem 771

begin
construct a block design with set of elements

U, and parameters v = b = 2’ - 1,
r=k=2j-1- l,x=p-*- 1;

for each block R compute RatingK(R);
(/I-, c the block for which RatingK(.) is largest
end

T+ U,
end

LEMMA 6. Let T be the set produced by SCOREFIND(Then ScoreK(T) 2
(~/2~6)(I~ll~wl~I).

PROOF. By Lemma 5,

ScoreK(T) = RatingK(T)

= RatingK(U,) > RatingK(U,+,) > . . . 1 RatingK(Uj) = Rating&V).

By Lemma 3,

m,

where

IHI and
tA 1 1

m z 210g IHI
t=-*

m --% 32 -

SO

IHI 1 IHI
. 210g IHJ =256log IHI’

0

The construction of the block design on the vertices in Uj requires the construc-
tion of a bijection between these vertices and the nonempty subsets of a 2j-set. This
is easily done by numbering the vertices from [1, 2’ - I] (using sorting, say), and
considering the binary representation of each number as the characteristic vector
of a subset of the 2j-set.

The dominant requirements for processors in SCOREFIND occur during the
sorting, the parallel computation of costK({u, VI) for all (u, v) and of RatingK(R)
for all blocks R. In each case O(m3) = O(n3/(log n)3) processors suffice to perform
the computation in O(log n) time. The running time is dominated by the O(log n)
executions of the body of the for loop, each of which requires O(logn) time.

10. The Overall Algorithm
The following is a complete statement of our algorithm for constructing a maximal
independent set.
Maximal Independent Set Algorithm
begin
It@, Ht V;
while H # 0 do

begin
Kc HEAVYFIND(
T c SCOREFIND(
S c INDFIND(T);
ICZUS;
H+H-(SUNH(S))
end

end

772 R. M. KARP AND A. WIGDERSON

The number of executions of the while loop is O((logn)‘) and each such
execution requires O((log n)*) time using 0(n3/(log r~)~) processors. The overall
execution time is @(log n)4).

11. An Application-2-Satisfiability

We show that the following problem is in I+%?: given a conjunctive normal form
Boolean formula F(x,, x2, . . . , x,,) with two literals per clause, either find a truth-
value assignment satisfying For determine that none exists.

Each clause in F is of the form a U b where a and b are literals; that is, they lie
in the set (xi, x2, . . . , xnl U (X, , X2, . . . , &]. Such a clause is logically equivalent
to either of the following two implications: Lz + b, b+ a.

The first step in our algorithm is to construct an implication digraph G. The
vertex set of G is (XI, x2, . . . , x,,) U (Xi, 32, . . . , %,I-,). For each clause a U b, the
directed edges (a, b) and (b, a) are edges of G.

The second step is to construct G*, the transitive closure of G. This can be done
in O((logn)*) time with n3 processors. The new edges added to G represent
implications that follow from the original set. They also correspond to the new
clauses that can be derived from the original set by repeated application of the
resolution rule: from a U b and B U c infer b U c.

The third step is to construct from G* an undirected conflict graph C. The vertex
setofCis(x,,x;! ,..., xnJU(Zl,& ,..., ~7~1. For each directed edge (a, b) in G*,
C contains the edge {a, b]; in addition, C contains the edges (xi, Xi;.), i = 1, 2, . . . ,
~1. Each edge of C indicates a conflict between two literals that cannot both be true
in any satisfying assignment.

It is left to the reader to verify that, when F is satisfiable, the maximal independent
sets of vertices in C are in one-to-one correspondence with the truth-value assign-
ments that satisfy F. Each maximal independent set contains exactly n literals, and
F can be satisfied by making these literals true. On the other hand, if F is not
satisfiable, then the size of every independent set is less than n. It follows that
constructing a satisfying assignment is reducibk to the maximal independent set
problem, and thus the former problem lies in NC.

12. Discussion and Open Problems

In view of the growing importance of parallel computation, it is essential to
understand the characteristics that make a problem amenable to parallelism and
discover useful strategies for the construction of parallel algorithms. Of special
interest are problems for which the exploitation of parallelism requires the invention
of entirely new algorithms, rather than the conversion of known sequential algo-
rithms to parallel form.

The main contribution of our paper is in introducing combinatorial design
theory as an algorithmic technique. This theory originated more than a century
ago, and is still a major research area among combinatorialists. It has applications
in statistics, coding theory, and agriculture. The original motivation for studying
combinatorial designs was to replace random sampling by deterministic sampling;
this is exactly the way our algorithm makes use of the designs. We believe that
combinatorial designs will find many applications in the design of efficient deter-
ministic algorithms, and particularly in parallel algorithms, where they seem to fit
so naturally.

Parallel Algorithm for Maximal Independent Set Problem 773

A word of caution about our algorithm. If it is ever to be programmed, we
strongly recommend using the randomized version-it would save programming
time, running time, and processors.

There are many other problems that are not known to lie in I$? although they
are solvable sequentially by simple polynomial-time algorithms. Examples include
the construction of a maximal simple path in a graph (Mayr), the construction of
a minimal hitting set for a family of sets, and, in general, finding locally optimal
solutions to various combinatorial optimization problems endowed with a neigh-
borhood structure. Also of interest is fast parallel construction of combinatorial
objects whose existence is guaranteed by famous theorems in graph theory. Ex-
amples of such objects are an edge coloring with A + 1 colors in a graph with
maximum degree of A (Vizing’s Theorem) and a vertex coloring with A colors in
a graph that is neither complete nor an odd cycle (Brooks’ Theorem). The sequential
algorithms for these problems seem to offer no obvious parallelization, and,
therefore, it seems that new techniques will be needed for their solution.

REFERENCES

I. COOK, S. A. An overview of computational complexity. Commun. ACM 26,6 (1983), 400-408.
2. COOK, S. A. The classification of problems which have fast parallel algorithms. Tech. Rep. No.

164/83, Dept. of Comput. Sci., Univ. of Toronto, Toronto, Ont., Canada, 1983.
3. HALL, M. Combinatorial Theory. Blaisdell, Waltham, Mass., 1967.
4. JONES, N. D., LIEN, Y. E., AND LAASER, W. T. New problems complete for nondeterministic log

space. Muth. Cyst. Theory IO (1976), I-17.
5. LEV, G. Size bounds and parallel algorithms for networks. Rep. CST-8-80, Dept. of Comput. Sci.,

Univ. of Edinburgh, Edinburgh, Scotland, 1980.
6. VALIANT, L. G. Parallel computation. In Proceedings ofthe 7th IBMSymposium on Mathematical

Foundations of Computer Science. IBM, New York, 1982.

RECEIVED JULY 1983; REVISED APRIL 1985; ACCEPTED JUNE 1985

Journal of the Association for Computing Machinery, Vol. 32, No. 4, October 1985.

