
A Fast Parallel Clustering Algorithm for Molecular
Simulation Trajectories

Yutong Zhao,[a,b] Fu Kit Sheong,[a] Jian Sun,[c] Pedro Sander,[b] and Xuhui Huang*[a,d,e]

We implemented a GPU-powered parallel k-centers algorithm

to perform clustering on the conformations of molecular

dynamics (MD) simulations. The algorithm is up to two orders

of magnitude faster than the CPU implementation. We tested

our algorithm on four protein MD simulation datasets ranging

from the small Alanine Dipeptide to a 370-residue Maltose

Binding Protein (MBP). It is capable of grouping 250,000

conformations of the MBP into 4000 clusters within 40 seconds.

To achieve this, we effectively parallelized the code on the GPU

and utilize the triangle inequality of metric spaces. Furthermore,

the algorithm’s running time is linear with respect to the

number of cluster centers. In addition, we found the triangle

inequality to be less effective in higher dimensions and provide

a mathematical rationale. Finally, using Alanine Dipeptide as

an example, we show a strong correlation between cluster

populations resulting from the k-centers algorithm and the

underlying density. VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23110

Introduction

Molecular dynamics (MD) and Monte Carlo are powerful techni-

ques to explore conformational space and to probe dynamics of

macromolecular systems. Recent advances in the molecular

simulations have enabled us to generate massive datasets with

millions of conformers.[1–7] A popular approach to reduce the

complexity of such large datasets is through the use of cluster-

ing algorithms, whereby conformers of similar shapes are

lumped together[8–11] to select representative conformations

from MD trajectories.[9] However, clustering based on geometry

alone tends to be insufficient to recover meaningful kinetic infor-

mation.[8,12] Instead, geometric clustering is often used to pre-

process conformational space prior to kinetic clustering, such as

in the construction of Markov state models (MSMs).[7,13–17]

Almost all geometric clustering algorithms essentially have

the same goal: given a collection of conformations and a dis-

tance function, partition conformations into disjoint subsets so

as to minimize the overall distance of each conformation to an

associated cluster center; some algorithms such as k-means

and k-medoids[18,19] attempt to minimize the total distance of

each point to its assigned center, while others such as k-cen-

ters[20] attempt to minimize maximum cluster radii. Ideally, the

choice of the distance function, coordinates, and algorithm,

should prescribe some notion of similarity for data conforma-

tions within each cluster.[9,21] For example, Euclidean distance

on internal coordinates has been used to cluster RNA struc-

tures.[22] In almost all cases, given the very large datasets

resulting from large-scale MD simulations, clustering algo-

rithms need to perform in approximately linear O(N) time or

better, where N is the number of conformations. However,

many popular clustering algorithms tend to be quadratic O(N2)

in running time, and thus are prohibitively slow for datasets

with millions of conformers and an expensive distance func-

tion such as the optimally superimposed root mean squared

deviation (RMSDopt). In some applications,[23] geometric clus-

tering is repeated numerous times—exacerbating the need for

a fast clustering algorithm.

k-medoids and k-means are two popular clustering methods

that attempt to minimize the sum of squared distances within

each cluster.[18,19] They require the number of centers to be speci-

fied a priori, by means of silhouetting[24] or some other appropri-

ate techniques. Furthermore, it has been reported that k-medoids

has a propensity to lump densely sampled folded conformations

and sparsely sampled unfolded conformations into the same

cluster.[12,16,25] For k-medoids, the popular implementation[26] has

O(N2) running time and is unsuitable for large datasets. The

neighbor algorithm is another widely adopted clustering

algorithm on MD conformations.[11,27] As opposed to requiring a

predetermined number of centers, it instead predefines a cut-off

distance and picks cluster centers ad hoc. In addition, the algo-

rithm is unable to properly identify elongated clusters and is

[a] Y. Zhao, F. K. Sheong, X. Huang

Department of Chemistry, The Hong Kong University of Science and

Technology, Clear Water Bay, Kowloon, Hong Kong

[b] Y. Zhao, P. Sander

Department of Computer Science and Engineering, The Hong Kong

University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

[c] J. Sun

Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

[d,e] X. Huang

Center of Systems Biology and Human Health, School of Science and

Institute for Advance Study, The Hong Kong University of Science and

Technology, Clear Water Bay, Kowloon, Hong Kong, Division of Biomedical

Engineering, The Hong Kong University of Science and Technology, Clear

Water Bay, Kowloon, Hong Kong

E-mail: xuhuihuang@ust.hk

Contract/grant sponsor: Hong Kong Research Grants Council GRF;

Contract/grant numbers: 661011, F-HK29/11T, HKUST2/CRF/10, 619509;

Contract/grant sponsor: University Grants Council; Contract/grant

number: SBI12SC01; Contract/grant sponsor: NIH; Contract/grant

number: R01-GM062868.

VC 2012 Wiley Periodicals, Inc.

Journal of Computational Chemistry 2013, 34, 95–104 95

FULL PAPERWWW.C-CHEM.ORG

http://onlinelibrary.wiley.com/

strongly biased by the cut-off distance.[8] Other clustering algo-

rithms such as linkage and common-nearest-neighbor have also

been applied to analyze MD trajectories,[8,9] but they all suffer

from being approximately O(N2) in running time.

In this article, we choose to focus on the k-centers algorithm,

a linear O(kN) running time algorithm that attempts to minimize

the maximum cluster radii.[20] The general problem of finding

the set of centers that best minimizes the sum of maximum clus-

ter radii, min
P

krmax, out of all C(N, k) possible combinations of

the k-centers chosen from N points, is very complicated (at least

NP-Hard).[20] However, Hochbaum and Shmoys[20] have shown

that the score (
P

krmax)of an approximate implementation of the

k-centers algorithm is off from min
P

krmax by at most a factor of

two. In this implementation, we start with one center, and itera-

tively walk up to a total of k-cluster centers by finding the point

furthest away from all previously found cluster centers. Under

the Euclidean metric, k-centers algorithm sequentially partitions

the dataset into convex Voronoi cells each of approximately

equal size. Currently, the k-centers algorithm is a critical compo-

nent of MSMBuilder,[13,16] a statistical framework to construct

MSMs from MD trajectories. However, large datasets can take up

to one day or more to cluster, and successfully constructing a

MSM may require repeated k-centers clustering trials. For these

reasons, a fast k-centers clustering algorithm will be very useful

to accelerate clustering and analysis of MD datasets and will ena-

ble us to reach much larger number of cluster centers if need be.

In this work, we exploit the properties of metric space to

rapidly accelerate the speed of k-centers by means of the tri-

angle inequality and parallelize the algorithm on the GPU.

Overall our code is up to two orders of magnitude faster

when compared to the CPU code. The GPU has several distinct

features that make it particularly suitable for parallelization of

the k-centers algorithm. First, the high density of the GPU’s

Arithmetic Logic Units makes it naturally suitable for expensive

operations such as RMSDopt. Second, in the k-centers algo-

rithm, all the threads must be repeatedly synced together to

find the subsequent cluster center; the low latency in the

GPU’s inter-thread communication makes it particularly suita-

ble for this task. Finally, in the k-centers algorithm, operations

such as finding the point with the greatest distance to a given

center reduces to the classic and well-studied GPU parallel

reduction problem.[28] We implemented our algorithm using

NVIDIA’s CUDA platform[29] due to its versatile and easy to use

API. In general, clustering algorithms exhibit a natural structure

amenable for parallelization in that the calculation of the dis-

tance from one point to a center is independent of other

points. As one might expect, GPU parallelization of clustering

algorithms has been investigated in the past.[30,31] However,

they were not optimized for MD conformations within general

metric spaces endowed with expensive distance functions, and

they certainly do not leverage the powerful triangle inequality.

Methodology

The k-centers Algorithm

The implementation of the k-centers algorithm[20] is herein

described (Fig. 1a). For notational purposes, we use the terms

point and conformation interchangeably, as a conformation is

represented as a point in R3D.

Figure 1. A step-by-step schematic diagram illustrating the (a) the naive k-centers algorithm and (b) the application of the triangle inequality. In the k-cen-

ters algorithm, the choice of subsequent centers is always the point furthest away from all previously found centers (denoted by triangles). However, it is

possible to speed up this algorithm drastically by first pre-computing the center-to-center distances and applying the triangle inequality. As shown in the

middle panel of b, the blue semidotted circle denotes the area of coverage provided by the triangle inequality, whereby all points within this dotted circle

do not need a distance calculation. For example, the distance between centers 0 and 1 is 2.42, the distance between point a and center 0 is 1.19, which is

less than 2.42/2 ¼ 1.21. Indeed, the triangle inequality then tells us this point must be closer to center 0 than center 1, and thus there is no need to

explicitly calculate the distance between point a and center 1. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPER WWW.C-CHEM.ORG

96 Journal of Computational Chemistry 2013, 34, 95–104 WWW.CHEMISTRYVIEWS.COM

• Initially, we pick a random point as the starting center,

denoted as center 0. Then, we calculate the distances of all N

points to the current center and find the point Y furthest from

center 0. Point Y then becomes the new center for the next

iteration.

• We then calculate the distance of all N points to the new

center and see if it is closer than the currently closest center.

If so, this new center becomes assigned to the point.

• Afterwards, we find the point that is furthest away from

all previously found centers.

• We repeat this process for k iterations or until some min-

imum cluster radii criteria is satisfied.

We choose to prescribe the number of centers a priori. On

each iteration, we consider the set of minimum distances of

each point to all possible centers. The choice of the subse-

quent center is the point that attains a maximum in the afore-

mentioned set. As such, the k-centers algorithm thereby mini-

mizes the maximum distance of each point to all possible

centers. It is easy to see that the running time of the naive

implementation of the k-centers algorithm is O(kN), where k is

the number of centers, and N is the number of points.

Distance Function

Given a system with N atoms, a particular conformation

resides in R3D Euclidean space, where D corresponds to the

chosen number of heavy atoms or C-a atoms. We formally

define the distance function, RMSDopt(x,y), between two con-

formations x and y as follows.

Let Y (R3D be the set of all possible rigid-body translations

and rotations of a y [R3D

Then,

RMSDoptðx; yÞ ¼ min
y2Y

ffi
1

D

X3D

1

ðxi � yiÞ2

vuut (1)

In other words, the distance function is the standard RMSD

after we optimally superimpose one conformer onto the other.

We implemented Theobald’s[32] quaternion characteristic poly-

nomial (QCP) method to calculate RMSDopt(x,y), due to its

speed and accuracy. Alternative methods include exact

solvers[16] and the cyclic-Jacobi method.[33]

We emphasize that RMSDopt is very expensive to calculate, as

our GPU implementation of the QCP method requires hundreds

to thousands of mixed single and double precision floating

point operations per calculation. Therefore, it is of critical impor-

tance that we reduce the total number of distance calculations.

The triangle inequality

Steipe[34] have previously provided a complete and rigorous

proof showing that RMSDopt indeed satisfies the axioms of a

metric. That is, (R3D, RMSDopt) forms a metric space, and

RMSDopt is non-negative, discernible, symmetric, and satisfies

the triangle inequality. In particular, we can take advantage of

the triangle inequality to drastically speed-up the k-centers

clustering algorithm. We show how this is done as follows.

By the triangle inequality:

dðci; cjÞ � dðx; ciÞ þ dðx; cjÞ (2)

and suppose, we know dðx; ciÞ � dðci ;cjÞ
2

, then we know by sub-

stituting in (2):

dðx; ciÞ � dðx; cjÞ (3)

where x is a particular point, cj refers to the currently tested

center, ci refers the center that x is assigned to, and d(x,y) is

just short form for RMSDopt(x,y).

The incurred penalty for the triangle inequality is the cost of

calculating the center-to-center distances at the start of each

iteration—taking an additional O(k2) time and O(k) memory

compared to the naive implementation. An illustration of the

triangle inequality is explicitly shown in Figure 1b, and the

pseudo-code is available in Supporting Information Figure S1.

Geometrically, the triangle inequality filters out the most of

the points within a circle of some radius
dðci ;cjÞ

2 and partitions

the dataset into two disjoint sets: the set of points A that lie

inside any circle, and the set of points B that lie outside every

circle. All points in B fail the triangle inequality, and most of

the points in A pass the triangle inequality.

Strictly speaking, the above formulation is a weaker version of

the triangle inequality, as the current implementation does not

always guarantee that all points within all circles are able to

bypass the distance calculation. For example, in the bottom right

circle of Figure 4d (right panel), some points are red and fail the

triangle inequality despite lying inside the said circle. However,

these cases tend to take up a relatively small fraction of the total

number of points. For the sake of completeness, we also derive

a stronger triangle inequality that does provide more coverage

(full details are available in Supporting Information). For

technical reasons, we did not implement the stronger triangle

inequality on the GPU because the implementation requires

dynamically allocated arrays and linked lists. These data

structures are not as amenable to the parallel single instruction

multiple data processing and memory architecture of the GPU.

We denote favg as the average fraction of points that fail the

triangle inequality. In general, we denote the f-value as the

fraction of points that fail the triangle inequality on a given

iteration.

The running time of k-centers using the triangle inequality

is O(k2 þ kfavgN), 0 < favg < 1. Note that when favg is approxi-

mately equal to 1, the triangle inequality k-centers in fact per-

forms worse in running time than the naive implementation

time due to the overhead associated with calculating center-

to-center distances. However, we later on demonstrate that for

purposes of clustering conformations from MD simulations,

favg is almost always significantly smaller than 1 and that the

implementation behaves exceptionally well for relevant

datasets.

Parallelizing k-centers with triangle inequality on the GPU

We parallelized the triangle inequality k-centers algorithm on

the GPU using CUDA. We parallelize across all the points, that

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 95–104 97

http://onlinelibrary.wiley.com/

is, we launch N total threads to process N points independ-

ently. We arranged the coordinates of conformations in dimen-

sion-major convention to facilitate coalesced memory access

(so that threads read from and write to memory contiguously).

Furthermore, since the number of centers is usually much

smaller than the number of points, we allocate an auxiliary

storage array in global memory for the coordinates of previ-

ously found centers so that loading of their coordinates also

proceeds in a coalesced manner. We also fine-tuned the dou-

ble-precision QCP algorithm[32] into mixed single and double

precision to maximize performance. Furthermore, we imple-

mented a parallel reduction kernel to find the point furthest

away from all previous centers.[35]

To minimize idle threads in the GPU, we also parallelize the

triangle inequality component by compacting all the points

that fail the triangle inequality into a single continuous array.

Intra-warp conditionals (ifs, elseifs, switches) and nested condi-

tionals are deleterious to performance due to the GPU’s single

instruction, multiple data architecture. In particular, unless all

threads within a warp branch off in the same manner, multiple

passes are needed for each conditional. Otherwise, idle threads

on the streaming multiprocessor will adversely affect the per-

formance. Thus, it is of critical importance to circumvent diver-

gent conditionals. Because it is unlikely that all points within

an execution warp of 32 threads fail the triangle inequality, a

significant fraction of threads will idle on the streaming multi-

processor. To circumvent this problem, during each iteration,

we first preprocess by launching a kernel with N threads in

ceil(N/TPB) blocks, where TPB is the number of threads per

block. We utilize Harris et al.’s[36] scan-based compaction kernel

to sieve the points, whereby we identify all the points that

necessarily fail the triangle inequality and compact them into

a contiguous array that is then subsequently passed into a

new RMSD kernel. Compaction is very fast and has an almost

negligible overhead. This new kernel launches f*N threads in

ceil((fN)/TPB) blocks. Now every thread in this new kernel nec-

essarily fails the triangle inequality and there is no more

thread divergence, except possibly in the last block.

We tested our data on both the 3GB GTX 580, a consumer-

grade gaming card, and the 3 GB Tesla C2070, a professional

computing card. Our datasets were generated from MD

simulations.

MD simulation datasets

Alanine Dipeptide (Dipep). We adopted the simulation dataset

of the terminally blocked alanine peptide Ac-ala-NHMe gener-

ated by Chodera et al.[23] In particular, the conformations are

extracted from the trajectories obtained from the 400 K replica

of a replica exchange simulation. Altogether, there are 975

trajectories, each of which contains 20 ps simulation with

conformations stored every 0.1 ps, thus totally 195,000

conformations. See Ref [23] for additional details of this

simulation dataset.

b-hairpin Tryptophan Zipper 2 (Trpzip2). The MD simulation

dataset for the Trpzip2 peptide was partially taken from

Zhuang et al.[37] In particular, we have extended the 350 K MD

simulations reported in Ref. [37] to contain 1000 simulations.

As these simulations were generated in the Folding@Home

distributed computing environment,[38] their length slightly

varies and altogether we have collected 78,305 ns worth of

simulation time. With a saving interval of 5 ps, our dataset

reaches �15.68 million conformations in total. The simulations

were performed using the AMBER03 force field,[39] and the

simulation box contains 2923 TIP3P[40] waters and two Cl�

ions. All the simulations were performed using a version of the

Gromacs[41] modified for the Folding@Home infrastructure.[38]

Please refer to Ref. [37] for additional details of the simulation

setup.

Human Islet Amyloid Polypeptide (hIAPP). The MD dataset for

hIAPP contains 20 simulations with slightly various lengths at

an average of 198 ns each. We saved conformations every 2

ps, thus the total number of conformations is �1.98 million.

The initial conformations of our 20 simulations were randomly

selected from a 300-ns NVT simulation at 600 K. The initial

structure for this 600 K simulation was taken from the solution

NMR structure of hIAPP (PDB ID: 2KB8[42]). The simulations

were performed using the AMBER99SB force field.[43] The pep-

tide was solvated in the implicit solvent using the OBC GB

model[44] with solvent r ¼ 78.3 and surface tension ¼ 2.25936

kJ/(mol nm2). The Andersen thermostat[45] was adopted for

the temperature coupling with a coupling constant of 1 ps�1.

The simulations were performed using the GPU module of the

Gromacs 4[46] software supported by the OpenMM library.[47]

Maltose Binding Protein. The MBP dataset consists of 25 50-ns

MD simulations with the saving interval of 5 ps with a total of

0.25 million conformations. The simulations were performed

using the AMBER03 force field.[39] The initial protein structure

was taken from the X-ray crystal structure of apo-open

Maltose Binding Protein (MBP; PDB ID: 1OMP[48]). The protein

molecule was solvated in a water box with 19,038 TIP3P[40]

waters and eight Naþ ions. The simulation system was mini-

mized using a steepest descent algorithm, followed by a 200-

ps MD simulation applying a position restraint potential to the

protein heavy atoms. All the simulations were performed

under NPT ensemble with P ¼ 1 bar and T ¼ 310 K. Tempera-

ture annealing was also applied to raise the temperature from

50 to 310 K at the first nanosecond of each simulation. The ve-

locity-rescaling thermostat[49] with a coupling constant of 0.1

ps�1 and the Berendsen barostat[50] with a coupling constant

of 1 ps�1 were used for the temperature and pressure cou-

pling respectively. A cutoff of 12 Å was used for both van der

Waals and short-range electrostatic interactions. Long-range

electrostatic interactions were treated with the particle-mesh

Ewald method.[51] Nonbonded pair-lists were updated every 10

steps with an integration step size of 2 fs in all simulations. All

bonds were constrained using the LINCS algorithm.[52] The

simulations were performed using the Gromacs 4 software.[46]

Overall, the Dipep, Trpzip2, hIAPP, and MBP simulation data-

sets contain around 0.20, 15.68, 1.98, and 0.25 million confor-

mations respectively. In addition, we have also generated

several sets of uniformly random datasets to serve as referen-

ces for analyzing the performance of the triangle inequality.

The random datasets have the same dimension as the

FULL PAPER WWW.C-CHEM.ORG

98 Journal of Computational Chemistry 2013, 34, 95–104 WWW.CHEMISTRYVIEWS.COM

corresponding protein MD datasets, but do not have any

bond length or angle constraints.

Results and Discussions

In this section, we test our algorithm on four different protein

datasets and show that the performance of our algorithm is

up to two orders of magnitude faster than the CPU implemen-

tation. In particular, the algorithm performs better on large

datasets. The algorithm is also well-behaved under varying

number of clusters (k), and is essentially linear in running time

with respect to k. Furthermore, we show that the triangle in-

equality performs relatively well on protein datasets even in

high dimensions when compared against corresponding ran-

domly distributed datasets. Finally, in a simple dipeptide exam-

ple, we show that the k-centers algorithm is able to faithfully

recover the underlying density of the dataset in contrast to

the popular k-medoids algorithm. Note that for purposes of

evaluating the RMSD function, we use Ca atoms for MBP,

hIAPP, and Trpzip2 datasets. For Dipep, we include the 10

heavy atoms for the RMSD calculations.

Speedup compared to the CPU implementations

We compare the speedup of the GPU versus the CPU on four

different protein datasets, ranging from the small Alanine

Dipeptide to the large 370-residue MBP (Fig. 2a). Although

benchmarking, we chose to vary the number of conformations

by varying the fraction of the total number of conformers

available, for example, a subsampling ratio of 0.4 uses 40% of

the total available conformers for that dataset. As shown in

Figure 2b, when using the full-dataset, we observe a 100-fold

speedup in MBP (68 min vs. 40 s, 0.25 million conformations),

an 80-fold speed-up in hIAPP (4 min vs. 5 s, 1.98 million con-

formations), a 42-fold speedup in Trpzip2 (40 min vs. 30 s

15.68 million conformations), and a 32-fold speedup in Dipep

(39 s vs. 1.2 s, 0.20 million conformations). In general, the

larger the fraction of total available conformations and the

larger the size of the protein, the better the performance is.

We attribute the inferior speedup of the Dipep dataset to its

small size (both in the number of conformers, and the number

of dimensions), which in turn, is unable to fully utilize the

arithmetic logic units on the GPU.

Overall, the observed speedup is likely a result of several

components: the coalesced reads and writes from GPU mem-

ory, the fast all-against-one RMSDopt kernel, and parallel reduc-

tion. In addition, we have been able to efficiently parallelize

the triangle inequality by avoiding divergent threads. Surpris-

ingly, the algorithm performs slightly worse on the professio-

nal grade Tesla C2070 (Fig. 2c) than the consumer grade

GTX580 (Fig. 2b)—despite the C2070’s superior double preci-

sion floating operation performance. Upon further investiga-

tion, we attribute this to the GTX580’s superior single precision

floating-point operation speed and the greater memory

Figure 2. Speedup using GPU code compared against the CPU code on four different MD simulation datasets. (a) The four systems of interest are: Alanine

Dipeptide (Dipep, 0.20 million conformations), b-hairpin Tryptophan Zipper 2 peptide with 12 residues (Trpzip2, PDB ID: 1LE1, 15.68 million conformations),

Human Islet Amyloid Polypeptide with 37 residues (hIAPP, PDB ID: 2KB8, 1.98 million conformations), and MBP with 370 residues (MBP, PDB ID: 1OMP, 0.25

conformations). Speedup as a function of subsampling ratio, the fraction of the total number of available conformations, of the datasets using the GTX

580 GPU and Tesla GPU are shown in (b) and (c), respectively. The speedup is tested with the number of centers k ¼ 4000. For all systems except Dipep,

we use only the backbone C-a atoms. For Dipep, we use 10 heavy atoms to compute RMSD.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 95–104 99

http://onlinelibrary.wiley.com/

bandwidth. We also note that the CPU version of the RMSD

calculation (from MSMBuilder) uses exclusively single precision

operations[13]—as such, our GPU algorithm should in fact fare

better against a mixed single-double precision implementation

of Theobald’s algorithm.[32] Note that these results disregard

the I/O time from the hard-drive to CPU memory in both CPU

and GPU implementations, as (1) I/O from hard drive is not

always needed (the data may already exist in memory), and (2)

transfer from hard drive to memory is very much implementa-

tion and hardware dependent. For all benchmarks, we note

that both GPU and CPU implementations take advantage of

the triangle inequality (see the next section for more details).

Our algorithm is also well behaved as we increase the num-

ber of clusters in all datasets. As shown in Figure 3, we

observe that the algorithm is linear in running time with

respect to k, with correlation coefficient > 0.99 for all datasets.

If desired, we are able to increase the number of centers by

more than an order of magnitude with only a linear increase

in the amount of time needed. Thus, the algorithm allows one

to create a much higher resolution of clusters if needed.

For example, in the hIAPP dataset (1.98 million conformations,

37 residues), we generated 128,000 clusters in only 4 min

and 19 s.

Triangle inequality

The triangle inequality is able to greatly speedup the algorithm

by reducing the total of RMSD calculations needed. As shown in

Table 1, the triangle inequality alone is able to speedup cluster-

ing of the hIAPP dataset by almost 17 times. For Trpzip2 the

observed speedup is about 11 times. The difference in perform-

ance is due to various factors, such as the dimensionality of the

data, the underlying density, and the overhead in parallelizing

the algorithm. For example, in the Dipep dataset, the observed

speedup is only threefold, most likely due to the inherent cost

of the overhead associated with GPU memory transfer and

other initialization routines. For MBP, a dataset with over 370

residues, the speedup is only approximately twofold due to the

large associated dimensionality of the dataset. The effect of the

dimensionality and underlying density is explained in detail in

the next two paragraphs.

To better understand why a high dimensional space makes

the triangle inequality less effective, we must consider the

effective coverage of a high dimensional n-sphere within an

n-hypercube [see Fig. 1b for the two-dimensional (2D) case].

To aid us in our understanding, we analyzed the property of

the triangle inequality in high dimensional space endowed

with the Euclidean metric. Suppose, we have an n-cube with

length at most a constant factor p bigger than the radius of

an n-sphere. Then, the ratio of the volume of a 2n-sphere to

the volume of a 2n-hypercube is:

SV2n

CV2n
¼ pn

n!p2n
(4)

Similarly, the ratio of the volume of a 2n þ 1 sphere to the

volume of a 2n þ 1 hypercube is:

SV2nþ1

CV2nþ1
¼ 22nþ1n!pn

ð2nþ 1Þ!p2nþ1
(5)

and in the limit as n tends to infinity, an n-sphere takes up a

negligible amount of space in an n-cube as the factorial term in

the denominator dominates, as p > 1. In our algorithm, we

have at most a constant number of clusters, and therefore a

constant number of n-spheres. Even if all the n-spheres are dis-

joint in coverage, we still multiply the above ratio by at most a

constant factor, for example, 4000 clusters. For a derivation of

eqs. (4) and (5) please refer to Supporting Information.

Table 1. Running time (s) of the datasets with and without the triangle

inequality on the GTX 580 GPU.

Time (s) Dipep Trpzip2 hIAPP MBP

With T-Ineq 1.20 29.94 5.49 40.70

Without T-Ineq 3.72 332.77 92.89 89.90

We used k ¼ 4000 and the full number of conformations for each data-

set (See Methods for details).

Figure 3. Linearity in the running time as we increase the number of clusters (K). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

FULL PAPER WWW.C-CHEM.ORG

100 Journal of Computational Chemistry 2013, 34, 95–104 WWW.CHEMISTRYVIEWS.COM

The triangle inequality tends to perform better on datasets

with dense regions separated by sparse regions (dense dataset)

than uniformly distributed datasets (uniform dataset). Figure 4

depicts two artificially generated 2D datasets of varying density.

In the dense dataset, when compared against the uniform data-

set, a single circle provided by the triangle inequality covers a

greater proportion of all points because all the points are quite

close to the center of the circle (left panels, Fig. 4). Furthermore,

in the dense dataset, increasing the number of centers leads to

a rapid decrease in f, the fraction of points that fail the triangle

inequality (red points, Fig. 4). Overall this speeds up the algo-

rithm due to the favg term in the O(k2 þ kfavgN) running time.

Biomolecular simulations datasets generally have features of

dense regions (free energy minimums) separated by sparse

regions (free energy barriers),[53] therefore, we expect that the

triangle inequality perform well on these datasets. Indeed, as

shown in Table 2, we observe that in all randomly generated

datasets (of equal number of conformations and dimensions to

the corresponding protein MD dataset), the f-values are greater

than 90%, whereas in the corresponding protein MD dataset, the

f-values are much smaller. As expected, protein datasets take

considerably less time to cluster (5.6 s for hIAPP, compared to

144.7 s for the corresponding random dataset, see Table 2). In

Figure 5, we look at the behavior of the f-value as we increase

the number of clusters. For MBP, a protein system with a high

dimensionality (370 residues), the f-value converges relatively

slowly to about 0.32. However, for all the other MD datasets, the

f-value decreases very quickly to less than 0.05. We also note that

hIAPP has a lower f-value than Trpzip2 despite hIAPP’s higher

dimensionality (37 residues vs. 12 residues). We hypothesize that

the behavior is due to the differences in underlying density distri-

bution of these two datasets as Trpzip2 is a folded peptide with

well-defined native structure with a large global minimum and

hIAPP is an intrinsically disordered protein with a variegated

energy landscape comprised of many distinct local minima.

Cluster population as an indicator of density

In this section, we highlight the robustness of the k-centers

algorithm by comparing it against the popular k-medoids

algorithm in the ability to recover the ground-truth density of

Alanine Dipeptide. As discussed earlier,[13,16,25,54] the k-centers

clustering algorithm generates clusters of approximately

Figure 4. The performance of the triangle inequality on k-centers cluster-

ing for two 2D datasets with differing densities. The results for k ¼ 1–5 are

shown in (a)–(e), respectively. Left panels correspond to a dataset with dis-

tinct dense regions, which mimic the free energy landscape with multiple

metastable regions. Right panels correspond to a dataset with a uniformly

random distribution. The red circles within each diagram depict the total

amount of coverage provided by the triangle inequality. Green points pass

the triangle inequality, and red points fail the triangle inequality. f is the

fraction of the points that fail the triangle inequality. The speedup is how

much faster the left panel takes to compute when compared to the right

panel.

Table 2. Performance comparison of the GPU k-centers clustering

algorithm between the protein datasets and the uniformly random

datasets (with the same number of atoms and conformations compared

to the corresponding protein datasets) on running time (s) and the

fraction of conformations that fail the triangle inequality.

Number of atoms

included in RMSD

calculation

Running time (s)

Fraction of

conformations that

fail the triangle

inequality

Protein

dataset

Random

dataset

Protein

dataset

Random

dataset

10 (Dipep) 1.2 5.7 0.035 0.916

12 (Trpzip2) 40.8 444.1 0.026 0.991

37 (hIAPP) 5.6 144.7 0.019 0.999

370 (MBP) 30.0 118.7 0.390 0.993

We use k ¼ 4000.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 95–104 101

http://onlinelibrary.wiley.com/

uniform distance to each cluster center, resulting in a strong

correlation between the population of a cluster and its density.

Alanine Dipeptide is an ideal system for verifying this correla-

tion, because the logarithm of the density of conformations

described by a pair of torsion angles (/, w) is proportional to

the potential of mean force (PMF) W ¼ �kT ln(Pi/P0),[55] where,

Pi is the density estimator for a particular bin i. P0 is a constant

consistent across all three figures, here, we use P0 ¼ 5 � 10�6.

We discretize the torsion plane by dividing it into square bins

of 5� by 5�.

To generate the PMF plot for

the reference density, defined

as the underlying population

density of the reference simula-

tion datasets (Fig. 6a), Pi is the

number of conformations that

lie in bin i, divided by the total

of number conformations. We

can gauge the robustness of

the two clustering algorithms

by comparing their recovered

PMF maps against the refer-

ence density. For the PMF

maps resulting from the two

clustering algorithms (Figs. 6b

and 6c), the calculation of Pi is

as follows: let Ni denote the set

of clusters that belong to a

particular bin i. A cluster belongs to a bin i if it owns at least

one conformation positioned in bin i. Let nj denote the num-

ber of conformations that belong to a given cluster j. Let B be

the set of all bins. Then, vi ¼ 1= Nij j
P

j2Ni
nj ; and

Pi ¼ vi=
P

i2B vi . As shown in Figure 6b, the k-centers algorithm

is able to sufficiently recover all six minima and their positions

as found in the reference density. Moreover, the minima at

around (�140�, 160�) and (�60�, 150�) are the deepest out of

all six minima, a result consistent with the reference density.

Furthermore, the k-medoids algorithm recovers a PMF map of

roughly equal depth and essentially fails to identify any min-

ima (Fig. 6c)—deviating significantly from the reference den-

sity (Fig. 6a).

Thus, we conclude that the k-centers algorithm is able to

gauge estimates of density much better than the k-medoids

algorithm. However, as discussed earlier in the article and in

other works,[25] we note that the accuracy of the density esti-

mation depends on the intrinsic dimensionality of the system.

For systems with a low degree of freedom, it is empirically

helpful to use k-centers as preliminary estimator of density.

Conclusion

We develop a GPU powered k-centers clustering algorithm

that utilizes the triangle inequality with an improved running

time of O(k2 þ kfavgN). We achieve this by optimizing memory

access patterns, parallelizing the RMSDopt operations, and

implementing the triangle inequality via compaction. With this

new algorithm, we are able to speed up clustering of MD con-

formations by up to two orders of magnitude. For protein

datasets with up to millions of conformations, the conforma-

tions can be partitioned into thousands of clusters in under a

minute. Furthermore, we show that the algorithm behaves

well even when we increase the number of clusters. In addi-

tion, using artificial 2D datasets, we show that the triangle in-

equality performs especially well for datasets comprised of

dense and sparse regions. For biological datasets of low

dimensionality, we show that the triangle inequality is highly

effective as favg tends to be very small. We also provide a

Figure 6. The projection of the PMF (kT) of Alanine Dipeptide (Dipep) onto the torsion angle plane spanned by

/ (�) and u (�) (see Fig. 2a for their definitions), (a) directly from the equilibrium MD simulations, (b) from the

populations of the clusters obtained by the k-centers algorithm with K ¼ 4000, (c) from the populations of the

clusters obtained by the k-medoids algorithm with K ¼ 4000. The /–u plane is divided into square bins of 5� by

5� . The free energy is calculated by G ¼ �lnPi/P0 for a particular bin i, where Pi is a measure of the density of

the ith bin, and P0 ¼ 5 � 10�6. We refer the reader to the main text for the exact form of Pi. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Fraction of conformations that fail the triangle inequality tests

for different MD datasets. The dashed line denotes the fraction of points

that fail at a certain number of clusters (K), with K spaced every 10 clusters

up to 4000 clusters. The bold line denotes the running average (over 50

points) of the dashed line. For MD simulation dataset of protein conforma-

tions of relatively low dimensionality such as Dipep (10 heavy atoms,

black), Trpzip2 (12 Ca atoms, red), and hIAPP (37 Ca atoms, green), the

fraction of points that fail the triangle inequality rapidly decreases with

increasing number of K. For high dimension simulation dataset MBP (370

Ca atoms, blue), the number of points that fail the triangle inequality

decreases slower and oscillates rapidly. We also provide results for corre-

sponding randomly distributed datasets in Supporting Information Table 1,

whereby the average fraction of points that fail the triangle inequality is

always greater than 90%. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

F6

FULL PAPER WWW.C-CHEM.ORG

102 Journal of Computational Chemistry 2013, 34, 95–104 WWW.CHEMISTRYVIEWS.COM

mathematical explanation showing why the triangle inequality

tends to be not as effective for very high dimensions. Overall,

the fast speed of the clustering algorithm enables us to

address one of the key challenges in the construction of

MSMs, which requires fast geometric clustering.[12,13,15,16]

We develop a triangle inequality which can be applied to

other metric space clustering algorithms, such as k-medoids

and k-means. By being able to parallelize the triangle inequal-

ity on the GPU, the methods we develop holds promise for

applications in various clustering algorithms of general metric

spaces. However, we do note that the k-centers algorithm has

a propensity to be very sensitive to outliers, that is, the algo-

rithm prefers choosing outliers in phase space as cluster cen-

ters over more dense points.[12,25,54] This problem can be

addressed by several different approaches: a hybrid k-centers

and k-medoids algorithm has been developed in MSMBuilder

2[16]; subsampling the datasets to disregard many of the out-

liers[12,56]; density-based hierarchical clustering.[25] We specu-

late that the k-centers clustering algorithm may also be used

to generate landmark points for dimensionality reduction algo-

rithms such as Isomap.[57] The code is publicly available at

http://www.proteneer.com/.

Acknowledgments

The authors thank Douglas Theobald from Brandeis University for

discussions regarding the implementation details of the RMSD

algorithm; Sean Baxter from the Modern GPU for discussions on

GPU reduction and scans. They also thank Qin Qiao for providing

the hIAPP MD simulation dataset, and the Cloud-computing Center

for Multidisciplinary Research at HKUST and the Key Laboratory of

Advanced Optical Communication Systems and Networks in

Shanghai for providing the GPU computing resources.

Keywords: molecular dynamics � clustering � triangle inequal-

ity � general-purpose computation on GPU � Markov state

models

How to cite this article: Y. Zhao, F. K. Sheong, J. Sun, P. Sander,

X. Huang, J. Comput. Chem. 2013, 34, 95–104. DOI: 10.1002/

jcc.23110

Additional Supporting Information may be found in the

online version of this article.

[1] G. R. Bowman, V. A. Voelz, V. S. Pande, Curr. Opin. Struct. Biol. 2011,

21, 4.

[2] X. Huang, G. R. Bowman, S. Bacallado, V. S. Pande, Proc. Natl. Acad. Sci.

2009, 106, 19765.

[3] R. Zhou, M. Eleftheriou, A. K. Royyuru and B. J. Berne, Proc. Natl. Acad.

Sci. USA 2007, 104, 5824.

[4] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P.

Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, W. Wriggers,

Science 2010, 330, 341.

[5] V. A. Voelz, G. R. Bowman, K. Beauchamp, V. S. Pande, J. Am. Chem.

Soc. 2010, 132, 1526.

[6] P. L. Freddolino, F. Liu, M. Gruebele, K. Schulten, Biophys. J. 2008, 94,

L75.

[7] F. Morcos, S. Chatterjee, C. L. McClendon, P. R. Brenner, R. Lopez-

Rendon, J. Zintsmaster, M. Ercsey-Ravasz, C. R. Sweet, M. P. Jacobson,

J. W. Peng and J. A. Izaguirre, PLoS Comput. Biol. 2010, 6, e1001015.

[8] B. Keller, X. Daura, W. F. Van Gunsteren, J. Chem. Phys. 2010, 132,

074110.

[9] J. Shao, S. W. Tanner, N. Thompson, T. E. Cheatham, J. Chem. Theory

Comput. 2007, 3, 2312.

[10] M. E. Karpen, D. J. Tobias, C. L. Brooks, 3rd, Biochemistry 1993, 32, 412.

[11] X. Daura, W. F. van Gunsteren, A. E. Mark, Proteins 1999, 34, 269.

[12] G. R. Bowman, K. A. Beauchamp, G. Boxer, V. S. Pande, J. Chem. Phys.

2009, 131, 124101.

[13] G. R. Bowman, X. Huang, V. S. Pande, Methods 2009, 49, 197.

[14] D. A. Silva, G. R. Bowman, A. Sosa-Peinado, X. Huang, PLoS Comput.

Biol. 2011, 7, e1002054.

[15] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera,

C. Schütte, F. No�e, J. Chem. Phys. 2011, 134, 174105.

[16] K. A. Beauchamp, G. R. Bowman, T. J. Lane, L. Maibaum, I. S. Haque, V.

S. Pande, J Chem. Theory Comput. 2011, 7, 3412.

[17] I. Buch, T. Giorgino, G. De Fabritiis, Proc. Natl. Acad. Sci. USA 2011, 108,

10184.

[18] J. A. Hartigan, Clustering Algorithms; Wiley, New York, 1975.

[19] J. A. Hartigan, M. A. Wong, J. R. Stat. Soc. 1979, 28, 100.

[20] D. Hochbaum, D. Shmoys, Math. Oper. Res. 1985, 10, 180.

[21] M. E. Karpen, D. J. Tobias, C. L. Brooks, Biochemistry 1993, 32, 412.

[22] A. Y. Sim, M. Levitt, Proc. Natl. Acad. Sci. USA 2011, 108, 3590.

[23] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, W. C. Swope, J. Chem.

Phys. 2007, 126, 155101.

[24] P. Rousseeuw, J. Comput. Appl. Math. 1987, 20, 53.

[25] X. Huang, Y. Yao, G. R. Bowman, J. Sun, L. J. Guibas, G. Carlsson, V. S.

Pande, Pac. Symp. Biocomput 2010, 15, 228.

[26] L. Kaufman, P. J. Rousseeuw, In Finding Groups in Data: An Introduc-

tion to Cluster Analysis, Wiley, New York, 2008.

[27] W. F. van Gunsteren, D. Bakowies, R. Baron, I. Chandrasekhar, M. Chris-

ten, X. Daura, P. Gee, D. P. Geerke, A. Gl€attli, P. H. Hünenberger, Angew.

Chem. Int. Ed. Engl. 2006, 45, 4064.

[28] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens, In Proceedings of the

22nd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hard-

ware, Eurographics Association, San Diego, California, 2007; pp. 97–

106.

[29] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, Micro IEEE 2008, 28,

39.

[30] K. J. Kohlhoff, M. H. Sosnick, W. T. Hsu, V. S. Pande, R. B. Altman, Bioin-

formatics 2011, 27, 2322.

[31] R. Wu, B. Zhang, M. Hsu, In Proceedings of the combined workshops

on UnConventional high performance computing workshop plus

memory access workshop, ACM, Ischia, Italy, 2009; pp. 1–6.

[32] D. L. Theobald, Acta Crystallogr. A 2005, 61, 478.

[33] L. H. Hung, M. Guerquin, R. Samudrala, BMC Res. Notes 2011, 4, 97.

[34] B. Steipe, Acta Crystallogr. A 2002, 58, 506.

[35] M. Harris, S. Sengupta, J. D. Owens, Parallel prefix sum (scan) with

CUDA, NVIDIA Developer Technology, GPU Gems. 2007, 3, 851–876.

[36] S. Sengupta, M. Harris, Z. Yao, J.D. Owens, Proceedings of the 22nd

ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,

Eurographics Association Aire-la-Ville, Switzerland, Switzerland, 2007,

97–106. http://dl.acm.org/citation.cfm?id=1280110.

[37] W. Zhuang, R. Z. Cui, D. A. Silva, X. Huang, J. Phys. Chem. B 2011, 115,

5415.

[38] M. Shirts, V. S. Pande, Science 2000, 290, 1903.

[39] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang,

P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman, J. Comput.

Chem. 2003, 24, 1999.

[40] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L.

Klein, J. Chem. Phys. 1983, 79, 926.

[41] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J.

Berendsen, J. Comput. Chem. 2005, 26, 1701.

[42] S. M. Patil, S. Xu, S. R. Sheftic, A. T. Alexandrescu, J. Biol. Chem. 2009,

284, 11982.

[43] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling,

Proteins 2006, 65, 712.

[44] A. Onufriev, D. Bashford, D. A. Case, Proteins 2004, 55, 383.

[45] H. C. Andersen, J. Chem. Phys. 1980, 72, 2384.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 95–104 103

[46] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Com-

put. 2008, 4, 435.

[47] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand,

A. L. Beberg, D. L. Ensign, C. M. Bruns, V. S. Pande, J. Comput. Chem.

2009, 30, 864.

[48] A. J. Sharff, L. E. Rodseth, J. C. Spurlino, F. A. Quiocho, Biochemistry

1992, 31, 10657.

[49] G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 2007, 126, 014101.

[50] H. Berendsen, J. Postma, W. Van Gunsteren, A. DiNola, J. Haak,

J. Chem. Phys. 1984, 81, 3684.

[51] U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, L. Pedersen,

J. Chem. Phys. 1995, 103, 8577.

[52] B. Hess, H. Bekker, H. Berendsen, J. Fraaije, J. Comput. Chem. 1997, 18,

1463.

[53] F. Noe, S. Fischer, Curr. Opin. Struct. Biol. 2008, 18, 154.

[54] X. Huang, G. R. Bowman, S. Bacallado, V. S. Pande, Proc. Natl. Acad. Sci.

USA 2009, 106, 19765.

[55] J. D. Chodera, W. C. Swope, J. W. Pitera, K. A. Dill, Multiscale Model.

Simul. 2006, 5, 1214.

[56] F. Noe, C. Schutte, E. Vanden-Eijnden, L. Reich, T. R. Weikl, Proc. Natl.

Acad. Sci. USA 2009, 106, 19011.

[57] P. Das, M. Moll, H. Stamati, L. E. Kavraki, C. Clementi, Proc. Natl. Acad.

Sci. USA 2006, 103, 9885.

Received: 1 July 2012
Revised: 14 August 2012
Accepted: 19 August 2012
Published online on 20 September 2012

FULL PAPER WWW.C-CHEM.ORG

104 Journal of Computational Chemistry 2013, 34, 95–104 WWW.CHEMISTRYVIEWS.COM

