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Abstract. This paper proposes a fast elliptic curve multiplication algo-
rithm applicable for any types of curves over finite fields F,, (p a prime),
based on [Mon87], together with criteria which make our algorithm re-
sistant against the side channel attacks (SCA). The algorithm improves
both on an addition chain and an addition formula in the scalar multi-
plication. Our addition chain requires no table look-up (or a very small
number of pre-computed points) and a prominent property is that it can
be implemented in parallel. The computing time for n-bit scalar mul-
tiplication is one ECDBL + (n — 1) ECADDs in the parallel case and
(n — 1) ECDBLs + (n — 1) ECADDs in the single case. We also pro-
pose faster addition formulas which only use the z-coordinates of the
points. By combination of our addition chain and addition formulas, we
establish a faster scalar multiplication resistant against the SCA in both
single and parallel computation. The improvement of our scalar multi-
plications over the previous method is about 37% for two processors and
5.7% for a single processor. Our scalar multiplication is suitable for the
implementation on smart cards.

1 Introduction

In recent years, several elliptic-curve based cryptosystems (ECC) have been in-
cluded in many standards [ANSITEEE/NISTISECIWAP]. The key length of ECC
is currently chosen smaller than those of the RSA and the ElGamal-type cryp-
tosystems. The small key size of ECC is suitable for implementing on low-power
mobile devices like smart cards, mobile phones and PDAs (Personal Digital As-
sistants, such as Palm and Pocket PC). Let E(K) be an elliptic curve over
a finite field K = F, (p a prime). The dominant computation of the encryp-
tion/decryption and the signature generation/verification of ECC is the scalar
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multiplication d* P, where P € F(K) and d is an integer. It is usually computed
by combining an adding P+ @ (ECADD) and a doubling 2x P (ECDBL), where
P,Q € E(K). Several algorithms have been proposed to enhance the running
time of the scalar multiplication [Gor98[CMO98|. The choice of the coordinate
system and the addition chain is the most important factor. A standard way in
[EEE] is to use the Jacobian coordinate system and the addition-subtraction
chain. Some efficient addition chains use a table look-up method. It is useful for
software implementation but not for smart cards because the cost of the memory
spaces is expensive and an I/O interface to read the table is relatively slow.
This paper proposes a fast multiplication which is applicable for any type of
elliptic curves over finite fields K = IF,, (p a prime). The algorithm improves both
the addition chain and the addition formula in the scalar multiplication. Our
addition chain requires no table look-up (or a very small table) and a prominent
property of our addition chain is that it can be implemented in parallel The
latency of the scalar multiplication is the computation time of one ECDBL +
(n — 1) ECADDs. The improvement from the method in [IEEE] is the time of
(n—2) ECDBLs —(2n +2)/3 ECADDs. Moreover, our proposed addition chain
computes the scalar multiplication after one ECDBL + (n—1) ECADDs exactly,
although the expected time of the binary method is only estimated on average.
The side channel attacks (SCA) allow an adversary to reveal the secret key
in the cryptographic device by observing the side channel information such as
the computing time and the power consumption [Koc96lKJJ99]. An adversary
does not have to break the physical devise to obtain the secret key. It is a seri-
ous attack especially against mobile devices like smart cards. The simple power
analysis (SPA) only uses a single observed information, while the differential
power analysis (DPA) uses a lot of observed information together with statis-
tic tools. There are two approaches to resist the SPA. The first one uses the
indistinguishable addition and doubling in the scalar multiplication [CJOT]. In
the case of prime fields, Hesse and Jacobi form elliptic curves achieve the indis-
tinguishability by using the same formula for both an addition and a doubling
[LSOTJQOT]. Because of the specialty of these curves, they are not compatible to
the standardized curves in [ANSITEEEISEC]. The second one uses the add-and-
double-always method to mask the scalar dependency. The Coron’s algorithm
[Cor99] and the Montgomery form [OKSO0] are in this category. To resist the
DPA, some randomizations are needed [Cor99] and an SPA-resistant scheme
can be converted to be a DPA-resistant scheme [Cor99l.IT01]. The cost of the
conversion is relatively cheap comparing with the scalar multiplication itself.
In this paper, we discuss a criteria, which makes our algorithms to be resis-
tant against the SCA by comparing the Coron’s algorithm. Moreover, We also
propose addition formulas which only use the xz-coordinates of the points. The
computations of the ECADD and the ECDBL require 9M + 3S and 6M + 35,
where M, S are the times for a multiplication and a squaring in the definition
field IF,,. By combination of our addition chain and addition formulas, we estab-

! Recently, Smart proposed a fast implementation over a SIMD type processor, which
allows to compute several operations in the definition field in parallel [Sma01].
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lish a faster scalar multiplication algorithm resistant against the SCA in both
single and parallel computations. The improvement of our scalar multiplication
over the previously fastest method is about 37% for two processors and 5.7% for
a single processor.

2 Elliptic Curves and Scalar Multiplications

In this paper we assume that K =T, (p > 3) be a finite field with p elements.
Elliptic curves over K can be represented by the equation

B(K):={(z,y) € KxK|y* =2+ ax+b (a,b € K, 4a®>+270> # 0)}U 0O, (1)

where O is the point of infinity. Every elliptic curve is isomorphic to a curve
of this form, and we call it the Weierstrass form. An elliptic curve F(K) has
an additive group structure. Let P; = (x1,y1), P» = (x2,y2) be two elements of
E(K) that are different from O and satisfy P, # +P;. Then the sum P, + P, =
(z3,ys3) is defined as follows:

m3:)\2—x1—x2, ygz)\($1—$3)—y17 (2)
where A\ = (y2 — v1)/(xa — x1) for P, # P, and X = (323 + a)/(2y1) for
P, = P,. We call P, + P,(P; # P») the elliptic curve addition (ECADD) and
P+ Py(P; = Ps), that is 2« Py, the elliptic curve doubling (ECDBL). Let d be an
integer and P be a point on the elliptic curve E(K). The scalar multiplication
is to compute the point d * P. There are three types of enhancements of the
scalar multiplication. The first one is to represent the elliptic curve E(K) with
a different coordinate system, whose scalar multiplication is more efficient. For
examples, a projective coordinate and a class of Jacobian coordinate has been
studied [CMO98]. The second one is to use an efficient addition chain. The
addition-subtraction chain is an example [MO9(]. We can also apply the addition
chains developed for the ElGamal cryptosystem over finite fields [Gor98]. The
third one is to use a special type of curve such as the Montgomery form elliptic
curve [OS00], or the Hesse form [JQOL/Sma01].

Coordinate System: There are several ways to represent a point on an elliptic
curve. The costs of computing an ECADD and an ECDBL depend on the rep-
resentation of the coordinate system. The detailed description of the coordinate
systems is given in [CMO98|. The major coordinate systems are as follows: the
affine coordinate system (A), the projective coordinate system (P), the Jaco-
bian coordinate system (7), the Chudonovsky coordinate system (), and the
modified Jacobian coordinate system (J™). We summarize the costs in Table
[ where M, S, I denotes the computation time of a multiplication, a squaring,
and an inverse in the definition field K, respectively. The speed of ECADD or
ECDBL can be enhanced when the third coordinate is Z = 1 or the coefficient
of the definition equation is a = —3.
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Table 1. Computing times of an addition (ECADD) and a doubling (ECDBL)

Coordinate ECADD ECDBL
System Z #1 Z =1 a# -3 ‘ a=-3
A 2M + 15+ 11 — 2M + 2S5 + 11

P 12M + 28 9M +2S | TM +5S | TM + 35
J 12M + 48 8M +3S | AM +6S | AM + 4S5
J¢ 11M +3S | 8M +3S | 5M +6S | 5M + 48

Jm 13M + 65 9M + 55 4M + 48

Addition Chain: Let d be an n-bit integer and P be a point of the elliptic
curve E(K). A standard way for computing the scalar multiplication d x P is to
use the binary expression of d = d,,—12" ' + dp—22" 2 + ... + d12 + dy, where
dp—1 =1land d; = 0,1 (n =0,1,...,n — 2). Then Algorithm 1 and Algorithm
2 compute d x P efficiently. We call these methods the binary methods (or the
add-and-double methods). On average they require (n —1) ECDBLs + (n—1)/2
ECADDs. Because computing the inverse — P of P is essentially free, we can relax
the binary coefficient to a signed binary d; = —1,0,1 (i =0,1,...,n — 1), which
is called the addition-subtraction chain. The NAF offers a way to construct the
addition-subtraction chain, which requires (n—1) ECDBLs + (n—1)/3 ECADDs
on average [IEEE].

INPUT d, P, (n)
QUTPUT dx*P

1: Q[0] =P 1: Q[o] =P, Q[1] =0

2: for i=n-2 down to O 2: for i=0 to n-1

3 Q[0] = ECDBL(Q[0]) 3 if d[i]l==

4: if d[i]== 4: Q[1] = ECADD(Q[1],Q[01)
5 Q[0] = ECADD(Q[O],P) | 5 Q[0] = ECDBL(QL0])

6: return Q[O] 6: return Q[1]

Algorithm 1 (leftside): Binary method from the most significant bit
Algorithm 2 (rightside): Binary method from the least significant bit

The other enhancement technique is to utilize pre-computed tables. The
Brickell’s method and the sliding windows methods are two of the standard algo-
rithms [BSS99]. These algorithms have been developed for the efficient modular
multiplications over finite fields. We can refer to the nice survey paper [Gor9§].
In this paper we are interested in efficient algorithms without table look-up (or
with a very small pre-computed table). Our goal is to propose an efficient algo-
rithm that is suitable for smart cards, and the pre-computed table sometimes
hinders to achieve the high efficiency because the memory spaces are expensive
and an I/0O interface to read the table is relatively slow.

Special Elliptic Curves: With a special class of elliptic curves, we can enhance
the speed of a scalar multiplication. Okeya and Sakurai proposed to use the
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Montgomery form [OS00]. The addition formula of the Montgomery form is
much simpler than that of the Weierstrass form, and its scalar multiplication
is also faster. However every Montgomery form cannot be generally converted
to the Weierstrass form, because the order of the Montgomery form curves is
always divisible by 4.

ECC has been standardized in several organizations like ANSI, IEEE, SEC,
NIST, WAP. In all standards, the curves are defined by the Weierstrass form over
F, or Fom, where p is a prime number or m is an integer. The example curves
over F,, cannot be represented by the Montgomery form. Indeed, all curves in
[NISTJANSI| and all curves defined over a prime field with larger than 160-bit
prime in [[EEE] are not compatible.

3 Side Channel Attacks to ECC

The side channel attacks (SCA) are serious attacks against mobile devices such
as smart cards, mobile phones and PDAs. An adversary can obtain a secret
key from a cryptographic device without breaking its physical protection. We
can achieve the attack by analyzing side channel information, i.e., computing
time, or power consumption of the devices. The timing attack (TA) and the
power analysis attack are examples of the SCA [Koc96[K.LT99]. The simple power
analysis (SPA) only uses a single observed information, and the differential power
analysis (DPA) uses a lot of observed information together with statistic tools.
As the TA can be regarded as a class of the SPA, we are only concerned with
the SPA and the DPA in this paper.

Countermeasures against SPA: The binary methods of Algorithm 1 and 2
compute ECADDs when the bit of the secret key d is 1. Therefore we can easily
detect the bit information of d by the SPA.

INPUT d, P, (n)

OUTPUT d*P

1: Q[0] =P 1: Q[0] =P, Q[1] =0

2: for i=n-2 down to O 2: for i=0 to n-1

3: Q[0] = ECDBL(Q[0]) 3: Q[2] = ECADD(Q[0],Q[11)
4: Q1] = ECADD(Q[0],P) 4: Q0] = ECDBL(Q[0])

5: Q[0] = Q[d[il] 5: Q1] = Q[1+d[4i]]

6: return Q[O] 6: return Q[1]

Algorithm 1’ (leftside): Add-and-double-always method from the most
significant bit (SPA-resistant)
Algorithm 2’ (rightside): Add-and-double-always method from the least
significant bit (SPA-resistant)

Coron proposed a simple countermeasure against the SPA by modifying the
binary methods (Algorithm 1°, 2’) [Cor99]. These algorithms are referred as the
add-and-double-always methods. In both algorithms, Step 3 and 4 compute both
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an ECDBL and an ECADD in every bits. Thus an adversary cannot guess the
bit information of d by the SPA. A drawback of this method is their efficiency.
Algorithm 1’ requires (n — 1) ECADDs + (n — 1) ECDBLs and Algorithm 2’
requires n ECADDs + n ECDBLs.

Note that in Algorithm 1’ and 2’, there are no computational advantage even
if we use the NAF because we have to compute both ECADD and ECDBL for
each bit.

Moller proposed an SPA-resistant algorithm which is a combination of Algo-
rithm 1’ and the window method [Moe(T]. However, his method requires extra
table look-up (at least three elliptic curve points).

Another countermeasure is to establish the indistinguishability between an
ECADD and an ECDBL. Joye, Quisquater and Smart proposed to use the Ja-
cobi and Hesse form elliptic curves, which use the same mathematical formulas
for both an ECADD and an ECDBL [JQO01/Sma01]. As we discussed above, a
drawback of this approach is that the Jacobi and Hesse form are special types
of elliptic curves and they cannot be used for the standard Weierstrass form.

SPA-Resistance to DPA-Resistance: Even if a scheme is SPA-resistant, it
is not always DPA-resistant, because the DPA uses not only a simple power trace
but also a statistic analysis, which has been captured by several executions of the
SPA. Coron pointed out that some parameters of ECC must be randomized in
order to be DPA-resistant [Cor99]. By the randomization we are able to enhance
an SPA-resistant scheme to be DPA-resistant.

Coron also proposed three countermeasures, but Okeya and Sakurai showed
the bias in his 1st and 2nd countermeasures. They asserted that Coron’s 3rd
method is secure against the DPA [OS00]. The key idea of Coron’s 3rd counter-
measure for the projective coordinate is as follows. Note that in the projective
coordinate, we require 1 inversion and 2 multiplications in the definition fields to
pull back from the projective point (X4 : Yy : Z4) to the affine point (z4,yq). Let
P =(X:Y :Z) be a base point in a projective coordinate. Then (X : Y : Z)
equals to (rX : 7Y : rZ) for all r € K. If we randomize a base point with r before
starting the scalar multiplication, the side information for the statistic analysis
will be randomized. This countermeasure requires only three multiplications be-
fore the scalar multiplication, and no extra cost after the scalar multiplication.

The other enhancement method against the DPA was proposed by Joye-
Tymen [IT01]. This countermeasure uses an isomorphism of an elliptic curve.
The base point P = (X : Y : Z) and the definition parameters a,b of an el-
liptic curve can be randomized in its isomorphic classes like (X : r3Y : Z)
and rta, b, respectively. Let (X : Y] : Z/}) be the point after computing the
scalar multiplication. The point (z4,yq) is pulled back to the original curve by
computing 72X / and r~3Y/. This method requires 3 squaring and 5 multiplica-
tions for the randomizing the point P, and 1 squaring, 3 multiplications, and 1
inversion for pulling back to the original curve. Joye-Tymen method can choose
the Z-coordinate equal to 1 during the computation of the scalar multiplication
and it improves the efficiency of the scalar multiplication in some cases.
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4 Our Proposed Algorithm

We explain our proposed algorithm for the scalar multiplication in the following.
The algorithm improved on the addition chain and the addition formula. Both
improvements are based on the scalar multiplication by Montgomery [Mon87].
However, we firstly point out that the addition chain is applicable for not only
Montgomery form curves but any type of curves. We enhance it to be suitable for
implementation and study the security against the SPA compared with Coron’s
SPA-resistant algorithm (Algorithm 1’). We also establish the addition formulas,
which only use the z-coordinate of the points, for the Weierstrass form curves.

4.1 Addition Chain

We describe our proposed addition chain in the following:

INPUT d, P, (n)
OUTPUT d*P
1: Q0] = P, Q1] = 2xP

2: for i=n-2 down to O

3: Q[2] = ECDBL(QLA[ill)
4: Q[1] = ECADD(Q[0],Q[11)
5: Q[0o] = Q[2-d4[i]l]

6: Q[1] = Q[1+d[i]]

7: return Q[O]

Algorithm 3: Our proposed addition chain (SPA resistant)

For each bit d[i], we compute Q[2] = ECDBL (Q[d[¢]]) in Step 3 and Q[1] =
ECADD(QI0], Q[1]) in Step 4. Then the values are assigned Q[0] = Q[2], Q[1] =
Q[1] if d[i] = 0 and Q[0] = QI[1], Q[1] = Q[2] if d[i] = 1. We prove the correctness
of our proposed algorithm in the following.

Theorem 1. Algorithm 3, on input a point P and an integer d > 2, outputs the
correct value of the scalar multiplication d * P.

Proof. When we write Q[0], Q[1], it means that Q[0] in Step 5 and Q[1] in Step
6 of Algorithm 3 in the following. The loop of Step 2 generates a sequence

(Q[O]a Q[l])nfb (Q[O]v Q[l])nfBa A3 (Q[O]v Q[”)la (Q[OL Q[”)Oa (3)

from the bit sequence dn — 2],d[n — 3], ...,d[1],d[0]. At first we prove Q[1] =
Q[0] + P for each (Q[0],Q[1]);,¢ = 0,1,..,n—2, by the induction for the number
of the sequence. For n = 2 we have only one loop in Step 3 and we have two
cases d[0] = 0 or 1. Then we obtain Q[0] = 2 x P,Q[1] = 3 * P for d[0] = 0, and
Q[0] = 3% P,Q[1] = 4 * P for d[0] = 1. The fact Q[1] = Q[0] + P is correct for
n = 2. Next, we assume that Q[1] = Q[0] + P up to n = k. In this case we have
R[1] = R[0] + P, where (Q[0], Q[1])1 = (R[0], R[1]). For n = k + 1 we also have
two cases d[0] = 0 or 1. Then we obtain Q[0] = 2 * R[0], Q[1] = 2 * R[0] + P for
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d[0] =0, and Q[0] = 2% R[0] + P,Q[1] = 2 % R[0] 4+ 2 * P for d[0] = 1. The fact
Q[1] = Q[0] + P is correct for n = k + 1. Thus we proved that Q[1] = Q[0] + P
for each (Q[0],Q[1]):,i=0,1,..,n — 2.

Next, we prove that Q[0] is equivalent to Q[0] in Step 4 of Algorithm 1 (Q[0]
in Step 5 of Algorithm 2) for each loop of d[i], (i = 0,1,..,n — 2). In each loop
of d[i], for given Q[0], Q[1], the new Q[0] is computed as follows: ECDBL(Q][0])
for d[i] = 0 and ECADD(Q[0],Q[1]) = Q[0] + (Q[0] + P) = 2% Q0] + P =
ECADD(ECDBL(Q[0]), P) for d[i] = 1. On the other hand, in each loop of d[i] in
Algorithm 1, for given Q[0], the new Q[0] is computed as follows: ECDBL(Q][0])
for d[i{] = 0 and ECADD(ECDBL(Q[0]), P) for d[i] = 1. They are completely
the same computations. Thus we can conclude that the output d * P is correct.

Algorithm 3 requires one ECDBL in the initial Step 1, and (n — 1) ECDBLs
and (n — 1) ECADDs in the loop. The computation time of the loop is same as
that of Algorithm 1.

Remark 1. Algorithm 3 does not depend on the representation of elliptic curves,
and it is applicable to execute a modular exponentiation in any abelian group.
Therefore the RSA cryptosystem, the DSA, the ElGamal cryptosystem can use
our proposed algorithm.

Parallel Computation: First, note that ECADD and ECDBL of each loop
of Algorithm 2’ can be computed in parallel. Algorithm 2’ then requires only n
ECADDs with two processors. However, Algorithm 1’ cannot be parallelized in
this sense, because its loop is constructed from the most significant bit, and the
output of ECADD requires the output of ECDBL in each loop. The addition
chain of Algorithm 3 is also constructed from the most significant bit, but we
can compute the loop of Algorithm 3 in parallel.

Initizl walne T, 2P

Iritial wale P |

(e oo

Q=2+ Q00

@ Q=0+

Q[0]=0M[]

=00+

Fig. 1. Algorithm 1’ (left), the parallel implementation of Algorithm 3 (right)
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In the right side of Figure [1] we show an architecture of the parallel compu-
tation of the loop of Algorithm 3. It has two registers: Register 1 and Register
2, which are initially assigned Q[0] = P and Q[1] = 2 * P, respectively. In
Step 3, we choose the value Q[d][i]] based on the bit information d[é], then com-
pute ECDBL(QId[i]]) from Q[d[¢]]. In Step 4, we compute ECADD(QI0], Q[1])
from the value Q[0] in Register 1 and @[1] in Register 2. In both Step 3 and
Step 4, they do not need the output from Step 3 nor Step 4, and they are
excused independently. After finishing to compute both ECDBL(QI[d[¢]]) and
ECADD(QI0], Q[1]), we assign the values in Register 1 and Register 2 based
on the bit d[i]. If d[i] = 0, we assign the ECDBL(Q[d[i]]) in Register 1 and the
ECADD(QI0], Q[1]) in Register 2. If d[i] = 1, we swap the two variables, then we
assign the ECADD(Q[0], @[1]) in Register 1 and the ECDBL(Q[d[?]]) in Register
1.

In general the computation of an ECADD is slower than that of an ECDBL,
so that the latency of the loop in Algorithm 3 depends on the running time
of ECADDs. Thus the total running time of Algorithm 3 is one ECDBL and
(n — 1) ECADDs, where n is the bit-length of d. Algorithm 1’ always requires
(n — 1) ECDBLs and (n — 1) ECADDs. The improvement of Algorithm 3 from
Algorithm 1’ is (n — 1) ECDBLs.

Security Consideration: We discuss the security of Algorithm 3 against the
SCA. Algorithm 1’ is commonly believed secure against the SPA [OS00]. The
relation between Algorithm 1’ and Algorithm 3 is as follows.

Theorem 2. Algorithm 3 is as secure as Algorithm 1’ against the SPA, if we
use a computing architecture whose swapping power of two variables is negligible.

Proof. The differences between Algorithm 1’ and Algorithm 3 are Step 5 and
Step 6 in Algorithm 3. In the steps, if d[i] = 0, we assign the Q[0] = Q2] and
Q[1] = Q[1], otherwise, we assign Q[0] = Q[1] and Q[1] = Q[2]. We can modify
the steps as follows:

S1: If d[i] = 1 then SWAP(Q[2]1,Q[1]1)
S2: Qo] = Q[2]
83: Q1] = Q[1]

SWAP is a function to swap two variables. Only Step S1 depends on d[i]. If the
power to execute SWAP is negligible, Algorithm 3 is as secure as Algorithm 1’
against the SPA.

Next, an SPA-resistant scheme can be converted to a DPA-resistant scheme
using Coron’s 3rd or the Joye-Tymen’s countermeasure as we discussed in the
previous section. Thus, we have the following corollary.

Corollary 1. Algorithm 8 with Coron’s 8rd or Joye-Tymen’s countermeasure is
as secure as Algorithm 1’ against the DPA, if we use a computing architecture
whose swapping power of two variables is negligible.
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It is possible to implement the swapping of two variables in hardware using
a few logic gates. Its power is usually negligible. In software we can implement it
just to swap two pointer assignments. The swapping of the pointer assignments
in software can be executed in several clocks, whose time or power trace is
negligible. Therefore, our proposed method is secure against the DPA in many
computing environments.

4-Parallel Computation: When a table of pre-computed points is allowed to
be used, we can construct a scalar multiplication, which can be computed in
parallel with more than two processors. There are several scalar multiplications
using a pre-computed table [Gor98]|. In this paper we are interested in a scalar
multiplication with a very small table. The method that uses a very small table is
proposed by Lim-Lee [LL94]. The simplest case of the Lim-Lee algorithm requires
only one pre-computed value and its improvement over the binary method is 7/12
on average. We review it in the following. Let d = d,,_12" ' +d, 22" 2 + ... +
d12 + do be the binary representation of d with d,—1 = 1. Let k = |n/2]. The
exponent d is represented as

d = 2 (f[k]25+ f[k—1)28~ 4.+ £[0]20) + (e[k]2F 4+-e[k—1]28 "1+ ... +€[0]2°), (4)

where e[i] = d[i], f[i]| = d[i + k] for i =0, 1,...,k — 1, f[k] = e[k] = O for even n,
and f[k] = 1, e[k] = 0 for odd n. Then we obtain dxP = S5 (2')x (eli]* P+ f[i] *
((2¥) * P)) and d % P can be computed like in the binary method. This method
pre-computes the point (2¥)* P and it is applied for only scalar exponentiations
of the fixed based P. We modify the Lim-Lee method to be able to compute
in parallel and to be secure against the SPA. The proposed algorithm carries 4
auxiliary variables Q[0][0], Q[0][1], @[1][0], Q[0][1], which are related with

Q[0][1] = Q[o][0]+P, Q1][0] = Q[0][0] +2*+ P, Q[1][1] = Q[0)[0] + P+2"+P, (5)

The proposed algorithm is as follows:

INPUT d, P, (2°k)*P, (k, b (= n+1 mod 2))
QUTPUT dxP

: Q0] = (27k)*P, Q[1] = (2"k)*P + P
Qrol [0] = Qlelk-bl]

QLol[1] = Qolfo] + P

Qr11[o] = Q[OoI[0] + (27k)*P

Q[11[11 = QLol[0] + P + (2"k)*P

for i = k-1-b down to O

QLf[11+0] [e[i]+0] = ECDBL(Q[£f[i]][el[i11)

QLf[i]1+0] [e[i]+1] = ECADD(Q[f[il][e[il],Q[f[i]+0] [e[i]l+1])
9: QLf[i1+1] [e[i]+0] = ECADD(Q[f[il][e[il],Q[f[il+1][e[i]1+0]1)
10:  Qrf[il+1][el[il+1] = ECADD(Q[f[il][e[i]],Q[£f[il+1] [e[il+1])
11: return Q[0] [0]

00 ~NO U WN -
o

Algorithm 4: Our proposed addition chain IT (SPA resistant)
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Due to space limitations, we omit the proof of the correctness of Algorithm 4.
When we compute from Step 7 to Step 10 in parallel, the latency of each loop is
the time for computing ECADDs. The total number of loops is at most n/2 —1,
where n is the bit-length of d. Therefore Algorithm 4 can be computed at most
(n/243) ECADDs with 4 processors. It is about two times faster than Algorithm
3. Moreover, the security against the SPA can be discussed in the same way like
Theorem 1 for Algorithm 3. If we use a computing architecture whose swapping
powers of four variables are negligible, then Algorithm 4 is secure against the
SPA. It is possible to apply Coron’s 3rd or Joye-Tymen’s countermeasure to
make Algorithm 4 secure against the DPA.

4.2 Addition Formula

Let E be an elliptic curve defined by the standard Weierstrass form () and
Py = (z1,191), P2 = (22,92), P3 = P1 + P» = (z3,y3) be points on E(K).
Moreover, let P{ = Py — P, = (2%,y5). Then we obtain the following relations:

(x129 — a)? — 4b(z1 + x2)

(z1 — 22)?

2(x1 4+ x2)(x129 + ) + 4b

/

= . (6
’ .T3+$3 (1'1 _1,2)2 ( )

T3 Th =

On the other hand, letting Py = 2 % P| = (24, y4) leads to the relation

2 2
oy — (icl . a) 8bx1. 7)
(xf + axy +b)
Thus the z-coordinates of both P3; and P, can be computed just form the z-
coordinates of the points P;, Py, P;. We call this method the multiplicative (ad-
ditive) x-coordinate-only method. The z-coordinate-only methods for a scalar
multiplication were originally introduced by Montgomery [Mon87]. However, his
main interest was to find a special form of elliptic curves on which the computing
times are optimal. The additive method was not discussed in his paper.

When we use the z-coordinate-only methods, we need the difference of two
points P, = P; — P,. This may be a problem in general, but not in Algorithm
3. In each loop of Algorithm 3, the two points (Q[0], Q[1]) are simultaneously
computed and they satisfy the equation Q[1]—Q[0] = P, where P is a base point
of the scalar multiplication. Similarly, in each loop of Algorithm 4, the differences
of the points for computing an ECADD are known by equation (B). Therefore,
we can assume that the difference P, — P for input values of ECADD(Py, P,)
of Algorithm 3 (or Algorithm 4) are always known. On the contrary, in order to
know that of Algorithm 2’ we need extra computation. The z-coordinate-only
methods for Algorithm 2’ have no computational advantage.

When we apply the z-coordinate-only methods to Algorithm 3 (or Algo-
rithm 4), the output is only the z-coordinate of d x P. This is enough for
some cryptographic applications such as a key exchange scheme and an en-
cryption/decryption scheme [SEC|]. But other applications also require the y-
coordinate of d* P in the verification of a signature scheme [SEC]. However, the
y-coordinate of d x P is easily obtained in the following way: The final values of
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Q[0], Q[1] in Algorithm 3 (or Algorithm 4) are related by Q[1] = Q[0] + P. Let
P = (z1,11),Q[0] = (z2,y2), Q[1] = (x3,ys3). Here known values are z1,y1, x2, T3
and the target is yo. Using a standard addition formula (2), we obtain the
equation y» = (2y1)" (42 + 73 + azs + b — (31 — 22)2(21 + s + 73)). This
y-recovering technique was originally introduced by Agnew et al. for curves over
Fom [AMV93]. The computing time for y-recovering is 16 M + 45 + 11.

In the implementation of the z-coordinate-only methods, the projective co-
ordinate system offers a faster computation. In this system, equations (@) and
(@ turn to be

& - Zf{; (X1X2 — a2122)2 — 4bleg(X122 +X221)

Zs X (X172 — X272 ’ ®)
X3 2X1Zs + XoZ0)(XaXa + aZiZ5) + 407375 X} o)
75 (X175 — X272 Zy

Xy (X}-aZ})? - 80X, 7} (10)

The computing times for (8),(d),[0) are ECADD'Y) = 9M + 25, ECADDY” =
10M + 2S, ECDBL(®) = 6M + 3S. If Z4 = 1, the computing times deduce to

ECADDS‘ZEZé:l) = ECADDSE)Zézl) = 8M + 2S. The concrete algorithms to compute

), @), (I0) are listed in the appendix.

5 Comparison

In this section, we compare the computing times of a scalar multiplication re-
sistant against the SCA. As a result, we show that our proposed algorithm
establishes a faster scalar multiplication. The improvement of our scalar multi-
plication over the previously fastest method is about 37% for two processors and
5.7% for a single processor.

Estimation: We compare the computing times of a scalar multiplication with
Algorithm 1’; 2’, and 3 using different coordinate systems. All algorithms are
assumed to be DPA-resistant using Coron’s 3rd countermeasure or Joye-Tymen’s
countermeasure, which are described in Section[3. We estimate the total times to
output a scalar multiplication d* P = (z4,yq) on input d, P = (z,y) and elliptic
curve information (a, b, p). The times are given in terms of the numbers of the
arithmetic in the definition field, i.e., the multiplication M, the squaring S, and
the inverse I. Note that one inversion is always required in order to convert a
point from the projective coordinates to the affine coordinates. In the estimation,

2 A similar discussion for y-recovering on Montgomery form is found in [0S01]. How-
ever, Algorithm 2 and Algorithm 4 in [OS01] doesn’t output the expected values. The
formulas for them must be X7°° = 4ByXa+1Za41ZaXa, Y7 = Z5,U* — X3,,V?,
Z5¢¢ = 4ByX 41 Za41Z2 and y-recovering needs only 13M + 11, which is faster than
Algorithm 3 in [OSO01].
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we include the times for randomization by Coron’s 3rd countermeasure or Joye-
Tymen’s countermeasure, and the times for recovering the y-coordinate in the
z-coordinate-only method are also included. |7 In the estimation, we also give the
estimated running time for a 160-bit scalar. The last numbers in the brackets
are the estimation for 15 = 0.8M, 11 = 30M [OS01].

Single Case: In Table [J, we summarize the estimated running time using a
single processor. Algorithm 3/Joye-Tymen with the z-coordinate-only methods
is the fastest of all scalar multiplications (2929.0M). The previously fastest al-
gorithm was Algorithm 1’/Joye-Tymen with the Jacobian coordinate system J
(3095.0M). The improvement of the proposed algorithm over it is about 5.7%.

Table 2. Computing times of a scalar multiplication (a single processor)

Addition Computing Time
formula Total n = 160
Algorithm 17| P (19n — 15)M + (Tn — 7)S + 1I | 3025M + 11135 + 11 (3945.4M)
/Coron 3rd 7 (16n — 10)M + (10m — 8)S + 11 | 2550M + 15925 + 11 (3853.6M)
T (16n — 10)M + (9n — 7)S + 11 | 2550M + 14335 + 11 (3726.4M)
Jm (17n — 10)M + (10n — 7)S + 1 | 2710M + 15935 + 11 (4014.4M)
Algorithm 17| P (16n — T)M + (Tn — 4)S + 1T | 2553M + 11165 + 11 (3475.8M)
/Joye-Tymen J (12n — 3)M + (9n — 5)S + 11 1917M + 14355 + 11 (3095.0M)
¢ (13n — 4)M + (9n — 5)S + 1I | 2076M + 14355 + 11 (3254.0M)
Jm (13n — 4)M + (9n — 5)S + 11 2076 M + 14355 4+ 11  (3254.0M)
Algorithm 2’ P (19n + 4)M + ™nS + 11 3085M + 11205 + 11 (4011.0M)
/Coron 3rd 7 (16n + 6)M + (10n + 2)S + 11 | 2566M + 1602s + 11 (3877.6M)
J° (16n + 16)M + (9n + 2)S + 1T | 2566M + 14425 + 11 (3749.6M)
Jm (17n + 7)M + (10n + 3)S + 1T | 2727M + 1603S + 11 (4039.4]M)
Algorithm 2°| P (19n + 9)M + (Tn+3)S + 11 | 3049M + 11235 + 11 (3977.4M)
/Joye-Tymen| 7 (16n + 9)M + (10n + 4)S + 1T | 2569M + 16045 + 11 (3882.2M)
T (16n + 9)M + (9n + 4)S + 11 | 2569M + 14445 + 11 (3754.2M)
Jm (13n + )M + (9n + 4)S + 11 | 2089M + 14445 + 11 (3274.2M)
Algorithm 3 | P (19n — 8)M + (Tn — 2)S + 1T | 3032M + 11185 + 1I (3956.4M)
/Coron 3rd T (16n — 6)M + (10n — 2)S + 11 | 2554M + 15985 + 11 (3862.4M)
¢ (16n —5)M + (9n — 1)S + 1I | 2555M + 14395 + 11 (3736.2M)
Jm (17n — 6)M + (10n — 3)S + 1T | 2714M + 15975 + 11 (4021.6M)
x (mul) | (156 + 8)M + (5n + 2)S + 11 |2408M + 8025 + 11 (3079.6M)
z (add) | (16n + 7)M + (5n + 2)S + 11 |2567M + 802S + 11 (3238.6M)
Algorithm 3 | P (19n — 4)M + 7nS + 11 3036 M + 11208 + 11 (3962.0M)
/Joye-Tymen J (16n — 4)M + (10n — 1)S + 11 2556 M + 15995 + 11  (3865.2M)
J° (16n — )M + 9nM + 11 2557M + 14405 + 11 (3739.0M)
Jm (17n — 5)M + (10n — 3)S + 11 | 2715M + 15975 + 11 (4022.6M)
x (mul) | (14n + 15)M + (5n + 5)S + 11|2255M + 8055 + 11 (2929.01M)
z (add) | (14n + 15)M + (5n + 5)S + 11|2255M + 8055 + 11 (2929.0MM)

These algorithms may contain several inversions, but we can compute them by
only one inversion and several multiplications instead. For example, we estimate

two inversions %, y~! € F, as the cost for computing z = (zy)~

1

1

Yy~ = zx, that is, one inversion and three multiplications.

7$7

L = 2y and
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In order to demonstrate the efficiency of our algorithm, we implemented our
proposed algorithm and the previously fastest algorithm on a Celeron 500 MHz
using the LiDIA library [LiDIA]. It should be emphasized here that our imple-
mentation was not optimized for cryptographic purposes — it is only intended
to provide a comparison. The improvement is about 10%. The results are as
follows:

Table 3. Computing times on a Celeron 500 MHz using LiDIA (a single processor)

25.5 ms
23.1 ms

Previously fastest scheme | Algorithm 1’/Joye-Tymen (J)

Algorithm 3 /Joye-Tymen (x)

Proposed scheme

Parallel Case: In Table ] we summarize the estimated running time using
two parallel processors. Algorithm 1’ cannot be computed in parallel and Algo-
rithm 2’ has no computational advantage to use the xz-coordinate-only methods.
Therefore, the previously fastest algorithm was Algorithm 2’/Coron’s 3rd with
the Chudonovsky coordinate system J¢ (2181.6M). Algorithm 3/Joye-Tymen
with z-coordinate-only methods provides the fastest multiplication (1593.4M).

The improvement of the proposed algorithm over it is about 37%.

Table 4. Computing times of a scalar multiplication (two parallel processors)

Addition Computing Time
formula Total n = 160
Algorithm 2’ P (12n +4)M + 2nS + 11 1924 M + 3205 + 11 (2210.0M)
/Coron 3rd 7 (12n+ 6)M + (4n + 2)S + 11 | 1926M + 6425 + 11 (2469.6M)
J° (11n+ 6)M + (3n + 2)S + 11 | 1766M + 4825 + 11 (2181.6M)
T (13n + 7)M + (6n + 3)S + 1I | 2087M + 9635 + 11 (2887.4M)
Algorithm 2°| P (12n+ 9)M + (2n + 3)S + 11 | 1920M + 3235 + 11 (2217.4M)
/Joye-Tymen J (12n + 9)M + (4n + 4)S + 11 1929M + 6445 + 11 (2474.2M)
J° (11n + 9)M + (3n + 4)S + 11 1769M + 484S + 11 (2186.2M)
Jm (13n + 9)M + (6n + 4)S + 11 | 2089M + 9645 + 11  (2890.2M)
Algorithm 3 P (12n — 1)M + (2n + 3)S + 11 1919M + 323S + 11 (2207.4M)
/Coron 3rd 7 (12n — 2)M + (4n + 4)S + 11 1918M + 644S + 11 (2463.2M)
jc 11nM + (3n+5)S + 11 1760M + 4855 + 11  (2178.0M)
Jm (13n — 2)M + (6n+ 1)S + 11 | 2078M + 9615 + 11 (2876.8M)
x (mul) | (9n + 14)M + (2n + 5)S + 11 |1454M + 3255 + 11 (1744.0M)
z (add) | (10n + 13)M + (2n + 5)S + 1I|1613M + 3255 + 11 (1903.0M)
Algorithm 3 | P (12n + 3)M + (2n + 5)S + 11 | 1923M + 3255 + 11 (2213.0M)
/Joye-Tymen J 12nM + (4n +5)S + 11 1920M + 6455 + 11  (2466.0M)
¢ (11n + 2)M + (3n + 6)S + 11 1762M + 486S + 11 (2180.8M)
g™ (13n — )M + (6n+ 1)S + 11 | 2079M + 9618 + 1I (2877.8M)
x (mul) | (8n + 21)M + (2n + 8)S + 11 |1301M + 3285 + 11 (1593.41M)
x (add) | (8n + 21)M + (2n + 8)S + 11 |1301M + 328S + 11 (1593.4M)
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Appendix

The appendix describes the formulas of ECDBL®), ECADD'Y, and ECADDS™, which
are proposed in Section 5. In order to estimate the efficiency, we use three nota-
tions X, -, * for the multiplication of the definition field K. The notation X is a
standard multiplication in K. The notation - is executed in negligible time. The
notation x is also calculated in negligible time if we choose Z§ = 1.

T1 — X1 X X2

T2 — Z1 X ZQ

T3 «— X1 X ZQ

T4 “— X2 X Zl

T5 —ax T3 (: (121Z2)

Te. «— T1 — T5 (: X1X2 — CLZ1Z2)

Tr — T§ (= (X1 X2 — aZ1Z2)?)

Ts — bx Ty (=bZ12)

Ty — 4-Ts (= 4bZ17Z5)

T —Ts+Ts (= X1Z2+ X221)

T11 — Tg X TIO (: 4bZ122(X122 + X2Z1))
Tiy — Ty — Tuy (= (X1 Xo — aZ1Z2)? — 4bZ1 Z2(X1Z2 + X2 Z1))
X3 — Zé * T12

Tiz 13— 1T, (: X172y — XQZI)

Ty — Tts (= (X122 — X221)?)

Z3 — Xé X T14

Formula 1. Computing ECADD'?) (- is negligible, * is negligible if Z3 = 1)
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T1 “— X1 X X2

Tg — Z1 X Z2

T3 — X1 X ZQ

T4 — X2 X Zl

Ts — Tz + Ty (= X122+ Xo2Z1)

Ts — a X Ty (= aZ1Z)

T —Ti+Ts (= X1 X2+ aZ12)

Tg — T5 X T7 (: (X122 + X221)(X1X2 + aleg))
Tg — 2. Tg (: 2(X122 + XQZl)(X1X2 =+ aleg))
Tio — T3 (= 21 Z3)

T11 —bx T10 (bZ?Z%)

T12 — 4 . T11 (: 41)212222)

Tz — To + Tio (= 2(X1Z2 + X2Z1) (X1 X0 + aZ1Z5) + 4bZ3 Z3)
T — T3 =Ty (= X122 — Xo2Z1)

Tis « Tty (= (X122 — X221)?)

T16 — Zé * T13

T17 — Xé X T15

X3 T — Tr

Zg — Zé * T15

Formula 2. Computing ECADD”) (- is negligible, * is negligible if Z3 = 1)

T, — X?

Ty — Z?

T3 «—axTy (=aZi)

Ty« T —Ts (= X7 —aZ})

Ts «— T} (= (Xi — aZ})?)

Ts < b x T (= bZ})

T7 «— X1 X Z1 (: X1Z1)

Ty «— Te x Tr (= bX17Z3)

To — 8- T (= 8bX1Z3)

X4 — T5 — Tg

T« Ti +T5 (= Xi +aZ?)

T < T7 x T (= X1Z1(X12 + aZl2))
T12 — Tﬁ X T2 (: bZ%)

Tis «— Ti1 + Thz (= X1Z1(XT +aZ?) + bZ1))
Z4 <—4-T13

Formula 3. Computing ECDBL(®) (- is negligible)
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