
Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

Manuscript received November 15, 2007; revised April 17, 2008

8

A FAST PARALLEL HUFFMAN DECODER

FOR FPGA IMPLEMENTATION

Laurentiu ACASANDREI Marius NEAG
Silicon Systems Transylvania SRL, Tel: +40258775181, acasandreilaurentiu@yahoo.com

Technical University of Cluj-Napoca, Tel: +40264401470, Marius.Neag@bel.utcluj.ro

Abstract: The paper presents a novel algorithm and architecture for implementing a Huffman decoder. It starts with an overview
of the basics, from the entropy coding and the way the Huffman coding is obtained, to the way a Huffman coder handles data and
image components within the Jpeg standard. Then it briefly discusses the decoding procedures proposed by the ISO/IEC 10918-
1(1993E) standard; due to their sequential nature, a decoder that simply implements these procedures requires several execution
cycles to output one set of decoded data. A new decoding algorithm is then introduced, based on a parallel architecture that allows
it to output a set of decoded data per each clock cycle. This approach was validated through actual implementation on an of-the-
shelf FPGA; this not only demonstrates the proposed algorithm and architecture but also proves that it can operate at very high
frequencies, up to 100MHz. A limitation of this implementation is the relatively large amount of hardware resources it requires.

Key words: Jpeg Standard, Fast Huffman Decoder, Image Acquisition and Processing, Parallel Architecture, FPGA

I. INTRODUCTION
 The Huffman coding is an entropy algorithm used

for lossless data compression. This algorithm is used in

JPEG compression standard at the final encoder processing

step as shown in Figure 1. This step achieves additional

compression losslessly by encoding the quantized discrete

cosine transform (DCT) coefficients more compactly based

on their statistical characteristics. The JPEG standard

specifies two entropy coding methods: Huffman coding and

arithmetic coding.

The baseline sequential codec uses Huffman

coding. It is useful to consider the entropy coder as a 2-step

process: the first step converts the zig-zag sequence of

quantized coefficients into an intermediate sequence of

symbols; the second step converts the symbols to a data

stream in which the symbols no longer have identifiable

boundaries. The form and definition of the intermediate

symbols depend on both the Jpeg mode of operation and the

entropy coding method.

RAW IMAGE
RGB->YCbCr

Converter
DCT Quantization

DCPCM

Run-Length

Coder

Entropy

Coder

COMPRESS

IMAGE

DC

AC
Figure 1.Sequential Jpeg Coder

The Jpeg standard requires that one or more sets of

Huffman code tables are specified by the application. The

code tables used to compress an image are needed to

decompress it. Huffman tables may be predefined and used

in an application as defaults, or they can be computed

specifically for a given image in an initial statistic gathering

pass prior to compression. Such choices are application-

specific as the Jpeg standard does not specifically require

Huffman tables [1]. But it does require that for every

symbol, the minimum size in bits that can keep the symbol

value is stored in the data stream, as detailed in Table 1.

Table 1. Category(Cat*) and symbol representation

Values Cat* Bits for the value
0 0 -

-1,1 1 0,1

-3,-2,2,3 2 00,01,10,11

-7,-6,-5,-4,4,5,6,7 3 000,001,010,011,10

0, 101, 110, 111

-15,..,-8,8,..,15 4 0000,..,0111,

1000,..,1111

-31,..,-16,16,..,31 5 00000,..,01111,

10000,..,11111

-63,..,-32,32,..,63 6 …

-127,..,-64,64,..,127 7 …

-255,..,-128,128,..,255 8 …

-511,..,-256,256,..,511 9 …

-1023,..,-512,512,.., 1023 10 …

-2047,..,-1024,1024,..,2047 11 …

-4095,..,-2048,2048,..,4095 12 …

-8191,,-4096,4096,..,8191 13 …

-16383,..,-8192,8192,..,16383 14 …

-32767,..,-16384,16384,..,32767 15 …

The most popular procedure for Jpeg coding is the

baseline encoding for 8-bit sample precision. The encoder

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

9

may employ up to two DC and two AC Huffman tables: a

DCT coefficient for which the frequency is zero in both

dimensions is called DC, while for an AC coefficient the

frequency is not zero in at least one dimension. Huffman

tables are specified in terms of a 16-byte list giving the

number of codes for each code length from 1 to 16. This is

followed by a list of 8-bit symbol values, each of which is

assigned a Huffman code. The symbol values are placed in

the list in order of increasing code length. Code lengths

greater than 16 bits are not allowed. In addition, the codes

must be generated such that the all-1 code words are

reserved as a prefix for longer code words.

The root of a Huffman code is placed toward the

MSB (most-significant-bit) of the byte, and successive bits

are placed in the direction MSB to LSB (least-significant-

bit) of the byte. Remaining bits, if any, go into the next byte

following the same rules.

Integers associated with Huffman codes are

appended with the MSB adjacent to the LSB of the

preceding Huffman code.

The DC code table consists of a set of Huffman

codes (maximum length 16 bits) and appended additional

bits (in most cases) which can code any possible value of the

difference between the current DC coefficient and the

prediction. The Huffman codes for the difference categories

are generated in such a way that no code consists entirely of

1-bit (X’FF’ prefix marker code avoided).

The two’s complement difference magnitudes are

grouped into the first 12 categories detailed in Table 1 and a

Huffman code is created for each of the 12 difference

magnitude categories. For each category, except 0, an

additional bit field is appended to the code word to uniquely

identify which difference in that category actually occurred.

The encoding procedure for DC coefficients is

based on a set of extended tables, which contain the

complete set of Huffman codes and sizes for all possible

difference values.

The extended Huffman code table and the table of

sizes are generated from the encoder by appending to the

Huffman codes for each difference category the additional

bits that completely define the difference. By definition, the

extended Huffman code table and table sizes have entries for

each possible difference value. The extended Huffman code

table contains the concatenated bit pattern of the Huffman

code and the additional bits field; the extended Huffman

length contains the total length in bits of this concatenated

bit pattern. Both are indexed by the difference between the

DC coefficient and the prediction.

Each non-zero AC coefficient is described by a

composite 8-bit value with the form: the 4 least significant

bits define a category for the amplitude of the next non-zero

coefficient in zig-zag, and the 4 most significant bits give

the position of the coefficient in zig-zag relative to the

previous non-zero coefficient (i.e. the run-length of zero

coefficients between non-zero coefficients). Since the run

length of zero coefficients may exceed 15, the value X’F0’

is defined to represent a run length of 15 - this can be

interpreted as a run length of 16 zero coefficients.

 In addition, a special value ’00000000’ is used to

code the end-of-block (EOB), when all remaining

coefficients in the block are zero. The composite value is

Huffman coded and each Huffman code is followed by

additional bits which specify the sign and exact amplitude of

the coefficient.

The AC code table consists of one Huffman code

(maximum length 16 bits, not including additional bits) for

each possible composite value. The Huffman codes for the

8-bit composite values are generated in such a way that no

code consists entirely of 1-bits. The format for the additional

bits is the same as in the coding of the DC coefficients.

If the last coefficient (K = 63) is not zero, the EOB code is

bypassed [2].

II. IMAGE DATA ENCODING AND MULTIPLE

IMAGE COMPONENT CONTROL

For DCT based encoders the data unit is formed

out of 8x8 blocks of samples. The minimum code unit

(MCU) is the smallest group of data units that is coded.

The scan header of a Jpeg file specifies the order by which

source image data units shall be encoded and placed within

the compressed image data. For a given scan, if the scan

header parameter number of components in scan equals 1,

then data from only one source component shall be present

within the scan. This data is non-interleaved by definition.

If number of components in scan is greater than 1, then data

from the components shall be present within the scan. These

data will always be interleaved. The order of components in

a scan shall be according to the order specified in the frame

header. The ordering of data units and the construction of

minimum coded units (MCU) is defined as follows:

– For non-interleaved data the MCU is one data unit.

– For interleaved data the MCU is the sequence of

data units defined by the sampling factors of the components

in the scan.

When number of components in scan equals 1 the

order of data units within a scan shall be left-to-right and

top-to-bottom, as shown in Figure 2.

r

r

Top

Left Right

Bottom

Figure 2. Non-interleaved data ordering

When number of components in scan is larger than 1, each

scan component is partitioned into small rectangular arrays

of horizontal data units by vertical data units. Within each

rectangular array the data units are ordered from left-to-right

and top-to-bottom; in turn, the arrays are ordered from left-

to-right and top-to-bottom within each component.

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

10

Figure 3. Example of interleaved data ordering

An example is presented in Figure 3, for which the

number of components in scan = 4, and MCU1 consists of

data units taken first from the top-left-most region of Cs1,

followed by data units from the corresponding region of

Cs2, then from Cs3 and then from Cs4. MCU2 follows the

same ordering for data taken from the next region to the

right of the four components.

Another major part of the coding process is the

procedure which controls the order in which the image data

from multiple components are processed in order to create

the compressed data, which ensures that the proper set of

table data is applied to the corresponding data units in the

image. Figure 4 shows an example of how the encoding

process selects between multiple source image components

as well as between multiple sets of table data. The source

image in this example consists of three components - A, B

and C - and there are two sets of table specifications.

Figure 4. Component interleave and table-switching control

In sequential mode, encoding is non-interleaved if the

encoder compresses all image data units in component A

before beginning with component B, then compressing all of

B before start compressing C. Encoding is interleaved if the

encoder compresses a data unit from A, a data unit from B, a

data unit from C, then back to A, etc. These alternatives are

illustrated in Figure 5, which shows a case in which all three

image components have identical dimensions: X columns by

Y lines, for a total of n data units each.

Figure 5. Three image components with same dimensions

In the non-interleaved mode the scans are organized as

follows :

Scan 1=A1,A2,..,An; Scan 2=B1,B2,..,Bn;Scan 3=C1,C2,..,Cn

In the interleaved mode the scans are organized as follows:

Scan 1=A1, B1, C1, A2, B2, C2,…, An, Bn, Cn

These control procedures are also able to handle

cases in which the source image components have different

dimensions. Figure 6 shows a case in which two of the

components, B and C, have half the number of horizontal

samples compared to component A. In this case, two data

units from A are interleaved with one each from B and C.

Figure 6. Three image components with different

dimensions

For the interleaved order the scans is organized as follows:

Scan 1=A1,A2,B1,C1,A3,A4,B2,C2,…,An-1,An,Bn/2,Cn/2

III. ISO/IEC 10918-1 BASELINE HUFFMAN

DECODER PROCEDURES

The baseline decoding procedure is designed for 8-

bit sample precision. The decoder must be capable of using

up to two DC and two AC Huffman tables within one scan.

The decoding procedure for the DC difference, DIFF, is [2]:

T = DECODE

DIFF = Decode_ZZ(K)

The DECODE procedure decodes an 8-bit value

which, for the DC coefficient, determines the difference

magnitude category. For the AC coefficient this 8-bit value

determines the zero run length and non-zero coefficient

category. This particular implementation of DECODE

makes use of the ordering of the Huffman codes in a list

according to both value and code size. Many other

implementations of DECODE are possible.

The implementation of DECODE described in

Figure 7 uses three tables, MINCODE, MAXCODE and

VALPTR, to decode a pointer to the list of values assigned

to each Huffman code (HUFFVAL).

MINCODE, MAXCODE and VALPTR each have

16 entries, one for each possible code size. MINCODE(I)

contains the smallest code value for a given length I,

MAXCODE(I) contains the largest code value for a given

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

11

length I, and VALPTR(I) contains the index to the start of

the list of values assigned to each Huffman code which are

decoded by code words of length I. The values in

MINCODE and MAXCODE are signed 16-bit integers;

therefore, a value of –1 sets all of the bits.

DECODE

I=1

CODE=NEXTBIT

CODE>MAXCODE(I)

?

J=VALPTR(I)

J=J+CODE-MINICODE(I)

VALUE=HUFFVAL(J)

Return VALUE

I=I+1

CODE=(SLL CODE 1)+NEXTBIT

NO

YES

Figure 7. Procedure for DECODE

The NEXTBIT procedure reads the next bit of

compressed data and passes it to higher level routines. It

also intercepts and removes stuff bytes and detects markers.

NEXTBIT reads the bits of a byte starting with the MSB (see

Figure 8).Before starting the decoding of a scan, and after

processing a RST marker, CNT is cleared. The compressed

data are read one byte at a time, using the procedure

NEXTBYTE. Each time a byte, B, is read, CNT is set to 8.

The only valid marker which may occur within the Huffman

coded data is the RST marker. Other than the EOI or

markers which may occur at or before the start of a scan, the

only marker which can occur at the end of the scan is the

DNL (define-number-of-lines).

Normally, the decoder will terminate the decoding

at the end of the final restart interval before the terminating

marker is intercepted. If the DNL marker is encountered, the

current line count is set to the value specified by that

marker. Since the DNL marker can only be used at the end

of the first scan, the scan decode procedure must be

terminated when it is encountered [2].

Figure 8. Procedure for fetching the next bit of

compressed data

The decoding of the amplitude and sign of the non-

zero coefficient is done in the procedure “Decode_ZZ(K)”,

shown in Figure 9.

Decode_ZZ(K)

ZZ(K)=RECEIVE(SSSS)

Vssss=2ssss-1

ZZ(K)<V
ssss

?

Vssss=(SLL -1 SSSS)+1

ZZ(K)=ZZ(K)+ Vssss

 Return ZZ(K)

YES

NO

Figure 9. Decoding a non-zero coefficient.

The RECEIVE procedure is a procedure which

places the next category bits of the entropy-coded segment

into the low order bits of DIFF, MSB first. It calls NEXTBIT

and it returns the value of DIFF to the calling procedure, as

shown in Figure 10.

 Figure 11 illustrates the decoding procedure for AC

coefficients.

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

12

RECEIVE (SSSS)

I=SSSS

?

Return V

I=0

V=0

I=I+1

V=(SLL V 1)+NEXTBIT

YES

NO

Figure 10. Procedure for RECEIVE(SSSS)

The decoding is done in a loop process, by extracting the

number of zero coefficients from the last non zero value and

the dimension of the actual AC coefficient. The resulting

coefficients are stored in a 63-bit long vector.

Decode AC

coefficients

K=1

ZZ(1,..,63)=0

K=K+1 K=K+16

RS=DECODE

SSSS= RS modulo 16

RRRR= SRL RS 4

R=RRRR

SSSS=0

?

K=K+R

Decode_ZZ(k)

K=63

?

R=15

?

DONE

NO

YES

NO

YES

YES

Figure 11. Huffman decoding for AC coefficients

IV. HUFFMAN DECODING PROPOSED PARALLEL

ALGORITHM AND ARHITECTURE

The procedures for Huffman decoding proposed by

the ISO/IEC 10918-1 standard have been widely used in the

software applications. From the point of view of the

processor time decoding an MCU takes a considerable

amount of execution cycles in order to compute one decoded

data value, due to the numerous mathematical operations

required. This is a general drawback of sequential decoders,

which basically implement a state machine that traverses the

code-tree until a symbol is found. Several techniques have

been proposed for reducing the execution time, for example

by using lookup tables stored in a memory [3]. However,

such a decoder still needs several clock cycles for decoding

each element, limiting its use in high-speed applications.

In order to overcome this drawback we propose the

parallel Huffman decoding algorithm presented in Figure 12

The main idea of the proposed algorithm is briefly

described here. Two extended Huffman table are used: one

is for the code words and second is the category or length

corresponding to the code words. The extended tables are

supposed to be previously determined from the Huffman

tables. A part of the scans is compared at the same time with

all the Huffman code words. If we have a match (and due to

the nature of Huffman codes we can have only one match)

then the useful data is extracted from scans. After the data

are extracted, they are processed for sign transformation.

=CODE 0

?

=CODE 1

?

=CODE 2

?

=CODE n-1

?

=CODE n

?

Do Nothing

Do Nothing

Do Nothing

Do Nothing

Do Nothing

DATA=SCANS[Length 0]

DATA=SCANS[Length 1]

DATA=SCANS[Length 2]

DATA=SCANS[Length n-1]

DATA=SCANS[Length n]

PROCESS

SIGN

R
E

S
U

L
T

S
C

A
N

S

Figure 12. Parallel algorithm for n Huffman code words

The proposed algorithm can be used as a Huffman

decoder component in a Jpeg file decoder. The block

diagram of the hardware implementation of such a decoder

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

13

is shown in Figure 13. It was coded in Verilog, resulting in

a decoder fully compatible with the specifications for

Huffman decoder as per standard ISO/IEC 10918-1

This implementation uses 2 DC extended code

word tables, 2 DC length tables, 2 AC extended code word

tables, and 2 AC run length tables. The tables are previously

determined from the Huffman application tables. The tables

are capable of storing 256 records of information each (256

is the maximum number of code words allowed by the

standard for Huffman coding/decoding).

S
c

a
n

s
b

u
ff

er
 (

1
2

8
 b

it
s)

Table Switching

Logic

Comparison

Table Code

(256x16 bits)

Comparison

Table Length

(256x8 bits)

Block of

256 x 16 “Equal” comparators

DATA RETRIEVAL

Block

SIGN NORMALIZING

Block

MANAGING

EXCEPTIONS

Block

“FF”

RLZ

DECODER

LOGIC

Block

D
a
ta

 l
en

g
th

In
te

rn
a
l B

u
ff

e
r

(3
2

b
it
s)

DC Table

codes

AC Table

codes

DC Table

Length

AC Table

Length

DATA NR. OF “0”

Signed DATA &

 NR. OF “0” & Exceptions

ENABLE

Figure 13. Functional block diagram of the parallel

Huffman decoder

The Internal buffer (32 bits wide) is used to store

de 32 MSB of the Scans buffer. The value stored in the

internal buffer is used in the combinational block of 256

comparators were it is compared with each of the 256

Huffman code words, in parallel. If the MSB 16 bits of

Internal buffer corresponds to the code word j (1≤ j ≤ 256)

then the length corresponding to the code word j is

transmitted to the DATA RETRIEVAL block. The

comparators block is also responsible for detecting segment

markers.

The DATA RETRIEVAL block is a sequential block

composed of 16 left shift units. The value Data length

activates the corresponding left shift unit (i.e for length k,

where 0≤ k ≤ 15, it activates the left shift unit on k bits),

which determines the Internal buffer to be shifted and the

data to be retrieved. The data is passed to the SIGN

NORMALIZATION block were the MSB bit is verified, and

if it is 0 then number is negative so the corresponding

adjustment is done. The signed processed data and the Nr.

Of “0” signal are outputted together with the exceptions

flags.

The Nr. Of “0” is a 4 bit wide signal which is

always 0 for the DC data element and it contains the number

of zero bytes form the last non-zero element for the AC data.

The Table Switching block is responsible for

loading the corresponding DC or AC table to the

comparison table code and the comparison table length,

under direct supervision of the DECODER LOGIC block.

The DECODER LOGIC block is a finite state

machine (FSM) based control unit which manages the entire

process of decoding. It receives information from the other

blocks and controls their behaviour. It is responsible for

correct multiple-component decoding, exceptions and data

handling, Scans and Internal buffer data loading and shifting

V. Experimental Results – Comparison with the

standard sequential Huffman decoder

FPGA implementation

The proposed Huffman decoding architecture was

synthesized using the Xilinx IseWEbpack 8.2i for the target

device xc3s1000-4ft256. Extensive simulations and lab tests

proved that this FPGA implementation was able to generate

complete decoded data on a single clock cycle.

The FPGA synthesis report shown that the

implementation used the following resources: 80% of the

total amount of slices (13824 from the total of 17288) and

8% of the total RAM (34.56k from 432k) provided by the

Xilinx xc3s1000-4ft256. More importantly the same report

indicated a reasonably large value for the max clock

frequency, just under 100MHz (97.63MHz).

 The decoder has been tested using randomly-

generated and specifically-aimed coded sequences. An

example of the later is presented in this Section; the

decoding of the test sequence by using the standard

sequential Huffman software is also described, in order to

allow for a fair comparison between the two solutions.

Test Setup The following coded sequence was sent to both

decoders: (101110011100 1111100010101011000). Let us

assume that the standard sequential decoder runs on the

Microblaze 32 bit processor [4] – a very popular choice. For

each operation (shift left, shift right), addition or substitution

one clock cycle is used. For multiplication, division

operations, Boolean conditions (IF-THEN-ELSE) or loop

conditions two clock cycles are used. Also, the parallel

hardware Huffman is supposed to be attached as an IP on

the OPB (On-Chip Peripheral Bus) [5], thus working on the

processor clock frequency. The coded sequence is stored in

the internal Scans buffer (as shown in Figure 13).

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

14

Pseudo code for standard sequential software decoder

 In order to analyze the results from the standard

sequential software decoder we have transformed the

algorithms described in Figures 7 to 11 into pseudo-code,

then indicated the number of clock cycles used by each

operation. The most called for function is NEXTBIT (see

Figure 8). The corresponding pseudo-code is as follows:

FUNTION NEXTBIT

BEGIN

IF CNT=0 THEN ;2clocks

 B= the next 8 bit from sequence ;1clock

 IF B=xFF THEN ;2clocks

 B2= the next 8 bit from sequence ;1clocks

 ENDIF;

 IF B2<>0 THEN ;2clocks

 IF B2=DNL marker THEN;2clocks

 Process DNL marker

 ELSE

 Signalize Error

 ENDIF

ENDIF

ENDIF

BIT=Shift Right with 7 position of B ;1clock

CNT=CNT-1 ;1clock

B=Shift Left with 1 position of B ;1clock

RETURN BIT

END NEXBIT

 It results that the minimum number of cycles

required by this routine is five – this is the case when no

DNL marker is present and there are no errors.

 The NEXBIT function calls in the DECODE

function – see Figure 7.The corresponding pseudo-code and

the number of clock cycles required by each operation are:

FUNCTION DECODE

BEGIN

I=1 ;1clock

CNT=8 ;1clock

CODE= call NEXTBIT ;5 clocks

WHILE CODE>MAXCODE(I) ;2 clocks

I=I+1 ;1 clock

CODE=Shift Left with 1 position of CODE ;1 clock

CODE=CODE+ call NEXTBIT ;6 clocks

END WHILE

J=VALPTR(I) ;1 clock

J=J+CODE-MINICODE(I) ;3 clocks

VALUE=HUFFVAL(J) ;1 clock

RETURN VALUE

END DECODE

Test sequence applied to the standard sequential decoder

 The first element to be decoded is the DC element.

Dc= call DECODE

Step1: First bit is retrieved form the test sequence.

The call DECODE uses 17 clocks cycles, but this is not an

actual DC Huffman code.

Step2: The sequence “10” is analyzed. call DECODE uses

17 clocks cycles, but this is not a DC Huffman code.

Step3: The sequence “101” is analyzed; call DECODE uses

17 clocks cycles and finds a valid DC Huffman code. It uses

4 more clock cycles to return the length in bit of the data.

It results that for a Huffman code with the code length of

m(where m[1..15]) the Decode function uses 17*m+4 clock

cycles.

 The next step of the DC decoding is the retrieval of

the data and sign decoding. This is done using the function

Decode_ZZ(k) – see Figure 9 - where k is the length of

data. The pseudo-code of this function and the

corresponding number of clock cycles are detailed bellow:

FUNCTION Decode_ZZ(k)

BEGIN

I=0 ;1clock

ZZ=0 ;1clock

WHILE I<k ;2clocks

I=I+1 ;1clock

ZZ=Shift Left with 1 position of ZZ ; 1clock

ZZ=ZZ+call NEXTBIT ; 6 clocks

END WHILE

Vsign=Shift left with (k-1) positions of 2 ; 1clock

IF ZZ<Vsign THEN ; 2clocks

 Vsign=Shift Left with k positions of -1; 1clock

 Vsign= Vsign+1 ;1clock

 ZZ=ZZ+ Vsign ; 1clock

END IF

RETURN ZZ

END Decode_ZZ(k)

 It results that the function Decode_ZZ(k) uses 5

+k*10 clock cycles for a positive number and 5 +k*10+3

clock cycles for a negative number.

 After these steps the DC coefficient was decoded. The

Huffman code was “101” (m=3), the data “1100” (k=4), and

because the data was a positive number, the total number of

clock cycles used was 17*m+4+5 +k*10=100 clock cycles.

 The next bits in the scans represent the AC elements.

The algorithm described in Figure 11 for AC coefficient

decoding has the following pseudo code:

Decode AC coefficient routine

K=1 ;1 clock

ZZ(1,…,63)=0

WHILE K<63 ;2 clocks

RS=call DECODE ;17*m+4

 SSSS=RS modulo 16 ;2 clocks

 RRRR=Shift Right with 4 positions of RS :1clock

R=RRRR ;1 clock

IF SSSS=0 THEN ;2 clocks

 IF R=15 THEN ;2 clocks

 K=K+16 ;1 clock

 END IF

ELSE

K=K+R ;1 clock

Call Decode_ZZ(k);5 +k*10 clocks

K=K+1 ;1 clock

END IF

END WHILE

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

15

 The first decoded coefficient had the AC Huffman

code “11100” so m=5 and the data ‘1’ length k=1. The

routine required 109 clock cycles. The second decoded

coefficient had the AC Huffman code “1111000” so m=7

and the data ‘101010’ length was k=6. The routine required

198 clock cycles. The third and last decoded coefficient had

the AC Huffman code “1100” so m=4 and the data ‘0’

length k=1. The data was negative so the routine used 100

clock cycles.

 To conclude, for the chosen test string, the standard

software Huffman decoder required 100 clock cycles for the

DC coefficient and 407 clock cycles for the AC coefficients,

an overall total of 507 clock cycles.

Test sequence applied to the proposed parallel decoder

 For the parallel Huffman architecture – see Figure

13 - the first 16 bits of the test sequence are compared in

parallel with every element for the DC table. Only one of

the parallel comparisons is true and the 32 bit Internal

Buffer is shifted with the corresponding length and the data

is retrieved. The data are processed in the Sign Normalizing

block and outputted in a single clock cycle. The AC

coefficients are retrieved in the same manner but using the

corresponding AC table. The entire string was decoded in

only 4 clock cycles.

 This compares very favorably with the standard

software decoder, a ratio of 507 clock cycles to 4 – that is,

the proposed parallel decoder was 127 faster than the

standard software approach in this case.

VI. Comparison with other parallel decoders

 There are numerous papers on Huffman decoders in

general, and parallel implementations in particular. Only

some of them are going from proposing an algorithm all the

way to hardware implementation. Most of the proposed

solutions involve pipeline architectures [6], optimized for

particular ASIC implementations [7],[8] in order to obtain a

high frequency of operation and/or low power consumption.

It is difficult to compare against such solutions, as their

speed rely largely on process performances, but it should be

noted that they usually require more than one clock cycle to

output decoded data. Another drawback of these

implementations is their need for substantial hardware

resources: for example, the decoders proposed in [7] use

computation look-ahead and decomposition techniques to

realise efficient parallel architectures; this results in a rather

 complex implementation for a Huffman decoder.

 A representative example of the (very few) papers on

FPGA implementation of parallel Huffman decoders is [9]:

it proposes a decoder able to output decoded data on one

clock cycle, that was fully implemented on an Altera FPGA

FLEX 10K20RC240-3. There the max clock frequency was

11.54MHz and the total logic utilization was 99% [9]. Both

the algorithm and architecture proposed in this paper are

different from the ones in [9]; moreover, the solution here is

far faster – the max clock frequency in up to nine times

higher – and uses a smaller portion of the available hardware

VII. CONCLUSIONS

This paper presents a novel algorithm and parallel

architecture for Huffman decoding. A Jpeg file decoder

was then developed and implemented using an off-the-shelf

FPGA. Extensive simulations and lab tests have not only

demonstrated the proposed algorithm and architecture but

have also proven that the new Jpeg decoder can operate at

very high clock frequencies, up to 100MHz

Main features that differentiate the proposed

decoder from other solutions proposed in the literature are

its ability to output decoded data on one clock cycle

combined with a relatively simple implementation, which

allows high clock rate and reduces hardware requirements.

A detailed comparison with the standard sequential

Huffman software decoder shown that the proposed decoder

is up to 127 times faster; compared to a parallel decoder

implemented on a similar FPGA, the solution here has a

max clock frequency almost nine times larger, while using a

far smaller percentage of the available hardware resources.

From the integration point of view, this architecture

can be attached as a peripheral to one of the embedded

software processors like Microblaze or Nios II, were it can

be used as a Huffman hardware decoder accelerator for the

image processing applications. Another possible application

is to combine it with the one of the fast hardware IDCT IP

cores available on the market, in order to create an ultra-fast

hardware Jpeg decoder.

REFERENCES

1. G. Wallace, The JPEG Still Picture Compression

Standard. April 1991, Vol. 34, No. 4, Communication of

the ACM

2. CCITT Rec. T.81 (1992 E), Digital compression and

coding of Continuous-Tone Still Images – Requirements

and Guidelines (ISO/IEC 10918-1 : 1993(E), 1992, pp.

18-21, 50-53,.88-93,103-113

3. S. Ho, P. Law – Efficient Hardware Decoding Method

for Modified Huffman Code, Electronics Letters, vol 27,

No 10, May 1991, pp. 855-856

4. Microblaze Processor Reference Guide

http://www.xilinx.com/support/documentation/

sw_manuals/edk92i_mb_ref_guide.pdf, 2007, pages 9-63

5. On-Chip Peripheral Bus V2.0 with OPB Arbiter,

http://www.xilinx.com/support/documentation/

ip_documentation/opb_v20.pdf, 2005. pages 1-30

6. M.K. Rudberg, L. Wanhammar - High speed

pipelined parallel Huffman decoding, Proceeding of IEEE

ISCAS’97, vol 3, June 1997, pp 2080-2083

7. K.K. Parhi - High-speed VLSI architectures for

Huffman and Viterbi decoders, IEEE Tran. On Circuits

and Systems II, vol 39/6, June 1999, pp 385-391

8. S. T. Klein, Y. Wiseman, "Parallel Huffman

Decoding," Data Compression Conference 2000, pp. 383

9. Z. Aspar, Z. Mohd Yusof, I. Suleiman - Parallel

Huffman decoder with an optimized look up table option

on FPGA, Proceedings of TENCON 2000. pp.73-76.

