
A Fast, Parallel Spanning Tree Algorithm for Symmetric

Multiprocessors (SMPs)

David A. Bader∗ Guojing Cong

Electrical and Computer Engineering Department

University of New Mexico, Albuquerque, NM 87131

{dbader, cong }@ece.unm.edu

October 19, 2003

Abstract

The ability to provide uniform shared-memory access to a significant number of processors in a

single SMP node brings us much closer to the ideal PRAM parallel computer. Many PRAM algorithms

can be adapted to SMPs with few modifications. Yet there are few studies that deal with the implemen-

tation and performance issues of running PRAM algorithms on SMPs. Our study in this paper focuses

on implementing parallel spanning tree algorithms on SMPs. Spanning tree is an important problem

in the sense that it is the building block for many other parallel graph algorithms and also because

∗This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR ACI-00-81404, DEB-99-10123,
ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR EF/BIO 03-31654.

1

it is representative of a large class of irregular combinatorial problems that have simple and efficient

sequential implementations and fast PRAM algorithms, but often have no known efficient parallel im-

plementations. Experimental studies have been conducted on related problems (minimum spanning

tree and connected components) using parallel computers, but only achieved reasonable speedup on

regular graph topologies that can be implicitly partitioned with good locality features or on very dense

graphs with limited numbers of vertices. In this paper we present a new randomized algorithm and

implementation with superior performance thatfor the first-timeachieves parallel speedup on arbitrary

graphs (both regular and irregular topologies) when compared with the best sequential implementation

for finding a spanning tree. This new algorithm uses several techniques to give an expected running time

that scales linearly with the numberp of processors for suitably large inputs (n > p2). As the spanning

tree problem is notoriously hard for any parallel implementation to achieve reasonable speedup, our

study may shed new light on implementing PRAM algorithms for shared-memory parallel computers.

The main results of this paper are

1. A new and practical spanning tree algorithm for symmetric multiprocessors that exhibits parallel

speedups on graphs with regular and irregular topologies; and

2. An experimental study of parallel spanning tree algorithms that reveals the superior performance

of our new approach compared with the previous algorithms.

The source code for these algorithms is freely-available from our web sitehpc.ece.unm.edu .

1 Introduction

Finding a spanning tree of a graph is an important building block for many graph algorithms, for

example, biconnected components and ear decomposition and can be used in graph planarity test-

ing. The best sequential algorithm for finding a spanning tree of a graphG = (V,E) wheren = |V|

andm= |E| uses depth- or breadth-first graph traversal, whose time complexity is O(m+n). The

implementation of the sequential algorithm is very efficient (linear time with a very small hidden

constant), and the only data structure used is a stack or queue which has good locality features.

However, graph traversal using depth-first search is inherently sequential and not known to par-

allelize efficiently [33]. Thus, the previous approaches for parallel spanning tree algorithms use

novel techniques other than traversal that are conducive to parallelism and have polylogarithmic

time complexities. In practice, none of these parallel algorithms has shown significant parallel

speedup over the best sequential algorithm for irregular graphs, because the theoretic models do

not realistically capture the cost for communication on current parallel machines, the algorithm is

too complex for implementation, or there are large constants hidden in the asymptotic notation that

could not be overcome by a parallel implementation.

Symmetric multiprocessor (SMP) architectures, in which several processors operate in a true,

hardware-based, shared-memory environment are becoming commonplace. Indeed, most of the

new high-performance computers are clusters of SMPs having from 2 to over 100 processors per

node. The ability to provide uniform-memory-access (UMA) shared-memory for a significant

number of processors brings us much closer to the ideal parallel computer envisioned over 20 years

ago by theoreticians, theParallel Random Access Machine (PRAM)(see [22, 34]) and thus may

1

enable us at last to take advantage of 20 years of research in PRAM algorithms for various irregular

computations (such as spanning tree and other graph algorithms). Moreover, as supercomputers

increasingly use SMP clusters, SMP computations will play a significant role in supercomputing.

While an SMP is a shared-memory architecture, it is by no means the PRAM used in theoretical

work—synchronization cannot be taken for granted and the number of processors is far smaller

than that assumed in PRAM algorithms. The significant feature of SMPs is that they provide much

faster access to their shared-memory than an equivalent message-based architecture. Even the

largest SMP to date, the recently delivered 106-processor Sun Fire Enterprise 15000 (E15K), has

a worst-case memory access time of 450ns (from any processor to any location within its 576GB

memory); in contrast, the latency for access to the memory of another processor in a distributed-

memory architecture is measured in tens ofµs. In other words, message-based architectures are

two orders of magnitude slower than the largest SMPs in terms of their worst-case memory access

times.

The Sun E15K [5, 6] uses a combination of data crossbar switches, multiple snooping buses,

and sophisticated cache handling to achieve UMA across the entire memory. Of course, there

remains a large difference between the access time for an element in the local processor cache

(around 10ns) and that for an element that must be obtained from memory (at most 450ns)—and

that difference increases as the number of processors increases, so that cache-aware implementa-

tions are even more important on large SMPs than on single workstations.

The main results of this paper are 1) a new and practical spanning tree algorithm for symmetric

multiprocessors that exhibits parallel speedups on graphs with regular and irregular topologies; and

2

2) an experimental study of parallel spanning tree algorithms that reveals the superior performance

of our new approach compared with the previous algorithms. In Sections 1.1 and 1.2 we survey

the theoretic and experimental literature, respectively, for prior results in parallel spanning tree

research.

1.1 Parallel Algorithms for Spanning Tree

For a sparse graphG = (V,E) wheren = |V| andm= |E|, various deterministic and randomized

techniques have been given for solving the spanning tree problem on PRAM models. Known de-

terministic algorithms include the following results.EREW PRAM: : Nash and Maheshwari’s

approach [30] takes O
(
log2n

)
time with O

(
n2

)
operations and improves from Hirschberg, Chan-

dra and Sarwate’s CREW algorithm [19] by building data structures to eliminate the current reads;

Phillips [32] and Kruskal, Rudolph, and Snir [27] gave algorithms that run in O
(
log2n

)
time

with O((m+n) logn) work; Chong and Lam’s approach [8] takes O(lognlog logn) time with

O((m+n) lognloglogn) work. CREW PRAM: Hirschberget al. [19] designed an O
(
log2n

)

time, O
(
n2 logn

)
work algorithm; Chin, Lam, and Chen [7] improved the algorithm to take O

(
log2n

)

time and O
(
n2

)
work by exploiting the adjacency matrix as the representing data structure; Han

and Wagner’s algorithm [16] runs in O
(
log2n

)
time with O((m+nlogn) logn) work; and John-

son and Metaxas’s algorithm [23, 24] runs in O
(

log3/2n
)

time with O
(
(m+n) log3/2 n

)
oper-

ations. CRCW PRAM: There are faster algorithms that use concurrent writes. Shiloach and

Vishkin [36] and Awerbuch and Shiloach [1] developed algorithms that run in O(logn) time with

O((m+n) logn) work; both Cole and Vishkin’s algorithm [10] and Iwama and Kambayashi’s algo-

3

rithm [21] run in O(logn) time with O((m+n)α(m,n)) work, whereα is the inverse Ackermann’s

function. Iwana and Kambayashi’s algorithm improves the Cole and Vishkin algorithm by remov-

ing the expander graph so that the hidden constant in the asymptotic notation becomes smaller.

Gazit [12] and Halperin and Zwick [15] have designed optimal randomized approaches for

parallel spanning tree that run in O(logn) time with high probability on the CRCW and EREW

PRAM, respectively. The algorithm of Halperin and Zwick [15] is actually a mixture of several

previous algorithms; it borrows themaximum-hookingmethod from Chong and Lam [8] to resolve

possible grafting conflicts, complicatedgrowth controlmethod from Johnson and Metaxas [23, 24]

which is the key technique for them to achieve an O
(

log3/2n
)

algorithm, and other techniques

from Gazit [12] and Karger, Klein, and Tarjan [25].

1.2 Related Experimental Studies

As we described in the previous section, the research community has produced a rich collection of

theoretic deterministic and randomized spanning tree algorithms. Yet for implementations and ex-

perimental studies, although several fast PRAM spanning tree algorithms exist, to our knowledge

there is no parallel implementation of spanning tree (or the related problems such as connected

components that produce a spanning tree) that achieves significant parallel speedup on sparse,

irregular graphs when compared against the best sequential implementation. In our study we care-

fully chose several known PRAM algorithms and implemented them for shared-memory (using

appropriate optimizations described by Greiner [14], Chung and Condon [9], Krishnamurthyet al.

[26], and Hsuet al. [20]), and compared these with our new randomized approach. Our results to

4

our knowledge are the first to achieve any reasonable parallel speedup for both regular and irregular

graphs.

Greiner [14] implemented several connected components algorithms (Shiloach-Vishkin, Awerbuch-

Shiloach, “random-mating” based on the work of Reif [35] and Phillips [32], and a hybrid of the

previous three) using NESL on the Cray Y-MP/C90 and TMC CM-2. On random graphs Greiner

reports a maximum speedup of 3.5 using the hybrid algorithm when compared with a depth-first

search on a DEC Alpha processor. Hsu, Ramachandran, and Dean [20] also implemented several

parallel algorithms for connected components. They report that their parallel code runs 30 times

slower on a MasPar MP-1 than Greiner’s results on the Cray, but Hsuet al.’s implementation uses

one-fourth of the total memory used by Greiner’s hybrid approach. Krishnamurthyet al. [26]

implemented a connected components algorithm (based on Shiloach-Vishkin [36]) for distributed

memory machines. Their code achieved a speedup of 20 using a 32-processor TMC CM-5 on

graphs with underlying 2D and 3D regular mesh topologies, but virtually no speedup on sparse

random graphs. Goddard, Kumar, and Prins [13] implemented a connected components algorithm

(motived by Shiloach-Vishkin) for a mesh-connected SIMD parallel computer, the 8192-processor

MasPar MP-1. They achieve a maximum parallel speedup of less than two on a random graph with

4096 vertices and about one-million edges. For a random graph with 4096 vertices and fewer than

a half-million edges, the parallel implementation was slower than the sequential code. Chung and

Condon [9] implemented a parallel minimum spanning tree (MST) algorithm based on Bor˚uvka’s

algorithm. On a 16-processor CM-5, for geometric graphs with 32,000 vertices and average degree

9 and graphs with fewer vertices but higher average degree, their code achieved a parallel speedup

5

of about 4, on 16-processors, over the sequential Bor˚uvka’s algorithm, which was 2–3 times slower

than their sequential Kruskal algorithm. Dehne and G¨otz [11] studied practical parallel algorithms

for MST using the BSP model. They implemented a dense Bor˚uvka parallel algorithm, on a 16-

processor Parsytec CC-48, that works well for sufficiently dense input graphs. Using a fixed-sized

input graph with 1,000 vertices and 400,000 edges, their code achieved a maximum speedup of 6.1

using 16 processors for a random dense graph. Their algorithm is not suitable for sparse graphs.

Section 2 further details the parallel algorithms we implemented and developed. The shared-

memory analysis of these algorithms is given in Section 3. In Section 4 we detail the experimental

study, describe the input data sets and testing environment, and present the experimental results.

Finally, Section 5 provides our conclusions and future work.

2 Parallel Spanning Tree Algorithms for SMPs

Here we present the three parallel spanning tree algorithms we have implemented. According to

the complexities of the algorithms, programming complexity, constant factors hidden in the asymp-

totic notation, we choose two representative PRAM algorithms to implement for SMPs, i.e, the

Shiloach-Vishkin (SV) and the Hirschberg-Chandra-Sarwate (HCS) algorithms, using appropriate

optimizations suggested by [14, 20, 26, 9]. Through the experience we gained by implementing

these two algorithms, we developed a new randomized algorithm with superior performance in all

of our experiments.

6

2.1 The Shiloach-Vishkin Algorithm

The Shiloach-Vishkin algorithm (SV) is in fact a connected-components algorithm [36, 1]. This

algorithm is representative of several connectivity algorithms in that it adapts the widely used

graft-and-shortcut approach. Through carefully designed grafting schemes the algorithm achieves

complexities of O(logn) time and O((m+n) logn) work under the arbitrary CRCW PRAM model.

It can be extended naturally to solve the spanning tree problem under the priority CRCW PRAM

model with the same complexity bound. Yet for implementation on an SMP, the tightly-synchronized

concurrent steps (read and write) are unrealistic and modification of the algorithm is necessary, as

we discuss next.

The basic problem of adapting Alg. 1 (given in Appendix A) on SMPs as a spanning tree

algorithm is that it may graft a tree onto two or more different trees or onto the tree itself and

produce cycles. This is allowable in the connected components algorithm as long as the connected

vertices are labeled as in the same component, yet it will be an issue in the spanning tree algorithm

for this may produce some false tree edges. It is in fact a race condition between processors that

wish to graft a subtree rooted at one vertex onto different trees. The mismatch between the priority

CRCW model and and a real SMP is as follows. On the priority CRCW model (assumed by the

original algorithm) arbitration among the processors during each step is provided by the model, yet

most SMPs can only provide arbitrary concurrent writes with a cost. One straightforward solution

is to use locks to ensure that a tree gets grafted only once. The locking approach intuitively is

slow and not scalable, and our test results agree. Another approach is to always shortcut the tree

to rooted star (to avoid grafting a tree onto itself) and run an election among the processors that

7

wish to graft the same tree before actually do the grafting. Only the winner of the election grafts

the tree (to avoid grafting a tree onto multiple other trees). This approach is also used by other

researchers [21, 14] to handle the race conditions in their spanning tree algorithms. The running

time of the algorithm is now O
(
log2n

)
; the additional logn factor comes from shortcutting (pointer

jumping). Optimizations are possible for the election approach. For example, step 2 in Alg. 1 could

be removed because now all the grafting can be done in step 1, and we could shrink the edge list to

eliminate those edges that have been used (after a certain number of iterations) so that we do not

need to scan the entire edge list each iteration. This approach is generally faster than the locking

scheme, yet it also has the following major slow down factors:

1. Although the election procedure does not asymptotically affect the running time of the algo-

rithm, it increases the hidden constant factor. Now we literally run the grafting phase of the

Shiloach-Vishkin algorithm twice.

2. The SMP processors must compete for writing to the same memory location to emulate con-

current writes. Note also that with more processors available, the competition can potentially

cause memory congestion if many of the processors write to the same memory location when

trying to graft the same subtree.

SV is sensitive to the labeling of vertices. For the same graph, different labeling of vertices may

incur different numbers of iterations to terminate the algorithm. For the best case, one iteration of

the algorithm may be sufficient, and the running time of the algorithm will be O(logn). Whereas

for an arbitrary labeling of the same graph, the number of iterations needed will be from one to

logn. We expect to see similar behaviors for the class of algorithms that use the “grafting and

8

short-cutting” approach.

2.2 The Hirschberg-Chandra-Sarwate Algorithm

The Hirschberg-Chandra-Sarwate algorithm [19] (HCS) is one of the earliest parallel graph con-

nectivity algorithms and has O
(
log2n

)
time, O

(
n2 logn

)
work complexities on CREW PRAM.

HCS’s simplicity and use of exclusive write make it attractive for implementation over many later

variants of parallel spanning tree. Although we can emulate PRAM models (e.g., EREW, CREW

and CRCW) on SMPs, exclusive read is perhaps too restrictive while concurrent write incurs con-

tention and serialization on SMPs, we expect a CREW PRAM algorithm can be more naturally

emulated on the currently available SMPs. Similar to the SV algorithm, HCS is a connected-

components algorithm that requires modification to transform it into a spanning tree algorithm.

Our modified HCS algorithm for spanning tree results in similar complexities and running time as

that of SV when implemented on an SMP, and hence, we leave it out of further discussion.

2.3 A New Spanning Tree Algorithm For SMPs

Our new parallel spanning tree algorithm for shared-memory multiprocessors has two main steps:

1) stub spanning tree, and 2) work-stealing graph traversal. Work-stealing is a randomized tech-

nique used for load balancing the graph traversals and yields an expected running time that scales

linearly with the number of processors for suitable large inputs. Unlike the SV approach, the

labeling of vertices does not affect the performance of our new algorithm.

Stub Spanning Tree: In the first step, one processor generates a stub spanning tree, that is, a small

9

portion of the spanning tree by randomly walking the graph for O(p) steps. The vertices of the

stub spanning tree are evenly distributed into each processor’s queue, and each processor in the

next step traverses from the first element in its queue. After the traversals in step 2, the spanning

subtrees are connected to each other by this stub spanning tree.

Work Stealing Graph Traversal: The basic idea of this step is to let each processor traverse the

graph similar to the sequential algorithm in such a way that each processor finds a subgraph of

the final spanning tree. In order for this step (see Alg. 2 in Appendix A) to perform correctly and

efficiently, we need to address the following two issues: 1) coloring the same vertex simultaneously

by multiple processors, that is, a vertex may appear in two or more subtrees of different processors,

and 2) balancing the load among the processors.

���
���
���

���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

w

u v

P1

P2

Figure 1: Two processorsP1 andP2 see vertexw as unvisited, so each is in a race to colorw and
setw’s parent pointer. The shaded area represents vertices colored byP1, the black area represents
those marked byP2, and the white area contains unvisited vertices.

As we will show the algorithm runs correctly even when two or more processors color the

same vertex. In this situation, each processor will color the vertex and set as its parent the vertex

it has just colored. Only one processor succeeds at setting the vertex’s parent to a final value. For

example, using Fig. 1, processorP1 colored vertexu, and processorP2 colored vertexv, at a certain

time they both findw unvisited and are now in a race to color vertexw. It makes no difference

10

which processor coloredw last becausew’s parent will be set to eitheru or v (and it is legal to

setw’s parent to either of them; this will not change the validity of the spanning tree, only its

shape). Further, this event does not create cycles in the spanning tree. BothP1 andP2 record that

w is connected to each processor’s own tree. When various processors visit each ofw’s unvisited

children, its parent will be set tow, independent ofw’s parent.

Lemma 1 On an SMP with sequential memory consistency, Alg. 2 does not create any cycles in

the spanning trees.

Proof: (by contradiction) Suppose in the SMP spanning tree algorithm processorsP1,P2, · · · ,Pj

create a cycle sequence< s1,s2, · · · ,sl ,s1 >, that is,Pi setssi ’s parent tosi+1, andPj setssl ’s parent

to s1. Here anyPi andPj with 1≤ i, j ≤ p and 1≤ l ≤ n could be the same or different processors.

According to the algorithm,si ’s parent is set tosi+1 only whenPi findssi+1 at the head of its queue

(andsi+1 was colored before and put into the queue), andsi is si+1’s unvisited (uncolored) neigh-

bor. This implies that forPi the coloring ofsi+1 happens before the coloring ofsi . In other words,

processorPi observes the memory write to locationcolor [si] happen before the write to location

color [si+1]. On an SMP with sequential memory consistency, this means each processor should

see the sequence in this order. Letti be the time at whichsi is colored; we haveti > ti+1, that is,

t1 > t2 > t3 > · · ·> tl > t1, which is a contradiction. Thus, the SMP graph traversal step creates no

cycles.2

Lemma 2 For connected graph G, Alg. 2 will setparent(v) for each vertex v∈V that is colored 0

before the start of the algorithm.

11

Proof: First we prove (by contradiction) that each vertex with color 0 before start of the al-

gorithm will be colored as one of 1,2, · · · , p after the algorithm terminates. Suppose there exists

a vertexv ∈ V that still has color 0 after Alg. 2 terminates. This implies that each neighborw

of v is never placed into the queue, otherwise step 2.1 in Alg. 2 would have found thatv is w’s

neighbor, and would have coloredv as one of 1,2, · · · , p. If w is never placed in the queue, thenw

has color 0, which in turn means that allw’s neighbors have color 0. By induction, and because

G is connected, we find all of the vertices inG are colored 0 after the algorithm terminates, which

is clearly a contradiction. Further, since each vertex is colored, step 2.6 in Alg. 2 guarantees that

each vertex’sparentis set.2

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

u

v

r

w

P1

P2

P4

P3

x

Figure 2: Unbalanced load: processorsP1, P2, andP3, each color only one vertex while processor
P4 colors the remainingn−3 vertices.

For certain shapes of graphs or ordering of traversals, some processors may have little work to

do while others are overloaded. For example, using Fig. 2, after generating a stub spanning tree

(black vertices), processorsP1, P2, P3, andP4, start a traversal from designated starting points. In

this caseP1, P2, andP3, color no other vertices thanu, v, andw, while processorP4, starting from

vertexx, has significant work to do. In this example for instance, this results in all but one processor

sitting idle while a single processor performs almost all the work, and obviously no speedup will

12

be achieved. We remedy this situation as follows.

To achieve better load-balancing across the processors, we add the technique of work stealing

to our algorithm, i.e., whenever any processor finishes with its own work (that is, it cannot reach

any other unvisited vertex), it randomly checks other processors’ queues. If it finds a non-empty

queue, the processor steals part of the queue. Work stealing does not affect the correctness of

the algorithm, because when a processors takes elements from a queue, all of the elements are

already colored and theirparents have already been set, and no matter which processor inspects

their unvisited children, they are going to be set as these children’sparents. As we show later in

our experimental results, we find that this technique keeps all processors equally busy performing

useful work, and hence, evenly balances the workload for most classes of input graph.

Arguably there are still pathological cases where load-balancing could fail to balance the load

among the processors. For example, when connectivity of a graph (or portions of a graph) is very

low (the diameter of the graph is large), queues of the busy processors may only contain a few

elements (in extreme cases, the queue of a busy processor could contain only one element). In

this case work awaits busy processors while idle processors starve for something to do. Obviously

this is the worst case for the SMP traversal algorithm. We argue that this case is very rare (see

Section 3); however, we next propose a detection mechanism that can detect the situation and

invoke a different spanning tree algorithm that is robust to this case.

The detecting mechanism uses condition variables to coordinate the state of processing. When-

ever a processor becomes idle and finds no work to steal, it will go to sleep for a duration on a

condition variable. Once the number of sleeping processors reaches a certain threshold, we halt

13

the SMP traversal algorithm, merge the grown spanning subtree into a super-vertex, and start a

different algorithm, for instance, the SV approach. In theoretic terms, the performance of our al-

gorithm could be similar to that of SV in the worst-case, but in practical terms this mechanism will

almost never be triggered; for instance, in our experimental studies with a collection of different

types of graphs, we never encountered such a case.

When an input graph contains vertices of degree two, these vertices along with a corresponding

tree edge can be eliminated as a simple preprocessing step. Clearly, this optimization does not

affect correctness of the algorithm, and we can assume that this procedure has been run before the

analysis in the next section.

Theorem 1 For connected graph G, suppose we generate a stub spanning tree and store the ver-

tices into each processor’s queue. Let each processor start step 3’s traversal from the first vertex

stored in its queue, then after the work-stealing graph traversal step terminates, we have a span-

ning tree of G.

Proof: Theorem 1 follows from Lemma 1 and Lemma 2.2

3 Analysis of the SMP Spanning Tree Algorithms

We compare our new SMP algorithm with the implementation of SV both in terms of complexity

and actual performance (in Section 4). Our analyses use an SMP complexity model similar to that

of Helman and J´aJá [18] that has been shown to provide a good cost model for shared-memory

14

algorithms on current symmetric multiprocessors [17, 18, 2, 3].The model uses two parameters:

the input sizen, and the numberp of processors. Running timeT(n, p) is measured by the triplet

〈TM(n, p) ; TC(n, p) ; B(n, p)〉 , whereTM(n, p) is the maximum number of non-contiguous main

memory accesses required by any processor,TC(n, p) is an upper bound on the maximum local

computational complexity of any of the processors, andB(n, p) is the number of barrier synchro-

nizations. This model, unlike the idealistic PRAM, is more realistic in that it penalizes algorithms

with non-contiguous memory accesses that often result in cache misses and algorithms with more

synchronization events.

Our spanning tree algorithm takes advantage of the shared memory environment in several

ways. First, the input graph’s data structure can be shared by the processors without the need for

the difficult task of partitioning the input data often required by distributed-memory algorithms.

Second, load balancing can be performed asynchronously using the lightweight work stealing pro-

tocol. Unlike the SV implementation that is sensitive to both the labeling and topology of input

graph, the running time of our new approach is dependent on the topology and nondeterministic

races amongst processors. Next, we give the complexity analyses of these approaches.

SMP Traversal Based:

The first step that generates a stub spanning tree is executed by one processor inT(n, p) =

〈TM(n, p) ; TC(n, p) ; B(n, p)〉 = 〈O(p) ; O(p) ; 1〉. In the second step, the work-stealing graph

traversal step needs one non-contiguous memory access to visit each vertex, and two non-contiguous

accesses per edge to find the adjacent vertices, check their colors, and set the parent. For almost all

graphs, the expected number of vertices processed per processor is O
(

n
p

)
with the work-stealing

15

technique; and hence, we expect the load to be evenly balanced. (Palmer [31] proved that almost

all random graphs have diameter two.) During the tree-growing process, a small number of ver-

tices may appear in more than one queue because of the races among the processors. Analytically,

we could model this as a Poisson process that depends on parameters related to system and prob-

lem characteristics. However, this number will not be significant. Our experiments show that the

number of vertices that appear in multiple processors’ queues at the same time are a miniscule

percentage (for example, less than ten vertices for a graph with millions of vertices).

We expect each processor to visit O
(

n
p

)
vertices; hence, the expected complexity of the second

step isT(n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉 =
〈

n
p +2m

p ; O
(

n+m
p

)
; 1

〉
. Thus, the expected

running time for our SMP spanning tree algorithm is given as

T(n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉 ≤
〈

5n
p +2m

p +O(p) ; O
(

n+m
p

)
; 2

〉
, (1)

with high probability. For realistic problem sizes (n� p2), this simplifies to

T(n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉 ≤
〈

O
(

n+m
p

)
; O

(
n+m

p

)
; 2

〉
, (2)

the algorithm scales linearly with the problem size and number of processors, and we use only a

constant number of barrier synchronizations.

Shiloach-Vishkin (SV): The SV algorithm is modified from the deterministic connected compo-

nents algorithms for finding spanning trees withp shared-memory processors. SV iterates from

one to logn times depending on the labeling of the vertices. In the first “graft-and-shortcut” step of

16

SV, two passes are used to ensure that a tree is not grafted onto multiple other trees. In each pass,

there are two non-contiguous memory accesses per edge, for readingD[j] andD[D[i]]. Thus, each

of the two passes of the first step has cost:

T(n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉=
〈

2m
p +1 ; O

(
n+m

p

)
; 1

〉
(3)

The second step of the SV connected components algorithm does not need to be run for spanning

tree, since all the trees are grafted in the first step. The final step of each iteration runs pointer

jumping to form rooted stars to ensure that a tree is not grafted onto itself, with cost:

T(n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉=
〈

nlogn
p ; O

(
nlogn

p

)
; 1

〉
(4)

In general, SV needs multiple iterations to terminate. Assuming the worst-case of logn iterations,

the total complexity for SV is

T(n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉 ≤
〈

nlog2 n
p +

(
4m

p +2
)

logn ; O
(

nlog2 n+mlogn
p

)
; 4 logn

〉

(5)

Comparing the analyses, we predict that our randomized approach has less computation
(

O
(

n+m
p

))

than the SV approach that is deterministic but has worst-case computational requirements of

O
(

nlog2n+mlogn
p

)
. Even if SV iterates only once, there is still approximately logn times more

work per iteration. Looking at memory accesses, our SMP algorithm is more cache friendly, hav-

ing small number of non-contiguous memory access per the input size. On the other hand, SV

17

has a multiplicative factor of approximately15 log2n more non-contiguous accesses per vertex as-

signed to each processor. Our SMP approach also uses less synchronization (O(1)) than the SV

implementation that requires O(logn).

4 Experimental Results

This section summarizes the experimental results of our implementation and compared our results

with previous experimental results. We tested our shared-memory implementation on the Sun

E4500, a uniform-memory-access (UMA) shared memory parallel machine with 14 UltraSPARC

II 400MHz processors and 14 GB of memory. Each processor has 16 Kbytes of direct-mapped

data (L1) cache and 4 Mbytes of external (L2) cache. We implement the algorithms using POSIX

threads and software-based barriers.

4.1 Experimental Data

Next we describe the collection of sparse graph generators that we use to compare the performance

of the parallel spanning tree graph algorithms. Our generators include several employed in previous

experimental studies of parallel graph algorithms for related problems. For instance, we include

the 2D60 and3D40 mesh topologies used in the connected component studies of Greiner [14],

Krishnamurthyet al. [26], Hsuet al. [20], and Goddardet al. [13], the random graphs used by

Greiner [14], Chung and Condon [9], Hsuet al. [20], and Goddardet al. [13], and the geometric

graphs used by Chung and Condon [9], and the “tertiary” geometric graphAD3 used by Greiner

[14], Hsuet al. [20], Krishnamurthyet al. [26], and Goddardet al. [13]. In addition, we include

18

generators from realistic applications such as geographic graphs and from pathological cases such

as degenerate chain graphs.

• Regular and Irregular MeshesComputational science applications for physics-based sim-

ulations and computer vision commonly use mesh-based graphs.

– 2D TorusThe vertices of the graph are placed on a 2D mesh, with each vertex connected

to its four neighbors.

– 2D602D mesh with the probability of 60% for each edge to be present.

– 3D403D mesh with the probability of 40% for each edge to be present.

• Random Graph We create a random graph ofn vertices andmedges by randomly addingm

unique edges to the vertex set. Several software packages generate random graphs this way,

including LEDA [28].

• Geometric Graphs and AD3In these graphs, we give each vertex a fixed degreek. Moret

and Shapiro [29] use these in their empirical study of sequential MST algorithms.AD3 is a

geometric graph withk = 3.

• Geographic GraphsResearch on properties of wide-area networks model the structure of the

Internet as a geographic graph [4]. We classify geographic graphs into two categories, flat

and hierarchical. Flat mode takes into account the geographical locations of vertices when

producing edges. First the vertices are randomly placed on a square, then for each pair of the

vertices, an edge connects them according to the distance between them and other parameters.

Hierarchical mode models the Internet with the notions of backbones, domains, and subdo-

mains. Several vertices are placed in the square, and a backbone is created connecting these

19

locations. In a similar way domains and subdomains are created around certain locations of

the backbone.

4.2 Performance Results and Analysis

In this section we offer a collection of our performance results that demonstrate for the first time

a parallel spanning tree algorithm that exhibits speedup when compared with the best sequential

approach over a wide range of input graphs. In Appendix B we give a summary of our performance

results. The performance plots in Fig. 3 are for the regular and irregular meshes (torus,2D60and

3D40), in Fig. 4 are for the random, geometric andAD3, and geographic classes of graphs, and in

Fig. 5 are for the degenerate chain graphs. Note that only the mesh and degenerate chain graphs

are regular; all of the remaining graphs used are irregular. In these plots, the horizontal line labeled

“Sequential” represents the time taken for the best sequential spanning tree algorithm to find a

solution on the same input graph using a single processor on the Sun E4500.

In the case of the torus inputs, we observe that the initial labeling of vertices greatly affects the

performance of the SV algorithm, but the labeling has little impact on our algorithm. In all of these

graphs, we note that the SV approach runs faster as we employ more processors. However, in many

cases, the SV parallel approach is slower than the best sequential algorithm. Forp > 2 processors,

in our testing with a variety of classes of large graphs, our new spanning tree algorithm is always

faster than the sequential algorithm, and executes faster as more processors are available. This is

remarkable, given that the sequential algorithm is linear time with a very small hidden constant in

the asymptotic complexity.

20

Fig. 6 shows the scalability of our SMP spanning tree algorithm usingp = 8 processors com-

pared with the sequential algorithm for a random graph withm = 1.5n edges. For these exper-

iments, the speedup of the parallel algorithm compared with the sequential approach ranges be-

tween 4.5 and 5.5.

5 Conclusions and Future Work

In summary, we present optimistic results that for the first time, show that parallel spanning tree

algorithms run efficiently on parallel symmetric multiprocessors for graphs with regular and ir-

regular topologies. Our new implementation scales nearly linearly with the problem size and the

number of processors for suitably large input graphs. Our randomized approach uses a load bal-

ancing scheme based upon work stealing. Our new parallel algorithm has superior performance

when compared with prior deterministic parallel approaches that we modify for SMPs. Through

comparison with the best sequential implementation, we see experimentally that our approach runs

in O
(

n+m
p

)
expected time over a variety of regular and irregular graph topologies. Further, these

results provide optimistic evidence that complex graph problems that have efficient PRAM solu-

tions, but often no known efficient parallel implementations, may scale gracefully on SMPs. Our

future work includes validating these experiments on larger SMPs, and since the code is portable,

on other vendors’ platforms. We plan to apply the techniques discussed in this paper to other re-

lated graph problems, for instance, minimum spanning tree (forest), connected components, and

planarity testing algorithms, for symmetric multiprocessors.

21

References

[1] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for shuffle-exchange
network and PRAM.IEEE Trans. Computers, C-36(10):1258–1263, 1987.

[2] D.A. Bader, A.K. Illendula, B. M.E. Moret, and N. Weisse-Bernstein. Using PRAM algo-
rithms on a uniform-memory-access shared-memory architecture. In G.S. Brodal, D. Fri-
gioni, and A. Marchetti-Spaccamela, editors,Proc. 5th Int’l Workshop on Algorithm Engi-
neering (WAE 2001), volume 2141 ofLecture Notes in Computer Science, pages 129–144,
Århus, Denmark, 2001. Springer-Verlag.

[3] D.A. Bader, S. Sreshta, and N. Weisse-Bernstein. Evaluating arithmetic expressions using
tree contraction: A fast and scalable parallel implementation for symmetric multiprocessors
(SMPs). In S. Sahni, V.K. Prasanna, and U. Shukla, editors,Proc. 9th Int’l Conf. on High
Performance Computing (HiPC 2002), volume 2552 ofLecture Notes in Computer Science,
pages 63–75, Bangalore, India, December 2002. Springer-Verlag.

[4] K.L. Calvert, M.B. Doar, and E.W. Zegura. Modeling internet topology.IEEE Communica-
tions, 35(6):160–163, 1997.

[5] A. Charlesworth. Starfire: extending the SMP envelope.IEEE Micro, 18(1):39–49, 1998.

[6] A. Charlesworth. The Sun Fireplane system interconnect. InProc. Supercomputing (SC
2001), pages 1–14, Denver, CO, November 2001.

[7] F. Y. Chin, J. Lam, and I-N. Chen. Efficient parallel algorithms for some graph problems.
Commun. ACM, 25(9):659–665, 1982.

[8] K.W. Chong and T.W. Lam. Finding connected components inO(lognloglogn) time on the
EREW PRAM.J. Algorithms, 18:378–402, 1995.

[9] S. Chung and A. Condon. Parallel implementation of Bor˚uvka’s minimum spanning tree
algorithm. InProc. 10th Int’l Parallel Processing Symp. (IPPS’96), pages 302–315, April
1996.

[10] R. Cole and U. Vishkin. Approximate parallel scheduling. part II: applications to logarithmic-
time optimal graph algorithms.Information and Computation, 92:1–47, 1991.

[11] F. Dehne and S. G¨otz. Practical parallel algorithms for minimum spanning trees. InWork-
shop on Advances in Parallel and Distributed Systems, pages 366–371, West Lafayette, IN,
October 1998. co-located with the 17th IEEE Symp. on Reliable Distributed Systems.

[12] H. Gazit. An optimal randomized parallel algorithm for finding connected components in a
graph.SIAM J. Comput., 20(6):1046–1067, 1991.

[13] S. Goddard, S. Kumar, and J.F. Prins. Connected components algorithms for mesh-connected
parallel computers. In S. N. Bhatt, editor,Parallel Algorithms: 3rd DIMACS Implementation
Challenge October 17-19, 1994, volume 30 ofDIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 43–58. American Mathematical Society, 1997.

[14] J. Greiner. A comparison of data-parallel algorithms for connected components. InProc. 6th
Ann. Symp. Parallel Algorithms and Architectures (SPAA-94), pages 16–25, Cape May, NJ,
June 1994.

22

[15] S. Halperin and U. Zwick. An optimal randomised logarithmic time connectivity algorithm
for the EREW PRAM. InProc. 7th Ann. Symp. Discrete Algorithms (SODA-96), pages 438–
447, 1996. Also published in J. Comput. Syst. Sci., 53(3):395–416, 1996.

[16] Y. Han and R. A. Wagner. An efficient and fast parallel-connected component algorithm.J.
ACM, 37(3):626–642, 1990.

[17] D. R. Helman and J. J´aJá. Designing practical efficient algorithms for symmetric multiproces-
sors. InAlgorithm Engineering and Experimentation (ALENEX’99), volume 1619 ofLecture
Notes in Computer Science, pages 37–56, Baltimore, MD, January 1999. Springer-Verlag.

[18] D. R. Helman and J. J´aJá. Prefix computations on symmetric multiprocessors.J. Parallel &
Distributed Comput., 61(2):265–278, 2001.

[19] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected components on
parallel computers.Commun. ACM, 22(8):461–464, 1979.

[20] T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for finding
connected components in graphs. In S. N. Bhatt, editor,Parallel Algorithms: 3rd DIMACS
Implementation Challenge October 17-19, 1994, volume 30 ofDIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 23–41. American Mathematical So-
ciety, 1997.

[21] K. Iwama and Y. Kambayashi. A simpler parallel algorithm for graph connectivity.J. Algo-
rithms, 16(2):190–217, 1994.

[22] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, New
York, 1992.

[23] D.B. Johnson and P. Metaxas. Connected components inO(log3/2 |v|) parallel time for the
CREW PRAM. InProc. of the 32nd Annual IEEE Symp. on Foundations of Computer Sci-
ence, pages 688–697, San Juan, Puerto Rico, 1991.

[24] D.B. Johnson and P. Metaxas. A parallel algorithm for computing minimum spanning trees.
In Proc. 4th Ann. Symp. Parallel Algorithms and Architectures (SPAA-92), pages 363–372,
San Diego, CA, 1992.

[25] D.R. Karger, P.N. Klein, and R.E. Tarjan. A randomized linear-time algorithm to find mini-
mum spanning trees.J. ACM, 42(2):321–328, 1995.

[26] A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and K. Yelick. Connected components on
distributed memory machines. In S. N. Bhatt, editor,Parallel Algorithms: 3rd DIMACS
Implementation Challenge October 17-19, 1994, volume 30 ofDIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 1–21. American Mathematical Soci-
ety, 1997.

[27] C.P. Kruskal, L. Rudolph, and M. Snir. Efficient parallel algorithms for graph problems.
Algorithmica, 5(1):43–64, 1990.

[28] K. Mehlhorn and S. N¨aher.The LEDA Platform of Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

[29] B.M.E. Moret and H.D. Shapiro. An empirical assessment of algorithms for constructing
a minimal spanning tree. InDIMACS Monographs in Discrete Mathematics and Theoreti-
cal Computer Science: Computational Support for Discrete Mathematics15, pages 99–117.
American Mathematical Society, 1994.

23

[30] D. Nash and S.N. Maheshwari. Parallel algorithms for the connected components and mini-
mal spanning trees.Information Processing Letters, 14(1):7–11, 1982.

[31] E. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs. John
Wiley & Sons, New York, 1985.

[32] C.A. Phillips. Parallel graph contraction. InProc. 1st Ann. Symp. Parallel Algorithms and
Architectures (SPAA-89), pages 148–157. ACM, 1989.

[33] J. H. Reif. Depth-first search is inherently sequential.Information Processing Letters,
20(5):229–234, 1985.

[34] J. H. Reif, editor.Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers, 1993.

[35] J.H. Reif. Optimal parallel algorithms for integer sorting and graph connectivity. Technical
Report TR-08-85, Harvard Univ., Boston, MA, March 1985.

[36] Y. Shiloach and U. Vishkin. AnO(logn) parallel connectivity algorithm.J. Algs., 3(1):57–67,
1982.

24

A Algorithms

Data : (1) A set of edges(i, j) given in an arbitrary order, and (2) a pseudoforest de-
fined by a functionD such that all the vertices in each tree belong to the same
connected component.

Result : The pseudoforest obtained after (1) grafting trees onto smaller vertices of other
trees, (2) grafting rooted stars onto other trees if possible, and (3) performing the
pointer jumping operation on each vertex.

begin
1. Perform a grafting operation of trees onto smaller vertices of other trees as follows:
for all (i, j) ∈ E in paralleldo

if (D(i) = D(D(i)) and D(j) < D(i)) then setD(D(i)) = D(j)
2. Graft rooted stars onto other trees if possible, as follows:
for all (i, j) ∈ E in paralleldo

if (i belongs to a starand D(j) 6= D(i)) then setD(D(i)) = D(j)
3. If all the vertices are in rooted stars, thenexit. Otherwise, perform the pointer
jumping operation on each vertex as follows:
SetD(D(i)) = D(i)

end

Algorithm 1: Shiloach-Vishkin [36] PRAM Connected Components Algorithm for one itera-
tion.

25

Data : (1) An adjacency list representation of graphG = (V,E) with n vertices, (2) a
starting vertexroot for each processor, (3)color: an array of sizen with each
element initialized to−1, and (4)parent: an array of sizen.

Result : p pieces of sub spanning trees, except for the starting vertices, each vertexv has
parent(v) as its parent

begin
1. color my starting vertex with my labeli and place it into my queueQ

color [root] = i
Enqueue(Q,root)

2. start breadth-first search fromroot, color the vertices that have not been visited with
my labeli until the queue is empty.
2.1while Not-Empty(Q)do

2.2v=Dequeue(Q)
2.3 for each neighbor w of vdo

2.4 if (color [w] < 0) then
2.5color [w] = i
2.6parent[w] = v

end

Algorithm 2: Modified Graph Traversal Step for our SMP Algorithm for Processori, (0≤ i ≤
p−1).

26

B Performance Graphs

Figure 3: Comparison of parallel spanning tree algorithms for regular and irregular meshes with
n = 1M vertices. The top-left plot uses a row-major order labeling of the vertices in the torus,
while the top-right plot uses a random labeling. The bottom-left and -right plots are for irregular
torus graphs2D60and3D40, respectively. Note that these performance charts are log-log plots.

27

Figure 4: Comparison of parallel spanning tree algorithms for graphs withn = 1M vertices. The
top-left plot uses a random graph withm= 20M ≈ nlogn edges. The top-right plot usesAD3, a
geometric graph withk = 3. The bottom-left and -right plots are for geographic inputs with flat
and hierarchical modes, respectively. Note that these performance charts are log-log plots.

28

Figure 5: Comparison of parallel spanning tree algorithms for graphs withn = 1M vertices. The
left plot uses a degenerate graph with a sequential labeling of the vertices, while the right plot uses
a random labeling. Note that these performance charts are log-log plots.

Figure 6: This plot shows the scalability of our SMP spanning tree algorithm usingp = 8 pro-
cessors compared with the sequential algorithm for a random graph. For these experiments, the
speedup of the parallel algorithm compared with the sequential approach is between 4.5 and 5.5.

29

