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Abstract. A new feature detection technique is presented that utilises
local radial symmetry to identify regions of interest within a scene. This
transform is significantly faster than existing techniques using radial
symmetry and offers the possibility of real-time implementation on a
standard processor. The new transform is shown to perform well on a
wide variety of images and its performance is tested against leading tech-
niques from the literature. Both as a facial feature detector and as a
generic region of interest detector the new transform is seen to offer
equal or superior performance to contemporary techniques whilst requir-
ing drastically less computational effort.

1 Introduction

Automatic detection of points of interest in images is an important topic in com-
puter vision. Point of interest detectors can be used to selectively process images
by concentrating effort at key locations in the image, they can identify salient
features and compare the prominence of such features, and real-time interest
detectors can provide attentional mechanisms for active vision systems [I1].

In this paper a new point of interest operator is presented. It is a simple
and fast gradient-based interest operator which detects points of high radial
symmetry. The approach was inspired by the results of the generalised symmetry
transform [8I419], although the method bares more similarity to the work of Sela
and Levine [I0] and the circular Hough transform [5[7]. The approach presented
herein determines the contribution each pixel makes to the symmetry of pixels
around it, rather than considering the contribution of a local neighbourhood to a
central pixel. Unlike previous techniques that have used this approach [BITJI0] it
does not require the gradient to be quantised into angular bins, the contribution
of every orientation is computed in a single pass over the image. The new method
works well with a general fixed parameter set, however, it can also be tuned to
exclusively detect particular kinds of features. Computationally the algorithm is
very efficient, being of order O(K N) when considering local radial symmetry in
N x N neighbourhoods across an image of K pixels.

Section [2 of this paper defines the new radial symmetry transform. Section B]
discusses the application of the transform, including selection of parameters and

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2350, pp. 358-[368] 2002.
(© Springer-Verlag Berlin Heidelberg 2002



A Fast Radial Symmetry Transform for Detecting Points of Interest 359

some additional refinements. Section [4 shows the performance of the new trans-
form on a variety of images, and compares it to existing techniques, and Section
presents the conclusions.

2 Definition of the Transform

The new transform is calculated over a set of one or more ranges N depending
on the scale of the features one is trying to detect. The value of the transform
at range n € N indicates the contribution to radial symmetry of the gradients a
distance n away from each point. Whilst the transform can be calculated for a
continuous set of ranges this is generally unnecessary as a small subset of ranges
is normally sufficient to obtain a representative result.

At each range n an orientation projection image O, and a magnitude pro-
jection image M, are formed. These images are generated by examining the
gradient g at each point p from which a corresponding positively-affected pizel
P+ve(p) and negatively-affected pizel p_,.(p) are determined, as shown in Fig-
ure[ll The positively-affected pizel is defined as the pixel that the gradient vector
g(p) is pointing to, a distance n away from p, and the negatively-affected pixel
is the pixel a distance n away that the gradient is pointing directly away from.

Fig. 1. The locations of pixels p4ve(p) and p—..(p) affected by the gradient element
g(p) for a range of n = 2. The dotted circle shows all the pixels which can be affected
by the gradient at p for a range n.

The coordinates of the positively-affected pixel are given by

— roun Mn
P+ve(P) = P +round (Ig(p)ll >

while those of the negatively-affected pixel are

g(p) )

P—ve(P) = p — round (Ilg(p)ll
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where 'round’ rounds each vector element to the nearest integer.

The orientation and projection images are initially zero. For each pair of af-
fected pixels the corresponding point py,e in the orientation projection image
O,, and magnitude projection image M, is incremented by 1 and |g(p)|| re-

spectively, while the point corresponding to p_,. is decremented by these same
quantities in each image. That is

On(P+ve(P)) = On(Ptuve(P)) +1

On(p—ve(p)) = On(p—ve(p» -1

M (P1ve(P)) = My (P+ve(P)) + |Ig8(P)]|

Mn(pfve(p)) = Mn(pfve(p)) - ||g(p>”

The radial symmetry contribution at a range n is defined as the convolution

S, =F,*A, (1)
where
Fo(p) = [|00(p) || N (p), 2)
- On
OnlP) = e IO}
N, (p) = My

maxp{||Mn ()}’

« is the radial strictness parameter, and A, is a two-dimensional Gaussian.
These parameters are discussed in more detail in Section B

The full transform is defined as the sum of the symmetry contributions over
all the ranges considered,

S=> S, (3)

neN

If the gradient is calculated so it points from dark to light then the output
image S will have positive values corresponding to bright radially symmetric
regions and negative values indicating dark symmetric regions (see Figure 2 for
example).
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(a) original image (b) Zi:l Sn (c) Zn=1,3,5 Sh (d) Ss

Fig. 2. Varying the set of ranges N.

3 Applying the Transform

In order to apply the transform there are a number of parameters that must first
be defined, namely, the a set of ranges N = {ny,ns, ...} at which to calculate S,,,
the Gaussian kernels A,,, and the radial strictness parameter «. Some additional
refinements are also considered, including ignoring small gradient elements, and
only searching for dark or light radially symmetric regions.

The traditional approach to local symmetry detection [BJ8I10] is to calculate
the symmetry apparent in a local neighbourhood about each point. This can be
achieved by calculating S,, for a continuous set of ranges N = {1,2, ..., Nz }
and combining using equation Bl However, since the symmetry contribution is
calculated independently for each range n it is simple to determine the result at
a single range, or an arbitrary selection of ranges that need not be continuous.
Furthermore, the results obtained by examining a representative subset of ranges
give a good approximation of the output obtained by examining a continuous
selection of ranges, while saving on computation.

Figure [ shows the combined output S calculated for a continuous range of
n from 1 to 5 (b) is closely approximated by combining only n =1, 3 and 5 (c).
Also, if the scale of a radially symmetric feature is know a priori then the feature
can be efficiently detected by only determining the transform at the appropriate
range, this is demonstrated by the effective highlighting of the eyes (that have
radius 5 pixels) by S5 in Figure 21 (d).

The purpose of the Gaussian kernel A, is to spread the influence of the
positively- and negatively-affected pixels as a function of the range n. A two-
dimensional Gaussian is chosen because it is radially symmetric so it will have a
consistent effect over all gradient orientations, and it is separable so its convolu-
tion can be efficiently determined. Figure Bl shows the contribution for a single
gradient element g(p). By scaling the standard deviation linearly with the range
n, we define an arc of influence that applies to all affected pixels. The width of
the arc is defined by scaling the standard deviation of A,, with respect to n.

The parameter o determines how strictly radial the radial symmetry must
be for the transform to return a high interest value. Figure @] shows the effect of
choosing o to be 1, 2 and 3 on S; for an image exhibiting strong radial values
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Fig. 3. The contribution of a single gradient element, with A,, chosen to be a 2D
Gaussian of size n x n and standard deviation ¢ = 0.25n, and n = 10.

around the eyes. Note how a higher « eliminates non-radially symmetric features
such as lines. A choice of @ = 2 is suitable for most applications. Choosing a
higher « starts attenuating points of interest, whilst a lower « gives too much
emphasis to non-radially symmetric features, however, choosing « as 1 minimises
the computation when determining Fj, in Equation 2L

Input image

Fig. 4. Effect of varying «. Original image from USC-SIPI Image Database [1]

Gradient elements with small magnitudes have less reliable orientations, are
more easily corrupted by noise, and tend to correspond to features that are not
immediately apparent to the human eye. Since the purpose of the transform is
to pick out points of interest in the image it is logical to ignore such elements in
our calculation. A gradient threshold parameter 3 is introduced for this purpose,
and when calculating images O,, and M,, all gradient elements whose magnitudes
are below ( are ignored. The effect of a non-zero § is shown in Figure Bl The
main advantage of a non-zero 3 is an increase in the speed of the algorithm,
since there are less gradient elements considered, and hence less affected pixels
to be calculated.

The transform can be tuned to look only for dark or bright regions of symme-
try. To look exclusively for dark regions, only the negatively-affected pixels need
be considered when determining M,, and O,, (see Section [). Likewise, to detect
bright symmetry only positive affected pixels need be considered. Examples of
dark symmetry are shown in Section @l
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Input image =20% = 40%

Fig. 5. The effect of different values of 5 on S. Here 3 is measured as a percentage
of the maximum possible gradient magnitude. Original image from Database of Faces,
AT&T Laboratories Cambridge [2]

4 Performance of the Transform

The performance of the new transform was demonstrated on a range of images
and compared with several prominent transforms from the literature.

Figure [6] demonstrates the performance of the new transform on faces and
other images. These figures were generated using the parameter settings pre-
sented in Table [[] and show how the transform can provide a useful cue for the
location of facial features — especially eyes — in face images, as well as highlight-
ing generic points of interest that are characterised by high contrast and radial
symmetry.

Table 1. Parameter Settings used for Experimentation

Parameter Setting
Full Fast Fast Dark

Set of ranges N {n:n=1,2,..,6}[{n:n=1,3,5}{n:n=1,3,5}
Gaussian kernel

Volume under kernel n? n? n?

Size n n n

Standard deviation 0.5n 0.5n 0.5n
Radial strictness « 2 2 2
Small gradients ignored 0 20% ignored | 20% ignored
Dark symmetry Yes Yes Yes
Bright symmetry Yes Yes No

Figure [7 compares the performance of the transform against existing tech-
niques from the literature. Each transform is applied to the image in the centre
of the figure (the standard 256 x 256 lena image) for which the intuitive points
of interest are the eyes.

All methods were implemented with a local neighbourhood radius of 6 pixels,
and where necessary the gradient orientation was quantised into 8 bins.

Each of the transforms was implemented in Matlab. For the majority of the
transforms an estimate of the approximate number of floating point operations
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Original image Radial symmetry Radial symmetry  Radial symmetry)
(fast dark) (fast) (full)

Fig. 6. The new transform applied to a variety of images. The parameter settings are
indicated beneath each column and refer to the values detailed in Table[I] The two top
most images are from the Database of Faces [2].
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involved was obtained from Matlab, however, for Di Gesu et al.’s discrete sym-
metry transform and Sela and Levine’s real-time attention mechanism this was
not feasible. These transforms involve optimised low-level processes that were
not practical to implement in Matlab, so the number of operations required is
not reported here. It suffices to say that the non-optimised implementations used
to generate the visual results shown required computation well in excess of the
other methods. The estimated computations obtained are presented in Table [21

The new transform effectively highlights the points of interest (eyes) in Fig-
ure [1. Of the existing transforms Reisfeld’s generalised (dark and radial) sym-
metry provide the next best result, and while the other transforms do highlight
the eye regions they tend to highlight many other points as well reducing their
overall effectiveness.

Table 2. Estimated Computation Required for Different Transforms to compute the
results in Figure [7]

Transform Computations
(Mflop)
New Transform
Full 19.7
Fast 7.93
Fast Dark 7.02

Existing Transforms
Generalised Symmetry

Radial [§] 259
Dark [J] 179
Circular Hough [7] 33.9

Table Bl lists the theoretical order of computation required to compute the
transforms on an image of K pixels, where local symmetry is considered in an N x
N neighbourhood, and for those methods that require gradient quantisation the
gradient is quantized into B bins. The complexity O(K N) of the new transform
is lower than all other transforms considered, with the possible exception of
Di Gesu et al’s Discrete Symmetry Transform that has complexity O(K B).
However, as was discussed in Section Bl it is not necessary to calculate the
new transform at all ranges 1..IV, so the computational order can be further
reduced, whereas it is essential to calculate Di Gesu et al.’s Discrete Symmetry
Transform across four or more angular bins. Furthermore the results from the
Discrete Symmetry Transform do not appear as effective for locating points of
interest (see Figure [T).

Figure [[1 and Tables 2 and B] demonstrate that the new transform can pro-
vide comparable or superior results to existing techniques whilst requiring sig-
nificantly less computation and complexity.
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Radial symmetry (full) Radial symmetry (fast) Radial symmetry
(fast dark)

Sela & Levine’s real-time Original Digesu et al’s discrete
attention mechanism [10] symmetry transform [3]

Minor and Skalansky’s  Reisfeld’s generalised dark Reisfeld’s generalised
Circular Hough symmetry [8] radial symmetry [8]
transform [7]

Fig. 7. Comparison of new transform (top row) with other available transforms. In
order to compare the output of Sela & Levine’s real-time attention mechanism with
the other transforms, the final step, which involved identifying local maximums in the
output as points of interest, has been omitted.

The key to the speed of the new transform lies in the use of affected pizels
to project the effect of gradient elements. This allows an approximation of the
effect of each gradient element on the radial symmetry of the pixels around it,
without specifically considering neighbourhoods about each point, as did [6]g],
or requiring multiple calculations for different gradient orientations, as did [3|[7]

1],
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Table 3. Computational Order of Different Transforms

Transform Order
New Radial Symmetry Transform KN

Reisfeld’s Generalised Symmetry Transform [§] KN?
Lin and Lin’s Gradient-based Inhibitory Mechanism [6] | K N?
Di Gesu et al.’s Discrete Symmetry Transform [3] KB

Sela and Levine’s Real-Time Attentional Mechanism [10]| K BN
Circular Hough Transform [[7] KBN

Unlike other transforms the fast symmetry transform differentiates between
dark and bright regions of radial symmetry, while allowing both to be computed
simultaneously. Alternatively just dark (or bright) points of symmetry can be
considered exclusively with an associated reduction in computation.

5 Conclusion

A novel point of interest detector has been presented that uses the gradient
of an image to locate points of high radial symmetry. The method has been
demonstrated on a series of face images and other scenes, and compared against
a number of contemporary techniques from the literature. As a point of interest
operator the new transform provides equal or superior performance on the images
tested while offering significant savings in both the computation required and
the complexity of the implementation. The efficiency of this transform makes it
well suited to real-time vision applications.
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