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Abstract Most stabilizing controllers designed for

nonlinear systems are valid only within a specific

region of the state space, called the domain of attrac-

tion (DoA). Computation of the DoA is usually costly

and time-consuming. This paper proposes a compu-

tationally effective sampling approach to estimate the

DoAs of nonlinear systems in real time. This method

is validated to approximate the DoAs of stable equi-

libria in several nonlinear systems. In addition, it is

implemented for the passivity-based learning controller

designed for a second-order dynamical system. Simu-

lation and experimental results show that, in all cases

studied, the proposed sampling technique quickly esti-

mates the DoAs, corroborating its suitability for real-

time applications.
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1 Introduction

The domain of attraction (DoA) of a stable equilibrium

in a nonlinear system is a region of the state space from

which each trajectory starts and eventually converges

to the equilibrium itself. In the literature, the DoA is

also known as the region of attraction or basin of attrac-

tion [1,33]. The DoA of an equilibrium and its com-

putation is of main importance in control applications.

However, in most cases, computation of the DoA is

quite costly. This paper aims to approximate the DoAs

of nonlinear systems in real time by introducing a sam-

pling approach.

Several techniques have been proposed in the liter-

ature to compute an inner approximation for the DoA

[8], which can broadly be classified into Lyapunov-

based and non-Lyapunov methods [11]. Lyapunov-

based approaches include, for instance, sum of squares

(SOS) programming [4], methods that apply both simu-

lation and SOS programming [32], procedures that use

theory of moments [13]. In this approach, first, a candi-

date Lyapunov function is chosen to show asymptotic

stability of the system within a small neighborhood of

the equilibrium. Next, the largest sublevel set of this

Lyapunov function, in which its time derivative is neg-

ative definite, is computed as an estimate for the DoA

[25]. Non-Lyapunov methods include, for instance, tra-

jectory reversing [11,24], determining reachable sets of

the system [2], and occupation measures [14,18]. Fig-

ure 1 illustrates a broad classification of the existing

techniques for estimating the DoA.
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Fig. 1 A broad

classification of the existing

techniques for estimating

the DoA. This paper

proposes a sampling

approach and makes a

comparison with

optimization-based methods
Optimization-based methods Sampling method

Reachable sets

Occupation measures 

Trajectory reversing

SOS programming

Simulation and SOS programming

Theory of moments

Lyapunov-based methods Non-Lyapunov methods

Methods for estimating the DOA

Although Lyapunov-based techniques have been

successfully implemented for estimating the DoAs of

various nonlinear systems [8], there are still two main

issues with using these approaches. The first is that

most of the existing methods are limited to polyno-

mial systems [12,31]. As such, in the case of non-

polynomial systems, first, the equations of motion are

approximated by using the Taylor’s expansion and then

the DoA is computed based on the approximated poly-

nomial equations. The second is that the available

methods are usually computationally costly and time-

consuming which make them unsuitable for real-time

applications [7].

This paper proposes a fast sampling approach for

Lyapunov-based techniques to estimate the DoAs of

various nonlinear systems. This method is computa-

tionally effective and is beneficial for real-time appli-

cations. In this procedure, once a candidate Lyapunov

function is chosen, a sampling algorithm searches for

the largest sublevel set of the Lyapunov function such

that its time derivative is negative definite through-

out the obtained sublevel set. The proposed sampling

approach is applied to approximate the DoAs of sev-

eral nonlinear systems, which have been already inves-

tigated in the literature, to validate its capability in com-

parison with the existing methods. In addition, we go

beyond these examples and implement it to compute

the DoAs of the passivity-based learning controller [28]

designed for an inverted pendulum.

This paper is organized as follows. Section 2 reviews

the process of estimating the DoAs of nonlinear sys-

tems using Lyapunov-based techniques. Section 3

describes the sampling approach and provides a com-

parison between the estimated DoAs computed by the

sampling method and by the existing optimization-

based methods. Section 4 illustrates the DoAs approxi-

mated for the controller learned for an inverted pendu-

lum. Finally, Sect. 5 concludes the paper after a short

discussion on the properties of the sampling algorithm.

2 Estimating the domain of attraction using

Lyapunov-based methods

Consider the dynamical system

ẋ = f (x, u) (1)

where x ∈ X ⊆ R
n is the state vector, u ∈ U ⊆ R

m is

the control input, and f : X × U → R
n is the system

dynamics. For a specific state-feedback controllerΦ(x)

the closed-loop system is described by

ẋ = f (x, Φ(x)) = fc(x). (2)

If x∗ is a stable equilibrium of the closed-loop system

and x(t, x0) denotes the solution of (2) at time t with

respect to the initial condition, the DoA of controller

Φ is defined by the set

D(Φ) =
{

x0 ∈ X : lim
t→∞

x(t, x0) = x∗
}

. (3)

An analytical method to approximate the DoA is

defined via Lyapunov stability theory as follows [6,16].

Theorem 1 [16] A closed set M ⊂ R
n , including the

origin as an equilibrium, can approximate the DoA for

the origin of system (2) if:

1. M is an invariant set for system (2);

2. A positive definite function V (x) can be found such

that V̇ (x) is negative definite within M.

If the equilibrium is nonzero, without loss of generality,

we can replace the variable x by z = x − x̄∗, where

x̄∗ is the nonzero equilibrium. As such, we can study
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the stability of the associated zero equilibrium [1]. The

conditions of Theorem 1 ensure that the approximated

set M is certainly contained in the DoA.

The choice of a candidate Lyapunov function is not

a trivial task and the DoA approximation relies on the

shape of the Lyapunov function’s level sets. A proce-

dure to find an appropriate Lyapunov function has been

proposed in [10], where gradient search algorithms are

implemented to compute a candidate Lyapunov func-

tion. Moreover, using composite polynomial Lyapunov

functions [29] and rational Lyapunov functions instead

of quadratic ones might lead to better approximations,

since these have a richer representation power (see, e.g.,

[9,34]). Quadratic Lyapunov functions restrict the esti-

mates to ellipsoids which are quite conservative [30].

A rational Lyapunov function is written in the form

V (x) =
N (x)

D(x)
=

∑∞
i=2 Ri (x)

1 +
∑n−2

i=1 Qi (x)
(4)

where Ri (x) and Qi (x) are homogeneous polynomials

of degree i , which are constructed by solving an opti-

mization problem [34]. The sublevel set V(c) of the

Lyapunov function V (x) is defined by

V(c) = {x ∈ X : V (x) ≤ c}. (5)

According to Theorem 1, any sublevel set of a candi-

date Lyapunov function that satisfies the locally asymp-

totic stability of the equilibrium can be an estimate for

the DoA if the time derivative of the Lyapunov function

is negative everywhere within the sublevel set. Since the

largest sublevel set provides a more accurate estimate,

the problem of approximating the DoA is converted to

the problem of finding the largest sublevel set of a given

Lyapunov function [15]. To attain the largest estimate

for the DoA, one needs to find the maximum value

c ∈ R for V(c) such that the computed set satisfies the

conditions of Theorem 1.

Theorem 2 [8] The invariant set V(c∗), which is a sub-

level set of the Lyapunov function V (x), is the largest

estimate of the DoA for the origin of system (2) if
⎧

⎨

⎩

c∗ = max c

s.t. V(c) ⊆ H(x),

H(x) = {0} ∪ {x ∈ R
n : V̇ (x) < 0}.

(6)

This can be approached as an optimization prob-

lem that has been solved by using SOS programming,

methods that apply both simulation and SOS program-

ming, and methods that use theory of moments. How-

ever, these techniques are typically restricted to systems

and Lyapunov functions described by polynomial equa-

tions. In this paper, we present an alternative approach

using the sampling approach.

3 Sampling method for estimating the domain of

attraction

The sampling approach presented in this paper has

the same goal as the Lyapunov-based optimization

approaches have: Find the largest sublevel set of a can-

didate Lyapunov function to approximate the DoA.

We explicitly evaluate the conditions stated in The-

orem 1 for a given Lyapunov function with respect

to a randomly chosen state xi . The level sets asso-

ciated with the sample xi with positive derivative of

the Lyapunov function are discarded. We propose two

sampling methods, memoryless and with a memory,

designed to achieve tighter estimates.

3.1 Memoryless sampling

This method searches for the upper bound of the para-

meter c∗ in (6). First, a state xi is randomly chosen

within X or its user-defined subset and the conditions

of Theorem 1 are checked for V (xi ) and V̇ (xi ). If these

conditions are not satisfied, the upper bound of c∗,

denoted ĉ∗, is decreased to the value ĉ∗ = V (xi ) and the

sublevel set V(ĉ∗) is computed as an overestimation for

the DoA. At the beginning of the algorithm, ĉ∗ is initial-

ized at ĉ∗ = ∞. As the sampling proceeds for a large

number of samples (ns) throughout the state space, the

value of ĉ∗ converges to c∗ from above and the obtained

largest sublevel set V(ĉ∗) will be very close to V(c∗).

Since this procedure just focuses on the upper bound

of c∗, the achieved estimates are not tight enough and

the condition of V̇ (x) < 0 may not be satisfied for

some regions of the attained sublevel set as the com-

puted value ĉ∗ is actually larger than the real value

c∗. This algorithm may exceptionally not exclude very

small regions where V̇ (x) ≥ 0 from the DoA approx-

imated. However, the empirical evidence arising from

extensive simulations suggests that, in practice, the pro-

posed algorithm converges to the exact level set for a

sufficiently large number of samples.

Based on the practical results, we found that this

technique is very fast and its result is very close to the

reported estimates in the literature for various classes of

123



826 E. Najafi et al.

systems. Moreover, it does not require computer mem-

ory to save the results computed since once a new value

is computed for ĉ∗, its current value is replaced by the

new value. Algorithm 1 summarizes this method for

estimating the DoA of a given stable equilibrium.

Algorithm 1 Memoryless sampling method for esti-

mating the DoA

Require: V (x), V̇ (x), ns

1: Initialize ĉ∗ = ∞

2: for i = 1 : ns do

3: Pick a random state xi within the state space

4: if V̇ (xi ) ≥ 0 and V (xi ) < ĉ∗ then

5: ĉ∗ = V (xi )

6: end if

7: end for

8: return ĉ∗

As an example, consider a pendulum described by

the following nonlinear dynamic equations

{

ẋ1 = x2

ẋ2 = − sin(x1) − 0.5x2
(7)

where x1 is the angle of the pendulum measured from

the vertical axis and x2 is the angular velocity. The state

vector is defined by x = [x1 x2]
T . We use the sampling

method with a uniform distribution to approximate the

DoA of the stable equilibrium x = (0, 0). To com-

pute a candidate Lyapunov function, first the dynamic

Eq. (7) are linearized around the equilibrium and then

the candidate Lyapunov function is computed in the

form V (x) = xT Px , where P is the solution of the

Lyapunov equation AT P + P A + Q = 0 with the

identity matrix Q. In this example, the candidate Lya-

punov function is obtained as

V (x) = 2.25x2
1 + x1x2 + 2x2

2 . (8)

Figure 2 illustrates the evolution of ĉ∗ of the sampling

approach with ns = 500 samples. The real value c∗

for the candidate Lyapunov function (8), calculated by

solving the optimization problem (6), is c∗ = 9.287

and the value computed by our method is ĉ∗ = 9.702.

3.2 Sampling with memory

This method updates both the lower and the upper

bounds of c∗ denoted c∗ and c̄∗, respectively. Together,
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c
*
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ˆ

Fig. 2 Evolution of ĉ∗ using the memoryless sampling method

for the pendulum example

these bounds yield a more accurate estimate for the

DoA. At the beginning of the algorithm, the lower

bound of c∗ is set to c∗ = 0 and its upper bound to

c̄∗ = ∞. If for a randomly chosen state xi we have

V̇ (xi ) < 0 and c∗ < V (xi ) < c̄∗, then the value of

c∗ is replaced by the value of its associated Lyapunov

function, that is c∗ = V (xi ). Otherwise, if V̇ (xi ) ≥ 0

and V (xi ) < c̄∗, then the value of c̄∗ is replaced by

V (xi ). As the sampling proceeds, after a large number

of samples, the value of c∗ increases, but not neces-

sarily monotonically. Eventually it converges to c∗ and

the largest sublevel set V(c∗) is obtained. Moreover,

the value of c̄∗ monotonically decreases and converges

to c∗ from above.

When the conditions of Theorem 1 are satisfied for

state xi , the value of V (xi ) is stored in an array as a

possible estimate for c∗. This is required to guarantee

that the approximated DoAs computed by the lower

bound of c∗ always verify the conditions of Theorem 1.

This leads to tighter estimates. The array, denoted E ,

contains 0 initially. The length of this array, without

counting its initial element, is in the worst case ns − 1.

When V̇ (xi ) < 0 and V (xi ) < c̄∗, the value of V (xi ) is

stored in an array E as V (V (xi )) is a potential estimate

for the DoA. In the case V̇ (xi ) ≥ 0 and V (xi ) < c̄∗,

if c∗ ≥ c̄∗ then the algorithm looks for a new lower

bound c∗ among the values stored in the array E . The

maximum value of c∗ is chosen from E such that c∗ <

c̄∗. Selecting a previously stored lower bound satisfies

the condition V̇ < 0 for the obtained sublevel set V(c∗).

In the worst-case scenario, c∗ = 0.

Although the sampling algorithm with memory is

a conservative method, it may exceptionally overesti-
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mate the DoA, for instance, when the region described

by V̇ (x) < 0 is not simply connected. In such a case,

the algorithm may not exclude small holes inside the

region in which V̇ (x) ≥ 0. A formal guarantee for

convergence of this algorithm does not exist yet, but

the empirical result attained from extensive simulations

and experiments illustrates that the sampling technique

converges to the exact level set for a sufficiently large

number of samples, in practice. Algorithm 2 describes

the sampling method with memory for estimating the

DoA.

Algorithm 2 Sampling method with memory for esti-

mating the DoA

Require: V (x), V̇ (x), ns

1: Initialize c∗ = 0, c̄∗ = ∞, E = {0}

2: for i = 1 : ns do

3: Pick a random state xi within the state space

4: if V̇ (xi ) < 0 and V (xi ) < c̄∗ then

5: store V (xi ) in E

6: if V (xi ) > c∗ then

7: c∗ = V (xi )

8: end if

9: else if V̇ (xi ) ≥ 0 and V (xi ) < c̄∗ then

10: c̄∗ = V (xi )

11: if c∗ ≥ c̄∗ then

12: c∗ = arg max{c ∈ E : c < c̄∗}

13: end if

14: end if

15: end for

16: return c∗

We apply this approach with a uniform distribution

sampling to approximate the DoA for the equilibrium of

the pendulum example. Figure 3 illustrates the values

of the lower and upper bounds of c∗ throughout the

sampling process with 500 samples where c∗ = 9.174.

Figure 4 depicts the approximated DoA of the equi-

librium. The black ellipsoid represents the DoA esti-

mate with c∗ = 9.271, the dashed blue line, which

determines the boundary of the light blue area, rep-

resents the region in which V̇ (x) < 0, and the

arrows represent the system trajectories. If the tra-

jectories start inside the DoA estimate, they certainly

converge to the origin. The randomly chosen sam-

pling states, which are 500 samples in this exam-

ple, are represented by red points throughout the state

space.
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Fig. 3 Evolution of c∗ and c̄∗ using the sampling method with

memory for the pendulum example
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Fig. 4 Approximated DoA for the pendulum example using a

uniform distribution for sampling. The black ellipsoid represents

the DoA estimate, the dashed blue line (the boundary of the light

blue area) represents the region in which V̇ (x) < 0, the arrows

represent the system trajectories, and the red points represent the

randomly chosen sampling states. (Color figure online)

3.3 Repeatability of the sampling method

To check the repeatability of the proposed sampling

approach, we run various instances of the process of

estimating the DoA for the equilibrium of the pendu-

lum example. Figure 5 illustrates the mean value of c∗

and c̄∗ (i.e., (c∗ + c̄∗)/2) and its standard deviation by a

black line and green bars, minimum of c∗ and maximum

of c̄∗ by blue dashed lines at each sample in a simulation

where the sampling method runs 1000 iterations each
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Fig. 5 Evolution of mean value of c∗ and c̄∗ and its standard

deviation, minimum value of c∗, and maximum value of c̄∗ for

the sampling method in the pendulum example. The real value

of c∗ is represented by the dotted red line. (Color figure online)

with 500 samples. The real value of c∗ = 9.287 is rep-

resented by a dotted red line. While sampling proceeds,

the mean, minimum and maximum values converge to

the real value of c∗ and the value of the standard devia-

tion decreases. These results validates the repeatability

of the proposed sampling technique for this particular

model.

3.4 Directed sampling

In the pendulum example, we used a uniform distribu-

tion for sampling the state space or its subset. However,

if the structure of the level sets of the Lyapunov func-

tion are known, other distributions can be used to avoid

sampling in areas of the state space which are already

known not belong to the DoA. It is desirable to sample

inside the largest level set found so far, specially in its

boundary.

In general, sampling with an arbitrary distribution

is a challenging problem. Two main approaches exist

in the literature: rejection sampling and inverse trans-

form sampling [3]. These techniques focus on sampling

the relevant locations of the state space at the cost of

computational complexity. In situations where evaluat-

ing a particular sample is costly (due to a complicated

Lyapunov function or system dynamics), the extra cost

incurred by sampling from a complex distribution may

be negligible.

To test the trade-off between the speed of conver-

gence and the computational cost, we have applied

three different sampling approaches to the pendulum

example (7). The uniform sampling on a fixed box

(a subset of the state space) is compared with uni-

form sampling mapped through polar coordinates to lie

inside the largest found valid level set, and with expo-

nential sampling mapped through polar coordinates to

lie around the boundary of the largest found valid level

set. Figure 6 illustrates the sampling points selected by

the three types of distributions. The obtained data cor-

roborate the hypothesis that different sampling leads to

different convergence rates. Figure 7 presents the con-

vergence statistics for 1000 iterations with 500 sam-

ples each. The exponential polar sampling converges

the fastest and has the lowest variation between c∗ and

c̄∗ while converging. This can be explained by observ-

ing Fig. 6c that most of the samples are focused around

the boundary of the level set. For this particular exam-

ple, the cost of evaluating the Lyapunov function and

its time derivative is low, but the computation time

increases with the complexity of the sampling algo-

rithm. Table 1 shows the average computation time of

each sampling method with 500 samples, implemented

in the Mathematica software on an Intel core i7 2.7 GHz

microprocessor.

3.5 Sampling method versus optimization-based

methods

Both the sampling and optimization-based methods

require a candidate Lyapunov function for estimating

the DoA. Table 2 represents six dynamical systems with

quadratic Lyapunov functions selected from the litera-

ture. The dynamic equations of the first three examples

are polynomial and the equations of the last three are

non-polynomial. Examples E3 and E6 are third-order

systems and the others are second-order systems. For

each system, the maximum possible value of c∗ com-

puted by the sampling approach with 1000 samples is

compared with the result of optimization-based meth-

ods, reported in the literature. The estimates attained

by the sampling technique are very close to the esti-

mates derived by optimization-based methods. In some

cases, such as example E2, the result of the sampling

procedure is even more accurate. The last column of

Table 2 presents the simulation time for approximating

the DoA of each system using the sampling approach,

implemented in the MATLAB R2014a software on an

Intel core i7 2.7 GHz microprocessor.

Similarly, Table 3 illustrates three dynamical sys-

tems with rational Lyapunov functions selected from
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Fig. 6 Approximated DoAs for the pendulum example using a

a uniform, b polar uniform, and c polar exponential distribution

for sampling. In the plots, the black ellipsoid represents the DoA

estimate, the dashed blue line represents the region in which

V̇ (x) < 0, the arrows represent the system trajectories, and the

red points represent the randomly chosen sampling states. (Color

figure online)

Fig. 7 Evolution of the

mean value of c∗ and c̄∗,

minimum value of c∗, and

maximum value of c̄∗ for

the sampling technique

implemented for the

pendulum example with a

uniform, polar uniform, and

polar exponential

distribution. The sampling

method runs 1000 iterations

each with 500 samples. The

real value of c∗ is

represented by a dashed

black line
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Table 1 Computation time statistics of the sampling methods

with various distributions for estimating the DoA of the pendu-

lum example

Sampling method Time [ms]

Uniform in a box 7.4

Uniform in polar coordinates 17.1

Exponential in polar coordinates 27.4

the literature. Example E7 is a second-order polyno-

mial system, E8 is a second-order non-polynomial sys-

tem, and E9 is a third-order polynomial system. Table 4

presents their corresponding rational Lyapunov func-

tions based on (4). The maximum possible value of

c∗ obtained by the sampling approach with 1000 sam-

ples is compared with the result of optimization-based

methods, reported in the literature. The result of this

comparison validates the proposed sampling technique

particularly for non-polynomial systems. The simula-

tion time for approximating the DoA of each system

using the sampling procedure is given in the last col-

umn of Table 3. Figure 8 depicts the approximated

DoAs obtained by the sampling method for the origins

of examples E1–E9.

Based on the obtained results, it is concluded that the

proposed sampling approach is suitable for estimating

the DoAs of both polynomial and non-polynomial sys-

tems. It is computationally effective and computes the

DoA estimate considerably fast. Although the sampling
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Table 2 Dynamical systems with quadratic Lyapunov functions

Example Systems dynamics Lyapunov function Optimization (c∗) Sampling (c∗) Time [ms]

E1 [12,30] ẋ1 = −2x1 + x1x2

ẋ2 = −x2 + x1x2

x2
1 + x2

2 4.0804 4.112 6.6

E2 [12,34] ẋ1 = −x2

ẋ2 = x1 − x2 + x2
1 x2

1.5x2
1 − x1x2 + x2

2 2.09 2.318 6.7

E3 [13,31] ẋ1 = −x1 + x2x2
3

ẋ2 = −x2 + x1x2

ẋ3 = −x3

x2
1 + x2

2 + x2
3 4.9188 4.971 8.4

E4 [5,27] ẋ1 = −
1

4
x1 + ln(1 + x2)

ẋ2 = −
3

8
x1 −

1

5
x1x2 +

(

1

8
x1 − x2

)

cos x1

x2
1 + x2

2 0.2737 0.278 8.3

E5 [7] ẋ1 = x2

ẋ2 = −0.2x2 + 0.81 sin x1 cos x1 − sin x1

x2
1 + x1x2 + 4x2

2 0.6990 0.708 7.2

E6 [5] ẋ1 = 1 + x3 +
1

8
x2

3 − exp(x1)

ẋ2 = −x2 − x3

ẋ3 = −x2 − 2x3 −
1

2
x2

1

x2
1 + x2

2 + x2
3 2.655 2.887 8.6

Table 3 Dynamical

systems with rational

Lyapunov functions

Example Systems dynamics Optimization (c∗) Sampling (c∗) Time [ms]

E7 [19,26] ẋ1 = −x2

ẋ2 = x1 − x2 + x2
1 x2

5.3133 5.131 14.0

E8 [7,19] ẋ1 = −x1 + x2 + 0.5(exp(x1) − 1)

ẋ2 = −x1 − x2 + x1x2 + x1 cos x1

1.2251 1.218 14.6

E9 [13,19] ẋ1 = −x1 + x2x2
3

ẋ2 = −x2 + x1x2

ẋ3 = −x3

1.320 1.318 16.6

method may offer less accurate estimates for the DoA

at times, it is very useful for real-time applications. It

is also beneficial for the control schemes applying the

controllers’ DoAs such as online sequential composi-

tion approaches [21–23].

4 Experimental results

Consider the inverted pendulum, shown in Fig. 9, which

is modeled by the nonlinear differential equation

J q̈ = mgl sin(q) −
(

b +
K 2

R

)

q̇ +
K

R
u (9)

where q is the angle of the pendulum measured from

the upright position, J is the pendulum inertia, m is the

mass, l is the pendulum length, and b is the viscous

mechanical friction. Moreover, K is the motor con-

stant, R is the electrical motor resistance, and u is the

control input in Volts which is saturated at ±3 V. The

state vector of the system is defined by x = [q p]T

with p = J q̇ the angular momentum. Table 5 presents

the values of the physical parameters of the pendu-

lum. These values have been found partly by measuring

and partly estimated using nonlinear system identifica-

tion.

The algebraic interconnection and damping assign-

ment actor-critic (A-IDA-AC) algorithm, proposed in
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[20], is implemented to obtain swing-up and stabiliza-

tion of the pendulum at the desired upper equilibrium

xd = (qd, p) = (0, 0). The goal of this algorithm is

to find a proper control input after a number of learn-

ing trials. Monitoring the DoA of the learned controller

at every trial provides a stopping criterion to terminate

learning once the DoA is large enough to fulfill the con-

trol objective. This leads to learning in a short amount

of time. The parameterized control policy is given

by

π̂(x, ϑ) = −ϑT Ψ (x)γ (q − qd) − mgl sin(q) (10)

where ϑ ∈ R
n is a parameter vector, Ψ ∈ R

n is a user-

defined basis function vector, and γ is a unit conversion

factor with the value of one. The parameter vector ϑ

is updated using the actor-critic reinforcement learning

(RL) method by following the procedure described in

[20]. Consequently, the saturated control input of the

A-IDA-AC algorithm is computed at each time step

by

uk = sat
(

π̂(xk, ϑk) + ∆uk

)

(11)

where ∆uk is a zero-mean Gaussian noise, as an explo-

ration term.

The desired system Hamiltonian is chosen in the

quadratic form

Hd(x) =
1

2
γ (q − qd)

2 +
p2

2J
. (12)

We exploit the desired system Hamiltonian as a can-

didate Lyapunov function to approximate the DoAs

of the learned controllers at each learning trial [17].

Figure 10 illustrates the approximated DoAs of the

learned controllers computed by the sampling approach

at seven specific trials, where the trial numbers are also

given. While learning is in progress, the DoAs of the

learned controllers typically enlarge centered at the up

equilibrium, but not necessarily monotonically. In this

example, after 35 trials, the DoA of the controller is

large enough to cover the initial state; hence, the learn-

ing process can be terminated sooner instead of run-

ning for all the scheduled trials. As such, the sam-

pling method speeds up the process of learning con-

trollers.
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Fig. 8 Approximated DoAs for the origins of examples E1–E9 described in Tables 2 and 3 using the sampling method
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Motor

m

l

q

Fig. 9 Inverted pendulum and its schematic representation

Table 5 Physical parameters of the inverted pendulum

Physical parameter Symbol Value Unit

Pendulum inertia J 1.91 × 10−4 kg m2

Pendulum mass m 6.8 × 10−2 kg

Gravity g 9.81 m s−2

Pendulum length l 4.20 × 10−2 m

Damping in joint b 3 × 10−6 Nm s

Torque constant K 5.36 × 10−2 Nm A−1

Rotor resistance R 9.5 Ω
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Fig. 10 Approximated DoAs of the learned controllers at seven

specific trials for the inverted pendulum, where the trial numbers

are also indicated

5 Conclusions

This paper has proposed a fast sampling approach for

estimating the DoAs of nonlinear systems in real time.

The approximated DoAs computed by this technique

have been compared with the estimates derived by

optimization-based methods. It is concluded that the

sampling approach is fast and computationally effec-

tive in comparison with optimization-based methods

and it can be used for real-time applications. Although

a formal guarantee for convergence does not exist yet,

the empirical evidence arising from extensive simu-

lations suggests that in practice this approach always

converges to the exact level set for a sufficiently large

number of samples. Moreover, the rate of convergence

depends on the distribution function selected for sam-

pling as well as the exploring regions of the state space.

Using a more sophisticated distributed function can

speed up convergence of the sampling procedure since

it can avoid sampling in areas of the state space which

are already known not belong to the DoA. As such,

there is a trade-off between the speed of convergence

and the computational cost imposed by the complexity

of the sampling distribution function.

In addition, the sampling approach has been applied

to approximate the DoAs of a passivity-based learning

controller, designed for an inverted pendulum system,

at every learning trial. This online approximation can

be used as a stopping criterion for the learning process.

This allows learning to be terminated as soon as the con-

troller’s DoA is sufficiently large to satisfy the control

objective. Thus, the proposed sampling method enables

learning in a short amount of time.
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