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A Fast Search Algorithm for a Large Fuzzy Database
Feng Hao, John Daugman, and Piotr Zieliński

Abstract—In this paper, we propose a fast search algorithm for
a large fuzzy database that stores iris codes or data with a similar
binary structure. The fuzzy nature of iris codes and their high
dimensionality render many modern search algorithms, mainly
relying on sorting and hashing, inadequate. The algorithm that
is used in all current public deployments of iris recognition is
based on a brute force exhaustive search through a database of
iris codes, looking for a match that is close enough. Our new
technique, Beacon Guided Search (BGS), tackles this problem by
dispersing a multitude of “beacons” in the search space. Despite
random bit errors, iris codes from the same eye are more likely to
collide with the same beacons than those from different eyes. By
counting the number of collisions, BGS shrinks the search range
dramatically with a negligible loss of precision. We evaluate this
technique using 632 500 iris codes enrolled in the United Arab
Emirates (UAE) border control system, showing a substantial
improvement in search speed with a negligible loss of accuracy.
In addition, we demonstrate that the empirical results match
theoretical predictions.

Index Terms—Biometric search, iris scanning and recognition
(BIO-IRIS), multiple colliding segments principle.

I. INTRODUCTION

I RIS recognition is a relatively new biometric technology.
As deployed publicly today, it takes an infrared image of a

person’s eye, isolates the iris, demodulates the pattern of iris tex-
ture into a binary iris code, and compares it exhaustively against
an enrolled database for a match [2]. Due to its high accuracy,
this technology has been deployed at many airports as a replace-
ment for passports and, in particular, it is deployed at all 27 air,
land, and seaports of entry into the United Arab Emirates (UAE)
as a border control security system to prevent expellees from
reentering the country [1].

To deploy a large-scale biometric recognition system, the first
concern is the probability of false matches, which increases with
the number of records enrolled in the database. Iris patterns con-
tain a high degree of randomness, which provides the biological
basis for their uniqueness. Daugman’s algorithm [2], [3] is the
technique used in all public deployments of iris recognition. It
encodes the iris texture into a 256-byte iris code; it also produces
a 256-byte mask, which excludes those iris code bits affected
by eyelids, eyelashes, specular reflections, and other noise. Al-
ternative encoding methods have been studied which represent
irises by filter-bank samples (floating-point scalars) followed by
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various correlation measures (for an extensive recent survey, see
[25] and [23]), but they were found to be excessively slow and
none could complete the 2006 Iris Challenge Evaluation (ICE)
[24]. The fast search algorithm that is the focus of this paper
would not apply to such scalar-based iris representations. Sta-
tistical analysis reveals that the accumulative false match rate
using Daugman’s algorithm remains negligible even over large
databases [1], [3]. To date, there have been more than a million
iris codes enrolled in the UAE central database, and the UAE
Ministry of Interior reports that the system has yet to make a
false match [1].

The success of the UAE deployment since 2001 has encour-
aged even larger deployments. One such may be seen in the
United Kingdom, where the Government plans to introduce bio-
metrically enabled ID cards in 2010 [16]. Under this scheme,
biometric data, including the iris codes of the 45 million cit-
izens who are older than 16, may be stored in a central data-
base. A similar program exists in India. The Andhra Pradesh
State government has been enrolling iris codes for 80 million
local people since July 2005 under a ration-card scheme and,
within the first year, about 26 million people had been enrolled
[17]. With the advent of large biometric databases, information
retrieval and database management will become increasingly
challenging problems [21].

In the iris-matching algorithm considered here, comparing
two iris codes is simple; it mainly involves counting the bits that
differ between two binary vectors. Iris images may be tilted to
various degrees. This problem is handled by repeating the com-
parisons of the iris codes over a range of relative rotations [2].
Since the comparison requires no expensive nonlinear warping
operations as in [4] and [18], searching iris-code databases can
be quite fast. The exhaustive search (ES) method can compare
about a million iris codes per second on a 3.2-GHz central pro-
cessing unit (CPU) [1]. However, continual database expansion
will slow down the search speed linearly, and the default solu-
tion is to use several search engines in parallel [1].

Far more severe problems arise in applications requiring that
all records in a national-sized database be compared with all
others in order to detect fraudulent multiple identities, which is
one of the purposes of the U.K. ID card scheme (“One person,
one identity” [16]). The number of cross-comparisons then
scales with the square of the national population. Although this
process needs only to be done over the time course of ID card
issuance, its demands are still daunting. The 45 million U.K.
enrollees generate about iris pair comparisons. At one
million iris code comparisons per second per 3.2-GHz CPU,
this would require two billion CPU seconds, which is 63 CPU
years.

In the U.K. biometric ID plan with a database of 90 million
iris codes, the memory management and maintenance require-
ments for an ES approach are also daunting. A single ES would
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require loading bytes GB into memory,
and every update would require manipulating a file of this size.
There is thus a strong motivation to try to develop some kind of
indexing-based approach instead, in which each iris code (de-
spite its fuzziness due to unavoidable measurement discrepan-
cies) could be treated almost as an address that points directly
to the identity of the person from whom it was generated.

This search problem is more general. There are a wide range
of closely related applications, for instance, searching audio
fingerprints [14], [15]; paper fingerprints [5]; and optical fin-
gerprints [6]. All of these applications produce iris-code-like
fuzzy data: high-dimensional binary vectors with the compar-
ison based on the Hamming distance. In practice, there could be
billions of audio fingerprints or paper fingerprints in a database
[5], [14], [15]. Using the ES would require thousands of parallel
machines, which is clearly infeasible under cost constraints.

We therefore set out to solve this problem at the algorithmic
level, without relying on customized hardware or parallelism.
Though our work focuses on searching databases of iris codes,
the devised technique is generally applicable to other fuzzy
search domains.

II. PAST WORK

The problem we investigate is as follows: given a 2048-bit
vector with random errors, how quickly can its nearest neighbor
in the 2048-D Hamming space be found. A more general
problem, in any metric space, is called the nearest neighbor
search (NNS) [7].

NNS is defined as follows: given a set of points in a high-di-
mensional space, construct a data structure which, given any
query point , finds the point closest to under a defined dis-
tance metric [7]. The NNS problem has been extensively studied
for the past two decades. The results, however, are far from sat-
isfactory, especially in high-dimensional spaces [10]–[12]. We
will now review the past work in this line of research.

Most NNS techniques are based on the “partitioning prin-
ciple” [7]. The idea is intuitive: dividing the search space into
regions, so that once a query is given, only some regions are
searched. Generally, the first step is to choose pivots—the ref-
erence points that divide the space. For instance, in the “ball
partitioning” method, the ball center is a pivot. The ball cuts
the search space into halves: inside the ball and outside. Such
spheric cuts are performed recursively, leading to a balanced
binary tree with pivots placed at nodes and data at leaves. An
alternative method is the “generalized hyperplane partitioning,”
which separates the data set into two based on their relative dis-
tances to two pivot points.

The “partitioning principle” spawns many tree-like data
structures. Specific techniques differ in how trees are con-
structed and traversed, as well as tradeoffs. For example, m
tree, vp tree, fq tree, mvp tree, mwvp tree are based on “ball
partitioning,” while bisector tree gh tree, gna tree, kd tree, and
pcp tree are derived from the “generalized hyperplane parti-
tioning.” Selecting the right pivots is important and not trivial.
Due to the complexity of the problem, most techniques choose
pivots at random [8]. Some techniques, such as the gna tree
and mvp tree, employ precomputation to reduce the distance
computations, but require a large amount of memory. The state

Fig. 1. Histogram of 200 billion similarity scores among all different-eye pair-
ings across the UAE database (632 500 records)

of the art of the partitioning-based approach is summarized in
[7].

Unfortunately, all of the aforementioned tree-like data struc-
tures succumb to the “curse of dimensionality” [10], [11], [12].
While they work reasonably well in a 2-D or 3-D space, as the
dimensionality of the data increases, the query time and data
storage would exhibit an exponential increase, thereby doing no
better than the brute-force linear search [12]. The reason is that
the intuition of dividing a space into regions no longer holds
in the high-dimensional case. In the 2048-D Hamming space,
for instance, the distances between different eye iris codes are
sharply centered at 0.5 (see Section III-C-1); an iris code is very
nearly equidistant from all the others. Hence, it is very difficult,
if not impossible, to divide this space into regions. Furthermore,
iris codes form no clusters in this space (as will be seen in the
smooth unimodal distribution of different eye comparisons in
Fig. 1), so various clustering-based NNS techniques [7] do not
apply here either.

Indyk and Motwani proposed a different approach for NNS:
locality sensitive hashing (LSH) [10], with the follow-on work
in [11]–[13]. The core part in LSH is the definition of a hash
function family , from which functions are
chosen uniformly at random. During preprocessing, every
point is stored in each of the buckets, identified
by . To process a query , LSH searches all buckets

exhaustively for the nearest match.
With a high probability, the nearest match exists in one of the
buckets. To avoid repeated checking on the same points, the
searched points are marked in memory and, thus, ignored for
the following occurrences in other buckets [12], [13].

The biggest limitation facing LSH is that it often needs to
search a significant percentage of the database [11]. The sug-
gested measure is to define a threshold, and interrupt the search
when there are too many points in buckets [10]–[12]. We will
explain this problem in further detail in Section IV. In addition,
LSH is developed based on main memory and, thus, ignores the
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delay of data retrieval. However, most large-scale applications
store data in databases, which are disk based.

Haitsma and Kalker proposed a similar technique and applied
it to search audio fingerprints [15]. They divide a 1024-byte
audio fingerprint into 256 subfingerprints of 32 bits each. They
show that for a “mildly degraded” audio signal, at least one of
the subfingerprints is error free. Thus, the error free one can
serve as a pointer to look for possible matches, by following
a 32-bit lookup table. However, it is acknowledged in this paper
that “mild degradation” may be too strong of an assumption in
practice. Furthermore, the 32-bit lookup table requires at least
4-GB memory, which is more than many computers can afford.

To summarize, LSH and Haitsma–Kalker’s algorithm are
built on essentially the same principle, which we call the
“single collision principle.” This principle assumes that if two
records are similar, they would have a relatively high chance
of having at least one “colliding” identical segment, obtained
from either hashing [10]–[12] or direct sampling [15]. (Other
related techniques, for example, classifying iris images into one
of the two [20] or four [22] categories can be seen as working
under the same principle.) However, both algorithms ignore
multiple occurrences of a collision. We improve their work by
introducing the “multiple colliding segments principle,” and
demonstrate that counting the number of colliding segments
is crucial for achieving optimal performance. Applying this
new principle, we are able to resolve the limitations explained
before (also see [11]–[13], [15]).

III. ALGORITHMS

A. Experiment Setup

The UAE database contains nonduplicate iris
records. Each record includes an iris code and a mask [2]. It is
assigned a unique 32-bit ID, and is stored as a 512-byte binary
blob in a MySQL database [19]. The evaluation is performed
on a 3-GHz PC with 3-GB memory, running FreeBSD. A Java
client program retrieves the data in real time, using the Con-
nector/J JDBC driver.

B. Exhaustive Search

With several optimizations, an ES is implemented as in
Algorithm 1. First, the system retrieves the stored records into
memory. We find that the fastest method is loading all data
(about 320 MB) at once with one SQL query, instead of fetching
one by one, which requires 632 500 SQL queries. Next, the
query iris code is compared exhaustively with all retrieved
records. The comparison between two iris samples is based on
their smallest Hamming distance obtained from seven relative
rotations. Computing the Hamming distance mainly involves
counting the bits that differ between two binary vectors. A
lookup table is used to speed up the counting. Furthermore, the
system performs a preliminary check before fully comparing
two vectors. It selects every fourth byte from two iris codes
correspondingly, and counts the bits that differ. Only if less
than a third of these bits disagree will ES proceed to a full com-
parison. Let the two iris codes be code A and code B, and their

masks be mask A and mask B (see [2]). The matching decision
is based on the normalized Hamming distance [1]

(1)

where , and

(2)

Algorithm 1: Exhaustive Search

Input: Query iris code .

Output: Match iris code or “No match”.

1) ID to do.
2) IrisTable .
3) for do.
4) Obtain by shifting by bytes (precomputed).
5) IF Preliminary Check is OK, then
6) IF MatchThreshold, then
7) Return .
8) Return “No match”.

The normalization performed in (1) is based on the fact that
the standard deviation of a fractional binomial distribution
varies inversely as the square root of the number of Bernoulli
trials done, which corresponds here to the number of bits
mutually available for comparison between two iris codes. If
this normalization was not used, then false matches could arise
merely because few bits were mutually available for compar-
ison (for example, because of excessive eyelid occlusion), just
as runs of few coin tosses can spuriously yield “all heads” with
good likelihood. The normalization maps all different iris-code
comparisons into the same stable binomial distribution and,
thus, allows the decision confidence levels to depend only
on , independent of how many bits were mutually
available. Parameter 911 is the typical number of bits mutually
available between different iris codes. Fewer than this are
penalized (meaning that the degree of match required must be
better, before a match is declared); and if more than 911 bits
are available for comparison, then a high confidence match can
be declared even with less similarity.

In the experiment, the matching threshold for is set
at 0.22, which is suggested in [1] for the U.K. population. Fig. 1
shows the distribution of the normalized Hamming distances
for the UAE database based on billion cross
comparisons.

To find an existent match, ES searches, on average, half of the
database. With Java code, the average delay of computing these
Hamming distances for each given query is 2.675 s, which is
slower than the C-based program that can compare one million
iris codes per second [1]. This is because Java executes slower
than C (which is a tradeoff for Java’s portability) [19]. However,
this difference is irrelevant since we aim to compare the two
algorithms based on the same platform.
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In addition, loading data from the database incurs a signifi-
cant delay too. In the experiment, it takes 6.508 s to load 632
500 iris records into memory. Therefore, if the search returns
no match, the total delay is s. At
first glance, it appears trivial to reduce the delay by loading all
data once and holding it in memory. However, this would create
problems for memory management: it is complex and expen-
sive to maintain consistency between the data in memory and a
constantly updated database of records. Hence, for an efficient
search algorithm, both the search and loading times need to be
substantially reduced.

C. Beacon-Guided Search

We now describe a new search algorithm called the beacon-
guided search (BGS). Here, a beacon is a collection of iris-code
IDs that have the same defined feature. It differs from a bucket
[10] in that it is more than a storage unit; more important, it is a
guiding landmark. Technically, it works as follows.

1) Preprocessing: During preprocessing, all iris codes in the
database are indexed to create a beacon guiding structure (Al-
gorithm 2). This process creates beacon spaces, with

beacons in each space. An -bit beacon index
uniquely identifies every beacon in the th space. Indexing

an iris code involves saving its unique 32-bit ID on one beacon
per beacon space. The extra storage required is

bytes, the same size as the original database.

Algorithm 2: Beacon Guided Search–Preprocessing

Input: A table of iris codes.

Output: beacon guiding structure

1) FOR ID to do.
2) IrisTable .
3) FOR to do.
4) Compute the beacon index from .
5) Insert into .

To understand the assignment of an iris code feature to a
beacon index , we must consider the prop-
erties of iris codes more closely. The 2 048 data bits in any iris
code are deemed to have varying reliability, and those deemed
unreliable (e.g., affected by eyelashes) are flagged as such by
the mask bits by using the logic in (2). The set bits (i.e., “1”s)
in the mask indicate the positions deemed reliable, so the corre-
sponding iris-code data bits are used in comparisons. Fig. 2(a)
plots the probability of having a set data bit, across bit posi-
tions sorted by descending likelihood of the mask bit being set. It
shows that unmasked iris-code bits (whether computed with the
real or imaginary parts of the complex demodulating wavelets
[1]–[3]) generally have an equal probability of being “0” or “1.”
Fig. 2(b) shows by each dot, the position within iris codes of the
1408 bits that are most often unmasked. (The 2048 possible bit
positions are spooled into a 32 64 matrix for graphical conve-
nience.) The sinusoidal structure reflects the fact that eyelids are
detected and the corresponding data bits are masked out (mask

Fig. 2. Analysis of the probabilities of data bits being set and of mask bits
being set, across the 2048 bit positions, based on 632 500 iris records. (a) The
probability of a data bit being set to “1,” sorted over all bit positions from the
least likely to be masked to the most likely. (b) The 1408 bit positions that are
least likely to be masked, among the 2048 iris code bit positions when spooled
into a 32 � 64 matrix. The sinusoidal structure reflects the occlusion of upper
and lower eyelids, which are detected and masked.

bits set to “0”); the deep troughs in each cycle are caused by the
upper eyelids, and the shallower troughs by the lower eyelids.
As a consequence, bits positioned near the pupil are more likely
to be selected as reliable and, therefore, are unmasked, than bits
that are computed closer to the outer boundary of the iris. We
therefore use only the lower five bits (closer to the pupil) in each
radial sequence of eight, and concatenate these for two corre-
sponding wavelets, when defining the 10 bits of each beacon.

Based on the aforementioned observations, we compute the
beacon index from an iris code in two steps. First, we per-
mute the iris code by interleaving the bytes, and then rotating
the bit columns (see Fig. 3). This well separates the neighbor-
hood bits which are strongly correlated [3]. Second, we divide
the permuted vector into the consecutive 128 blocks of 2 bytes.
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Fig. 3. Permutation by rotating bit columns.

Fig. 4. Cyclic iris code after permutation.

In each block, is obtained by concatenating the five least sig-
nificant bits of both bytes; the selected bits correspond to the iris
region near the pupil, where the obstruction by eyelashes/eye-
lids is unlikely, and the signal-to-noise ratio (SNR) is generally
high.

The beacons derived before are cyclic. Intuitively, the eight
bit columns in Fig. 3 correspond to eight concentric rings over-
laying the iris region; rotating each ring by a different angle
separates the bits in a byte, while still keeping the rings cyclic.
Since we only extract the last five bits of a byte, it is sufficient
to rotate just the last four columns. The reason for interleaving
the bytes is to keep the beacon’s and the iris code’s rotations
synchronous—rotating the iris code by one byte corresponds to
shifting to the next (or previous) beacon space (see Fig. 4).
When is shifted out of the first space and, thus, into the last
space (and vice versa), the first and second halves of the bits in

need to be swapped to ensure the correct beacon value. Such
a calibration is done in memory with a negligible delay.

After indexing all iris codes, BGS generates a beacon guiding
structure, with million beacons in total. Due to
the permutation, the distribution of the beacon storage density
is approximately even, with an average of IDs
stored on each beacon. Preprocessing is fast—it took less than
5 min to index the entire UAE database.

2) Searching: Searching an iris code involves traversing the
beacon spaces (Algorithm 3). In each space, BGS selects one
beacon and retrieves the IDs stored in that beacon. The array

records the accumulated occurrences of the retrieved
IDs, with the subscript referring to a particular rotation. If a
specific ID has been encountered times (e.g., , BGS
loads the full 512-byte iris data using the ID as the primary

TABLE I
COST COMPONENTS IN BEACON GUIDED SEARCH

key. The subsequent comparison is based on the same matching
condition as in ES (see Algorithm 1). Note that in Algorithm 3,
the computation of the space index after shifting is based on the
modular operation, since the beacon spaces are cyclic.

Algorithm Beacon Guided Search—Searching

Input: Query Iris code .

Output: Match iris code or “No match.”

Preprocessed
.

1) Compute the beacon indices from .
2) FOR to .
3) FOR do
4) .
5) FOR do.
6) Increment by 1.
7) IF
8) .
9) IF MatchThreshold then

10) Return .
11) Return “No match”.

There are five cost components in BGS, as summarized in
Table I. The first one is to compute which beacons a given query
belong to. This operation incurs a negligible delay (< 1 ms). The
second one is to retrieve IDs stored in the beacons. This I/O op-
eration is fast, since the IDs are lightweight, and can be fetched
rapidly in the form of blobs (see [19]). The third operation is
to count collisions. This simply involves read/write accesses to
the memory array. The next is to load the full 512-byte iris data.
This is an expensive input/output (I/O) operation. The final one
is to fully compare the retrieved iris codes with the query. De-
lays in operations 2–5 increase linearly with more records en-
rolled into the database, giving the algorithm a linear complexity
overall. Our strategy is to make the best use of the very fast oper-
ations 2 and 3, while avoiding 4 and 5. In the following section,
we will explain how this goal is achieved.

IV. RESULTS

In this section, we evaluate the BGS performance both ana-
lytically and empirically.

A. Theory

The binomial probability distribution function [3] is
, where is

the number of successful trials, is the total number of trials,
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and is the success probability. The binomial cumulative dis-
tribution function is defined as .

For simplicity, we assume the beacon bits are equiprobable
and uncorrelated, and will address the effect of correlation later.
The probability of finding a match, thus terminating the search,
in the th space depends on two conditions: 1) there had been

collisions with the matching iris code before the th space
and 2) there is one more collision in the th space. It is expressed
as

(3)

where is the bit-error rate (BER) of the query after the 7-rota-
tion adjustment (i.e., the smallest result among seven rotations);
it typically ranges from 10 to 20%.

The miss rate is the probability that the query iris code (after
the seven-rotation adjustment) and the supposed match collide
with less than beacons. It is expressed as

(4)

In the th space, the probability for two different iris codes
to have less than beacon collisions for all seven rotations
is . Here, we define the search size as the
number of the iris records retrieved for comparison. When the
search is terminated in the th space, the search size can be
estimated by

(5)

The value represents the search size when a match is not
found.

B. Experiment

The search size in BGS is only a fraction of the whole data-
base. This is mainly due to the “multiple colliding segments
principle” and the early termination strategy, whose effects are
expressed by and , respectively.

First, we study the performance when a search returns no
match; hence, has no early termination. We conduct the experi-
ment using two types of queries: a string of random bits and an
iris code with no match in the database. Fig. 5 summarizes the
search delays.

When , the implementation would be similar to
[10]–[12] and [15], which are based on the “single collision
principle.” However, a significant percentage of the database
needs to be searched. Based on random queries, a theoretical
estimate of the search size is 368 947, and the experiment
shows 384 648. This problem might be less evident if all data
are held in memory, but could prove severe for database-based
applications. It is particularly slow to retrieve sporadically
dispersed data from the disk; we observe that, even for fetching
10% of the records, the resulting delay would be longer than
that using ES.

Table II reports the search sizes using BGS, together with the
theoretical estimates [see (5)]. The different results for the
two query types are due to data correlation, for which a 2048-bit
iris code has only 249 degrees of freedom [3]. Applying permu-
tation helps select uncorrelated bits into , but cannot remove

Fig. 5. Delays in BGS when no matches are found, for three different rules on
the number c of beacon collisions required before a detailed comparison of the
iris codes is performed.

TABLE II
SEARCH SIZES IN BGS WHEN

THERE ARE NO MATCHES

the correlation between . As a result, iris codes
tend to cling to the same beacons in different spaces. For a query
of random bits, the beacon selection is random too, which can-
cels the effect of correlation. On the other hand, if the query is
an iris code, the beacons derived are correlated; thus, more IDs
fulfill the -collision requirement, bulging the search size.

However, the bulge in the search size has a limited effect on
the search performance. When , it causes the search size
to increase from 1280 to 3333, by a factor of 2.6. Even after
bulging, the size occupies a small fraction of the database. As
a result, the delay increases from 270 to 456 ms, by a factor of
only 1.6.

On the other hand, correlation has almost no effect on the
search accuracy. To study the variation of intraeye iris codes, we
collected multiple iris samples from each of 70 eyes (more de-
tails about the data collection can be found in Section IV-C-1).
From each eye, one sample is added into the database, and the
rest are used as queries. Fig. 6 plots the probability of finding
matches versus the BERs of the queries as well as the theoret-
ical results [see (5)]. The theoretical and empirical
data are found to be consistent. Overall, the value strikes
a suitable tradeoff between speed and accuracy, as we will ex-
plain in further detail in Section IV-C1.

The number of beacons in one beacon space presents an-
other tradeoff between speed and accuracy. From (4), a smaller

leads to better error tolerance, as shown in Fig. 7. On the
other hand, faster speed is achieved by choosing a bigger ,
since fewer iris records need to be retrieved. Without consid-
ering early termination, the fractions for
are 9.5%, 0.2%, and 0.0034%, respectively [see (5)]. Defining
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Fig. 6. Probability of finding an existing match as a function of the BER, for
three different settings of c, the number of required beacon collisions.

Fig. 7. Probability of finding an existing match as a function of the BER, for
three different settings for the number m of bits in a beacon.

a suitable value may well depend on particular application
requirements. In the experiment, we chose .

Besides the “multiple colliding segments principle,” the early
termination strategy also contributes to the speedup. The same
strategy is commonly used in past work [7]. The fewer errors
there are in a query, the more likely the match is found at an early
stage. Fig. 8 plots the probability of having early termination for
varying BERs, based on (3). For a query with 15% bit errors, it
is statistically guaranteed that the match is found by traversing
no more than 50 beacon spaces. Fig. 9 plots the theoretical value
of as well as the experimental results.
The two curves fit closely, which shows that the condensation
due to early termination is not affected by the data correlation.

By design, our algorithm caters for cyclic rotations of a query.
The common approach in past work was trial and error: shifting
the query a few times, then searching the shifted queries [14].

Fig. 8. Probability of finding an existing match and, thus, terminating the
search at the ith beacon space (i < 128), for three different BERs, when the
number of required beacon collisions is c = 3.

Fig. 9. Reduction in search size (condensation factor) as a function of the
beacon space index i at which a criterion of c = 3 beacon collisions becomes
satisfied.

The problem, though, is that a slight shift of the query would re-
move most benefits of early termination since failed trials will
incur relatively long delays. We tackle this problem by incor-
porating the rotations into the algorithmic design so that the
search performance is rotation invariant, as shown in Fig. 10(a).
Fig. 10(b) shows a cost breakdown which indicates that the
delay is dominated by the cost components 2 and 3 (see Table I),
with 4 and 5 diminishing to be insignificant.

C. Comparison

To make the evaluation closer to the real-world situation, we
enroll more iris samples under two different conditions: favor-
able and noisy. The histograms of the two additional datasets
are shown in Fig. 11.

In the first experiment, ten samples were collected from 70
eyes each, using the same camera and at a fixed measurement
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Fig. 10. Delays in BGS and their breakdown into various factors when seven
cyclic rotations in iris codes are included in the search process to compensate
for unknown tilts of the eye, head, or camera.

distance. We index the first sample from each eye (adding it to
the UAE database), and use the remaining nine as queries. Since
the enrollment setting is consistent, the mean intraeye Hamming
distance is small: only 2% [see Fig. 11(a)]. Currently, the BGS
algorithm only indexes the iris codes and ignores the masks.
This has the effect of increasing the BERs. We find the BER of
the beacons derived from the same eyes ranging from 4.56% up
to 30.99%, with a mean of 14.94%. This error range can be well
tolerated by BGS, as shown in the following.

Table III summarizes the experiment results for both ES and
BGS. When , BGS reports an average delay of 30 ms,
which is more than 300 times faster than ES. This is achieved
as BGS checks only % of the database, while ES
has to compare it with half of the records on average. The degra-
dation of the false rejection rate—from 0.32% to 0.64%—is ac-
ceptable, given the great speedup factor. When , only two
records are checked with a 99.04% success rate in finding the
match. However, the gain in condensation is offset by the de-
layed early termination. As a result, the average search delay is

Fig. 11. Dissimilarity score distributions for same-eye and different-eye com-
parisons after seven rotations to allow for unknown tilts of the eye, head, or
camera, plotted both in the case of ideal and nonideal imaging conditions. (a)
Using a single type of camera. (b) When different types of cameras are used
interoperably.

TABLE III
COMPARISON BETWEEN ES AND BGS USING ONE TYPE OF CAMERA

33 ms, slightly longer than that of . Note that in this eval-
uation, we took the data loading time into account. If we wish
to hold all data in memory, we could achieve far more impres-
sive performance by modifying BGS accordingly, but that will
be less useful in practice.

In fact, BGS can be made to be much faster if we remove the
seven-rotation requirement. In that case, the experiment shows
that it takes merely 4 ms to find a match, provided that the query
has less than 30% bit errors and no rotations. However, a slight
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TABLE IV
COMPARISON BETWEEN ES AND BGS (UP TO THREE TRIES)

MIXING TWO TYPES OF CAMERAS

rotation of the query would cause the search to return no match
and incur an upperbound delay of 28 ms. This may not be an
issue if rotations are rare. However, in a noisy environment, as
will be demonstrated, rotational shifts are fairly common.

The second experiment simulates a noisy environment, where
there are two platforms using different cameras and measure-
ment distances. On either platform, ten samples were collected
from 61 eyes each. We index samples obtained on one platform,
and use those acquired on the other platform as queries. The iris
samples become fuzzier now: the mean intraeye Hamming dis-
tance increases to 12.2% [see Fig. 11(b)].

Under this noisy condition, ES reports a 1.32% false rejection
rate. The BER of the beacons derived from the same eyes ranges
from 12.81% up to 36.17%, with a mean of 25.58%. In addi-
tion, more than half (61%) of the queries are rotated due to head
tilt, which makes noncyclic BGS unsuitable. More than 30% of
the bit errors are more than what BGS can readily accommo-
date, but the rapid speed of BGS provides an option to query
multiple scans of the same eye. The false rejection rate on the
first attempt is 11.32%, and is reduced to 3.28%, 0.55% on the
second and third attempts, respectively. While allowing three at-
tempts, BGS reports an average delay of 128 ms, with the max-
imum of 883 ms (see Table IV). It is still significantly faster than
ES; besides, it is more accurate because of the three attempts.
(Though ES can also adopt the multiple-scan strategy—which
reports 0.16% and 0.00% false rejection rates while allowing
up to 2 and 3 tries, respectively—the maximum delay would in-
crease linearly with the number of tries.)

Regardless of the enrollment condition, BGS uses much less
memory than ES. The primary memory usage in BGS is an array
that counts beacon collisions. If , only 2 bits are needed
to record the collision count. To make it general, we use a byte,
leading to bytes in total. In addition, BGS needs to store
the retrieved IDs temporarily; the same space could be reused
by subsequent retrievals (which is done automatically in Java
through garbage collection). Hence, the total required memory
in BGS is bytes. In comparison, a
time-efficient implementation of ES requires the maximum use
of the available memory; it uses bytes memory in our
experiment (see Section III-B).

V. CONCLUSION

In this paper, we propose BGS for searching a large iris-
code database efficiently. This algorithm works by indexing,
adopting a “multiple colliding segments principle” and early ter-
mination strategy, so that the search range is reduced dramati-
cally. It is evaluated using 632 500 real-world iris codes enrolled
in the UAE border control since 2001. Two additional datasets
are also included to study the variation of iris samples obtained
from the same eyes under different conditions. The experiment

shows that BGS is substantially faster than the current ES, with a
negligible loss of precision. It requires much less memory and it
does not depend on caching data in memory, hence obliterating
the need for complex memory management. The preprocessing
is simple and fast. It accommodates up to 30% bit errors in the
query as well as up to seven cyclic rotations. The extra storage
space is small and readily affordable–it supports dynamic main-
tenance, enabling easy indexing of new records. The rapid speed
of BGS allows multiple acquisitions from the same eye, thus re-
ducing the false rejection rate due to poor capture. Finally, we
show that the empirical findings match the theoretical analysis.
This makes BGS a useful technique for a wide range of fuzzy
applications.
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