
A Fast Search Technique for Large Vocabulary

On-Line Handwriting Recognition

Stefan Manke, Michael Finke and Alex Waibel

University of Karlsruhe, Computer Science Department,
D-76128 Karlsruhe, Germany

Carnegie Mellon University, School of Computer Science,
Pittsburgh, PA 15213-3890, USA

International Workshop on Frontiers in Handwriting Recognition,

University of Essex, Wivenhoe Park, September 2-5, 1996,

Colchester, England

Abstract

State-of-the-art on-line handwriting recognition systems should be able to handle dictio-
nary sizes of at least 25,000 words or more to be useful for real-world applications. Using
dictionaries of this size requires fast search techniques to achieve reasonable recognition
times. In this paper we present a search approach yielding recognition times, which are
virtually independent of the dictionary size. This approach combines a tree representa-
tion of the dictionary with e�cent pruning techniques to reduce the search space without
loosing much recognition performance compared to a at exhaustive search through all
words in the dictionary. The tree search with pruning is about 15 times faster than a
at search and allows us to run the NPen++ on-line handwriting recognition system in
real-time with dictionary sizes up to 100,000 words.

1. INTRODUCTION

During the last decade several systems with promising recognition performance for on-
line handwriting recognition have been proposed [1, 2]. These systems di�er in many
ways: the kind of input (hand-printed, cursive, mixed handwriting), preprocessing (e.g.
temporal feature sequences vs. bitmaps), and recognition techniques (separate vs. inte-
grated recognition and segmentation). Systems making intensive use of temporal writing
information and using integrated recognition and segmentation usually outperform other
approaches.

In order to achieve high recognition performance most systems constrain their search
space to a �xed set of words (dictionary) that can be recognized (i.e. it is not possible
to recognize arbitrary sequences of characters, but only sequences which are listed in the
dictionary). The size of such a dictionary inuences both the recognition performance
and response time of the system and therefore also the degree of user acceptance. While



even with dictionary sizes up to 100,000 words reasonable good recognition performance
can be achieved [1], response time of the system becomes an important problem. With
dictionary sizes of 20,000 words or more an exhaustive search through the dictionary is
no longer possible, if the system must come up with the answer in real-time. For the
exhaustive search approach the search costs increase linearly with the dictionary size.
Therefore a search technique which reduces the search space drastically is needed.

In this paper we present the search component of NPen++, whose run-time is virtu-
ally independent of the dictionary size. This postprocessing component combines a tree
representation of the dictionary with e�cient pruning techniques for reducing the search
space without loosing much recognition performance compared to other exhaustive search
techniques (i.e. without pruning). The following section gives a short description of the
NPen++ system. Section 3 presents the search tree architecture and search techniques
used in NPen++. Recognition times and results for di�erent dictionary sizes are shown
in Section 4.

2. THE NPen++ SYSTEM

NPen++ [1] is a system for writer independent, large vocabulary on-line cursive hand-
writing recognition. The neural network architecture, which was orginally proposed for
continuous speech recognition tasks [5], and the preprocessing techniques of NPen++ are
designed to make heavy use of the dynamic writing information, i.e. the temporal se-
quence of data points recorded on a LCD tablet or digitizer. During preprocessing this
sequence of data points is transformed into a still temporal sequence of n-dimensional
feature vectors xL

0 = x0 : : :xL, which combine local information (e.g. writing direction
or curvature) for a data point with so-called context bitmaps [3], which are basically low
resolution, bitmap-like descriptions of the coordinate's proximity.

The NPen++ recognition component integrates recognition and segmentation of
words into a single network architecture, the so-called Multi-State Time Delay Neural
Network (MS-TDNN). This architecture combines the high accuracy pattern recognition
capabilities of a TDNN [6, 4] with a postprocessing algorithm (tree search) for non-linear
time alignment of stroke, character and word boundaries in handwritten words or sen-
tences. This tree search architecture is described in the following sections.

3. TREE SEARCH

Let W = fw1; : : : wKg be a dictionary consisting of K words. Each of these words wi is
represented as a sequence of characters wi � ci1ci2 : : : cik where each character cj itself is
modelled by a three state hidden markov model cj � qj0qj1qj2 . Within these models only
self-loops qjk ! qjk or state transitions qjk ! qjk+1 are allowed. The self-loop probabilities
p(qij jqij) and the transition probabilities are both de�ned to be 1

2
. The idea of using three

states per character is to model explicitly the initial, middle and �nal section of the
characters. Thus, wi is modelled by a sequence of states wi � qi0qi1 : : : qj3k .



3.1 ISOLATED WORD RECOGNITION

Given an unknown pen trajectory xL
0 = x0 : : :xL we have to �nd the word wi 2 W in

the dictionary that maximizes the a-posteriori probability p(wijx
L
0 ; �) given a �xed set of

parameters �, i.e.:

wi = argmaxwj2W
p(wjjx

L
0 ; �):

The problem of modeling the word posterior probability p(wijx
L
0 ; �) is simpli�ed by using

Bayes' rule which expresses that probability as

p(wijx
L
0 ; �) =

p(xL
0 jwi; �)P (wij�)

p(xL0 j�)
:

Thus, instead of referring to p(wijx
L
0 ; �) directly the MS-TDNN is supposed to model the

log-likelihood log p(xL
0 jwi; �) of the pen trajectory using the following approximation [1]:

log p(xL0 jwi; �) = max
qL
0

LX

l=1

log p(xl; qljql�1; wi)

The maximization is done over all possible sequences through the states of the word
model. To �nd that maximum over all state sequences given xL0 we de�ne the quantity

sij (l + 1) = max
ql
0
;qij

log p(xl+1
0 ; ql0; qij jwi)

= max
k
fsk(l) + log p(qij jqk)g+ log p(xl+1jqij ; wi) (1)

which is the likelihood of observing xl0 going through the states ql�10 and ending in state
qij . Thus, the likelihood of the word wi is given by si3k(L). In order to �nd the most likely
word written we have to �nd this approximated likelihood for each word in the dictionary
and select the highest scoring word. Figure 1 a) shows which kind of model is evaluated
in order to �nd that word.

The problem with this kind of at dictionary MS-TDNN approach is that it works
�ne as long as the number words in the dictionary is small (like in digit or very limited
dictionary tasks). But since the run-time for a recognition pass scales linearly with the
number of words in the dictionary, this approach is not feasible to build a very large
dictionary neural network recognizer. Figure 2 gives an impression of how many three
state HMMs we have to evaluate (i.e. run the Viterbi algorithm delineated above) given
the at structure in order to �nd the best matching word in the dictionary.

3.2 SEARCH TREE

Instead of having this at organization of the dictionary where each word is represented
as a sequence of 3-state hidden markov models we extended the MS-TDNN approach to a
tree-based TDNN. For each letter a search tree is built which represents all words starting
with this character. The nodes in each tree consist of HMMs representing individual
letters (see �gure 1b). Thus, according to �gure 2 we can reduce the ratio of the number
of HMMs to the size of the dictionary from 10 for the at structure to 3. E.g. for the
100k dictionary system there were only 277382 models left to be evaluated compared to
968005 di�erent HMMs in the at search MS-TDNN approach.



i

a b l e

y

yn

ability

able

any

b) tree organized dictionary

a) flat dictionary structure
a b i

a b l e

y

ya n

ability

able

any

Figure 1: Flat vs. tree structured dic-
tionary.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

n
u

m
b

er
 o

f 
h

id
d

en
 m

ar
k

o
v

 m
o

d
el

s

size of dictionary

flat
search tree

Figure 2: Number of hidden markov models to
be evaluated versus dictionary size.

3.3 SEARCH ENGINE

The tree structure in itself does not yield enough of a bene�t with respect to run-time
e�ciency. There is still a linear scaling of run-time with the dictionary size. In order to
achieve real-time performance for very large dictionary systems we had to give up applying
exact viterbi where for each frame each state in all HMMs in the trees is updated according
to equation (1). Instead of that we introduced the concept of active and inactive HMMs
and de�ned a set of pruning rules which specify when to turn on an inactive HMM and
when to turn o� an active one.

The NPen++ search engine is based on the following data structures and algorithms:
each HMM-node in the tree can be marked as being either active or inactive. When the
search is initialized only the roots of the trees will be turned on whereas all other nodes
are set to be inactive. There are two lists whose elements are pointing to active nodes,
one is pointing to the nodes active in the current frame and the other one is used to
gather pointers to those nodes which are supposed to be active in the next frame. Based
on these lists the search algorithm goes for each frame through the following four steps:

1. Evaluation: for each active hidden markov model a viterbi step (1) is computed
to �nd the accumulated scores sij for the next frame. We also compute the best
state score ŝi within each node and the best score ŝ = max ŝi over all evaluated
models.

2. Pruning: deactivate (turn o�) all currently active nodes in the search tree where
the following pruning criterion is ful�lled

ŝi < ŝ� beam:

That means, all nodes whose best accumulated score is below a certain threshold
(called beam) will become inactive in the next frame.



1000 10000 20000 100000
0
5

10
15
20
25
30
35
40
45
50
55
60 Beam 50,0

Beam 75,0
Beam 100,0
Beam 150,0
No Beam
Flat Search

Seconds

Dictionary Size
1000 10000 20000 100000

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

Dictionary Size

Rec. Rate

Figure 3: Recognition times (left) and recognition results (right) for di�erent beam sizes
and dictionary sizes from 1,000 words up to 100,000 words.

3. Expansion: for each node being active in the current frame test whether a tran-
sition from the last state of the model i to the �rst state of any child HMM j leads
to a lower accumulated score sj0 in the �rst state of that model. If that holds and
the new score is above the pruning threshold the HMM j is marked to be active
in the next frame.

4. Word Transition: For each active word end node we test the transition from the
node to any of the tree roots as we did in the expansion phase above. This is done
only for the continuous handwriting recognition task which is out of the scope of
this paper.

4. EXPERIMENTS AND RESULTS

We have chosen an isolated word recognition task to demonstrate the behaviour of our
tree search approach for di�erent beams and dictionary sizes and to show its superiority
compared to a at search approach. The NPen++ system has been trained on 5,700
patterns from 80 di�erent writers. Testing of the system was performed on 2,500 patterns
from an independent set of 40 writers. The dictionaries used in our experiments were
selected randomly from the ARPA Wall Street Journal task, which was originally de�ned
for continuous speech recognition evaluations.

For each dictionary we have measured the total run-time needed for testing all 2,500
patterns using di�erent beam sizes on a standard 120Mhz Pentium PC running Linux. In
�gure 4. the average recognition time in seconds for each pattern and the total recognition
performance (word accuracy) is shown. Recognition times in �gure 4. include an average
of 0.84 seconds for preprocessing and the forward pass through the front-end TDNN for
each pattern.

As can be seen from �gure 4. the recognition results for our tree search without using
any beam (no pruning) are the same as the results for the at search, but the recognition
time is slightly higher, because of the additional costs of the tree search. Using a beam
size of 150.0 for the tree search results in nearly the same recognition accuracy as without
a beam but is already much faster than the at search. Decreasing the beam size further
to 100.0, 75.0, and 50.0 gives even faster response times, but also very small reduction



in recognition accuracy. For this task a beam size around 75.0 is a reasonable good
compromise between speed and accuracy.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that an e�cient search technique is essential for large dic-
tionary handwriting recognition systems to be practical useful. The proposed tree search
and pruning technique reduces the search space dramatically and is therefore signi�cantly
faster than search techniques, which have to process the whole dictionary to come up with
the correct answer. The bene�t in run-time is much higher than the small decrease in
recognition accuracy.

Work is in progress to further reduce the search space by using duration modeling
to limit the lifetime of nodes in the search tree. First experiments have shown that this
duration modeling gives an additional 10%-20% reduction of search time without loosing
any recognition performance.

References

[1] S. Manke and M. Finke, and A. Waibel, \NPen++: A Writer Independent, Large
Vocabulary On-Line Cursive Handwriting Recognition System", Proceedings of the
International Conference on Document Analysis and Recognition, Montreal, 1995.

[2] M. Schenkel, I. Guyon, and D. Henderson, \On-Line Cursive Script Recognition Us-
ing Time Delay Neural Networks and Hidden Markow Models", Proceedings of the
ICASSP-94, Adelaide, April 1994.

[3] S. Manke, M. Finke, and A. Waibel, \Combining Bitmaps with Dynamic Writ-
ing Information for On-Line Handwriting Recognition", Proceedings of the ICPR-94,
Jerusalem, October 1994.

[4] I. Guyon, P. Albrecht, Y. Le Cun, W. Denker, and W. Hubbard, \Design of a Neural
Network Character Recognizer for a Touch Terminal", Pattern Recognition, 24(2),
1991.

[5] P. Ha�ner and A. Waibel, \Multi-State Time Delay Neural Networks for Continuous
Speech Recognition", Advances in Neural Network Information Processing Systems
(NIPS-4), Morgan Kaufman, 1992.

[6] A. Waibel, T. Hanazawa, G. Hinton, K. Shiano, and K. Lang, \Phoneme Recognition
using Time-Delay Neural Networks", IEEE Transactions on Acoustics, Speech and
Signal Processing, March 1989.


