SCISPACE

formerly Typeset

@ Open access « Book Chapter - DOI:10.1007/BFB0034836
A Fast Software Implementation for Arithmetic Operations in GF(2n)
— Source link [

Erik De Win, Antoon Bosselaers, Servaas Vandenberghe, Peter De Gersem ...+1 more authors

Institutions: Katholieke Universiteit Leuven

Published on: 03 Nov 1996 - International Cryptology Conference

Topics: Normal basis, Finite field, Trinomial, Elliptic curve and Field (mathematics)

Related papers:

» Fast Key Exchange with Elliptic Curve Systems

« Elliptic curve cryptosystems

» Use of Elliptic Curves in Cryptography

« Efficient Algorithms for Elliptic Curve Cryptosystems

« Elliptic Curves in Cryptography

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-
2648i9t00c

https://typeset.io/
https://www.doi.org/10.1007/BFB0034836
https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://typeset.io/authors/erik-de-win-51u6w9i0f5
https://typeset.io/authors/antoon-bosselaers-1pt87bp53w
https://typeset.io/authors/servaas-vandenberghe-59acupus6g
https://typeset.io/authors/peter-de-gersem-20ezkipmtd
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/international-cryptology-conference-2zifzhcu
https://typeset.io/topics/normal-basis-344ispph
https://typeset.io/topics/finite-field-1a8kh9h8
https://typeset.io/topics/trinomial-3p950o3u
https://typeset.io/topics/elliptic-curve-2k716h3k
https://typeset.io/topics/field-mathematics-cke0zfff
https://typeset.io/papers/fast-key-exchange-with-elliptic-curve-systems-2wlwyd64ld
https://typeset.io/papers/elliptic-curve-cryptosystems-2ur87i8agx
https://typeset.io/papers/use-of-elliptic-curves-in-cryptography-credwc2ehh
https://typeset.io/papers/efficient-algorithms-for-elliptic-curve-cryptosystems-42dogxuqmx
https://typeset.io/papers/elliptic-curves-in-cryptography-vslnjgj2jf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://twitter.com/intent/tweet?text=A%20Fast%20Software%20Implementation%20for%20Arithmetic%20Operations%20in%20GF(2n)&url=https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c

A Fast Software Implementation for
Arithmetic Operations in GF(2") (PREPRINT)

Erik De Win*, Antoon Bosselaers, Servaas Vandenberghe,
Peter De Gersem*, Joos Vandewalle

Katholieke Universiteit Leuven, ESAT-COSIC
K. Mercierlaan 94, B-3001 Heverlee, Belgium
tel. +32-16-32.10.50, fax. +32-16-32.19.86
{erik .dewin,antoon.bosselaers,servaas.vandenberghe,
peter.degersem, joos.vandewalle}@esat.kuleuven.ac.be

Abstract. We present a software implementation of arithmetic opera-
tions in a finite field GF(2"), based on an alternative representation of
the field elements. An important application is in elliptic curve crypto-
systems. Whereas previously reported implementations of elliptic curve
cryptosystems use a standard basis or an optimal normal basis to per-
form field operations, we represent the field elements as polynomials with
coefficients in the smaller field GF(2'®). Calculations in this smaller field
are carried out using pre-calculated lookup tables. This results in rather
simple routines matching the structure of computer memory very well.
The use of an irreducible trinomial as the field polynomial, as was pro-
posed at Crypto’95 by R. Schroeppel et al., can be extended to this rep-
resentation. In our implementation, the resulting routines are slightly
faster than standard basis routines.

1 Introduction

Elliptic curve public key cryptosystems are rapidly gaining popularity [M93].
The use of the group of points of an elliptic curve in cryptography was first
suggested by Victor Miller [M85] and Neal Koblitz [K87]. The main advantage
of using this particular group is that its discrete logarithm problem seems to
be much harder than in other candidate groups (e.g., the multiplicative group
of a finite field). The reason is that the various subexponential algorithms that
exist for these groups up to now cannot be applied to elliptic curves. The best
known algorithm for computing logarithms on a non-supersingular (see [M93])
elliptic curve is the Pohlig-Hellman attack [PH78]. Because of the difficulty of the
discrete logarithm problem, the length of blocks and keys can be considerably
smaller, typically about 200 bits.

Although the group of points of an elliptic curve can be defined over any field,
the finite fields GF(2™) of characteristic 2 are of particular interest for crypto-
systems, because they give rise to very efficient implementations in both hardware

* N.F.W.O. research assistant, sponsored by the National Fund for Scientific Research
(Belgium).

(e.g., [AMV93]) and software (e.g., [HMV92] and [SOOS95]). The group opera-
tion consists of a number of elementary arithmetic operations in the underlying
field: addition/subtraction, squaring, multiplication, and inverse calculation. The
speed with which these elementary operations can be executed is a crucial factor
in the throughput of encryption/decryption and signature generation /verification.

To do calculations in a finite field GF(2"), the field elements are represented
in a basis. Most implementations use either a standard basis or an optimal normal
basis. In a standard basis, field elements are represented as polynomials of the
form ag+ajz+---+a, 12", where all a; are elements of GF(2), i.e., they are 0
or 1, and addition is done modulo 2. Field operations on these elements consist,
of operations on polynomials, e.g., a field multiplication can be calculated as a
multiplication of polynomials followed by a reduction of the result modulo a fixed
irreducible polynomial of degree n. In a normal basis an element is represented
as boB + b1 8% + 0o + -+ + by_182" ", where 3 is a fixed element of the
field and all b; are elements of GF(2). A normal base allows for a very fast
squaring; multiplication is more complex than in standard basis, but this does not
deteriorate efficiency if an optimal normal basis [MOVW88] is used. The optimal
normal basis representation seems to be more appropriate for hardware, but the
fastest software implementations that have been reported (e.g., [SOOS95]) use a
standard basis.

The implementation presented in this paper uses a third representation of
field elements that has some advantages in software. Before introducing this rep-
resentation in Sect. 3, we describe elliptic curve operations in a little more detail
in Sect. 2. In Sect. 4 we discuss field operations in the new representation and
we compare them to standard basis in Sect. 5. We conclude the paper with some
timing results.

Part of the results in this paper are based on [DD95] and [V96].

2 The Elliptic Curve Group Operation

An elliptic curve is the set of solutions (z,y) of a bivariate cubic equation over a
field. In the context of public key cryptosystems, the field is often GF(2") and the
equation is of the form y? + zy = 2® + ax® + b, where a and b are elements of the
field and b # 0. An “addition”-operation can be defined on the set of solutions
if the point at infinity O is added to this set. Let P = (x1,y;) be an element
with P # O, then the inverse of P is —P = (x1,21 + y1). Let @ = (x2,y2) be a
second element with @ # O and @ # —P then the sum P + @ = (z3,ys) can be
calculated as (see e.g., [SO0S95]):

:1:3=)\2—|-/\+£131 +x0+a
ys = M@ +23) + 23+ Y1
\ = Y1+ Y2 .

T + T2

These formulas are valid only if P # @Q; for P = @ they are a little different:

23 =X+ \+a

ygzxf-l-()\-l-l)a:g
)\:$1+y—1
T

The point at infinity O serves as the identity element. A multiple of P, i.e., P
multiplied by a natural number k, can be calculated by repeated doubling and
adding. The inverse operation of this, i.e., deriving k¥ when P and kP are given,
is the elliptic curve discrete log problem, which is considered to be a very hard
operation, since its running time is approximately (’)(2”/2).

The equations show that an elliptic curve addition can be calculated with a
number of additions, multiplications, squarings, and inversions in the underlying
field GF(2™). We will see that the addition and squaring of elements of GF(2")
are simple operations and that they require negligible time relative to the multi-
plication and inversion. Thus, doubling a point or adding two points on an elliptic
curve takes approximately two field multiplications and one field inversion.

In an actual implementation of an elliptic curve cryptosystem, other opera-
tions are needed as well. E.g., a quadratic equation has to be solved when point
compression [MV96] is applied. Some cryptographic algorithms require the order
of the group to be known, which can be calculated by Schoof’s algorithm [S85] or
one of its improved versions [LM95]. However, we will concentrate in this paper
on basic arithmetic operations in GF(2"): addition, squaring, multiplication, and
inversion.

3 An Alternative Representation for the Field Elements

It is well known that a field can be considered as a vector space over one of
its subfields. The proper subfields of GF(2") are the fields GF(2"), with r|n
and 0 < r < n. Most implementations take r = 1, i.e., they choose a basis
{Yo,7, -+, Yn-1} C GF(2") and the field elements are represented as agyo +
a1y1 + 4+ an—1yn—1, where all a; € GF(2). The software implementations in
this kind of bases are characterized by a large number of bitwise operations,
e.g., testing a single bit and shifting a word over a number of bits. Although
these operations are available, standard microprocessors are more suited for word
operations.

Generally, r can be chosen to be any divisor of n. In [HMV92] a polynomial
basis over GF(2%) is suggested. We examined the slightly more general case
where r is a multiple of 8. This limits the possible values of n to multiples of r,
but if r is not too large, this causes no practical limitation.

In principle there are no restrictions on the kind of basis that is used (polyno-
mial, normal . ..). Although more work has to be done on this, we believe that a
polynomial basis is most suited because a number of the advantages of (optimal)
normal bases disappear when r > 1.

If we define m = n/r, then an element of GF(2") can be represented as a
polynomial ag + a1z + -+ + apm_12™ 1, where the a; are elements of GF(2M).
An important benefit of this basis is that each coefficient is represented by r
bits and fits nicely in a computer word if r = 8, 16, or 32 (or even 64 on 64-bit
processors). Arithmetic with these polynomials is identical to that with ordinary
polynomials, except that operations on the coefficients are carried out in GF(2").

To calculate in GF(2"), a basis has to be chosen too, but this can be simplified
by the use of lookup tables. After choosing a particular basis for GF(2"), we look
for a generator v and calculate all pairs (a,4) such that a = 7% (a € GF(27)\{0};
0 <i < 2"—1). These pairs are stored in two tables: a Log-table sorted on a and
an alog-table sorted on i. Each of them takes about 2" words of r bits, resulting
in a total memory requirement of about 512 bytes for » = 8 and 256 Kbytes for
r = 16. The option r = 32 (and a fortiori r = 64) is excluded because of excessive
memory needs. These tables can be used to efficiently calculate in GF(2"), e.g.,
the product of two elements a, 8 € GF(2") \ {0} is

af = alog[(loga] + log[d]) mod (2" —1)] ,
and also an inversion operation can be calculated with only two table lookups:
a~! = alog[— log[a] mod (2" — 1)] .

If we want polynomials to represent finite field elements, all operations have
to be done modulo a fixed irreducible polynomial of degree m. In principle this
polynomial can also have coefficients in GF(2"), but if we can find an irreducible
polynomial with coefficients in GF(2) C GF(2"), many table lookups can be saved
in the reduction operation. The search for such an irreducible polynomial can be
simplified by using the fact that an m-th degree polynomial that is irreducible
over GF(2), is also irreducible over GF(2") if ged(m,r) = 1 [LN83, p. 107].
This limits m to odd numbers because r is a power of 2. We will show that the
reduction operation can be speeded up even further if an irreducible trinomial is
used [SOOS95], where the requirements for the middle term are a little different
than in [SO0OS95]. These special irreducible polynomials are easy to find, Table 1
lists all irreducible trinomials 1 + 2 + 2™ with 7<m < 15 and t < [m/2] .3

4 Field Operations

In a polynomial basis, field operations are reduced to operations on polynomials.
E.g., a field multiplication consists of a multiplication of the two polynomials
representing the multiplicands, followed by a reduction of the result modulo the
irreducible polynomial. Therefore, we will consider mainly operations on polyno-
mials.

3 It is easy to show that 1 + 2! + 2™ is irreducible iff 1 + 2™~ 4+ 2™ is irreducible.

Table 1. List of all irreducible trinomials 14+ z! +2™ with 7 < m < 15 and t < [m/2].
The corresponding field size is given for r = 16.

degree | field size trinomial
7 112 1+z+27
1+ 2%+ 27
9 144 1+2+2°
1+ z* + z°
11 176 1422421t
15 240 14242
14+z* +21°
1+Q’J7 +1‘15
17 272 14+ 2%+ 27
1+135 +1317
1+1‘6 +1‘17

4.1 Representation of Polynomials in Memory

It is natural to store the coefficients of a polynomial in consecutive r-bit words
of computer memory. To keep the routines as general as possible, we also used
one word to store the length of the polynomial. In summary, a k-th degree poly-
nomial A is stored in an array of length k + 2, where the first array-element Ag
contains the number of coefficients k£ + 1 (rather than the degree k), A1 con-
tains the constant coefficient, ... and Ay = A4, contains the coefficient of the
highest power of z. A zero polynomial is represented by Ag = 0.

4.2 Addition

Addition in a finite field with characteristic 2 is easy: just add the correspond-
ing bits modulo 2. Note that addition and subtraction modulo 2 are the same
operations; they both correspond to a binary exclusive or (exor, @) operation.

4.3 Multiplication

Multiplication of polynomials can be done using the shift-and-add method, where
the addition is replaced by an exor. Below is an algorithm that computes the
product of A and B and stores it in C (the notation of Sect. 4.1 is used).

1 if Ay =0 or By =0 then
2 Co=0
3 else {

4 initialize C to zero

5 for i=1 to Ag do

6 if A; #0 then

7 for j=1 to By do

8 if B; #0 then

9 Oi+j_1 = Cz’+j—1 S alog[(log[Ai] + 1og[Bj]) mod (QT — 1)]
10 Co=Ao+ By —1

This is a very simple algorithm, although it might look a little complicated with
the tests A; # 0 and B; # 0, which are necessary because the log of zero
is undefined. No bit manipulations are needed. The complexity is linear in the
product of the lengths of the multiplicands.

A number of optimizations are possible in an actual implementation. E.g.,
when the test in line 6 is successful, log[A;] can be stored in a register during
the execution of the inner loop. Also, the log’s of the words of B can be stored
in a temporary array at the beginning of the algorithm to reduce the number of
table lookups in the inner loop.

4.4 Squaring

The square of a polynomial with coefficients in GF(2") can be calculated in a
more efficient way than multiplying it by itself. The reason is that the square of
a sum equals the sum of the squares because the cross-term vanishes modulo 2.
The square of a polynomial is then given by

m—1 2 m—1
(Z aw’) = Z alz?
i=0 =0
This results in the following algorithm to compute B = A2,

if Ag =0 then
BO =0
else {
for i=1to Ag—1 do {
if A; #0 then
B,y;_; = alog[2 log[A;] mod (2" — 1)]

else
Byi—1 =0
By =0

}
Byy,—1 = alog[2 log[A4,] mod (2" — 1)]
By =24, -1

}

The complexity of this algorithm is linear in the length of the argument. For
practical lengths it is much faster than multiplication.

4.5 Modular Reduction

In most cases, the result of a polynomial multiplication or squaring has to be
reduced modulo an irreducible polynomial. In general, a reduction of a poly-
nomial A modulo a polynomial B will cancel the highest power of A, say A;,
by adding (or subtracting) a multiple of B of the form aBz'~5° to A, where
a = AiBg,Ol. This operation is repeated for decreasing values of i, until the de-
gree of A is smaller than the degree of B.

A much simpler algorithm is obtained when B is a trinomial with coefficients
in GF(2), because the calculation of @ and aB is considerably simplified. The
resulting algorithm is given below. A is the polynomial to be reduced, m is the
degree, and ¢ is the middle term of the irreducible trinomial, i.e., all B; are zero,
except for By, Byy1 and By,41, which are 1.

for i = Ag downto m' do {
Aiem =Aim & 4
Aivt—m =Aigt—m © A;
A, =0

}

update Ag

Each time the loop is executed, r bits of A are cancelled. If the word length of the
processor, denoted by w, is larger than r, then it is more efficient to eliminate w
bits at the same time, but this induces some restrictions on the trinomial. E.g.,
if r = 16 and w = 32, A; and A;_; can be eliminated in one loop-operation
if there is no overlap between A; ; and A;y4 ,,,. This condition is satisfied if
m—t>w/r.

4.6 Inversion

In general B = A~! mod M iff there exists an X such that BA+ XM = 1, where
A, B, X and M are polynomials in our case. B (and also X) can be computed
with an extension of Euclid’s algorithm for finding the greatest common divisor,
a high level description of which is given below (deg() denotes the degree of a
polynomial).

initialize polynomials B=1,C =0, F=A and G=M

if deg(F) =0 then return B/F}

if deg(F') < deg(G) then exchange F',G and exchange B,C
Jj= deg(F) - deg(G) y = FEO/GGO

F=F+ax’G, B=B+az'C

goto 1

g s W N

This algorithm maintains the invariant relationships F' = BA + XM and G =
CA+Y M (there is no need to store X and Y'). In each iteration the degree of the
longer of F' and G is decreased by adding an appropriate multiple of the shorter.

The invariant relationships are preserved by performing the same operation on B
and C. These operations are repeated until F' or G is a constant polynomial.

In step 4 of this algorithm, the degree of F' is decreased by at least one unit,
but there is also a chance that the second-highest power of z is cancelled in F,
etc. If all F; can be considered as random, it can be shown that the degree of F’
is lowered by ¢/(q¢ — 1) on average, where ¢ = 2" is the size of the subfield.
This number equals 2 for a standard basis, but quickly approximates 1 for larger
subfields. On the other hand, for fixed n, convergence is faster for larger r, because
in each step the length of A is decreased by about r bits. Therefore this algorithm
is faster in a polynomial basis over GF(2") than in a standard basis.

In [SOOS95] the almost inverse algorithm is proposed to calculate inverses in
standard basis. It finds a polynomial B and an integer k satisfying BA+ XM =
z*. The inverse can be found by dividing z* into B modulo M. The algorithm
can be generalized to polynomials over larger subfields. A high level description
is given below.

initialize integer k = 0, and polynomials B=1,C =0, F=A, G=M

0 while F' contains factor x do F=F/x, C=Cx, k=k+1
1 if deg(F) =0 then return B/Fy, k

2 if deg(F) < deg(G) then exchange F,G and exchange B,C
3 a= Fo/GO

4 F=F+aG, B=B+aC

5 goto O

The algorithm maintains the invariant relationships z* F = BA+ X M and z*G =
CA+Y M (again, there is no need to store X and Y'). Line 0 removes any factor
x from F while preserving the invariant relationships. Note that after line 0
neither F' nor G have a factor z. Line 2 makes sure that deg(F') > deg(G). Line 4
is crucial: it adds a multiple of G to F' (and the same multiple of C to B and
implicitly the same multiple of Y to X to preserve the invariant relationships),
such that F has a factor z again, which will be extracted in the next loop.

When analyzing the almost inverse algorithm, we observe that its behaviour is
very similar to the Euclidean algorithm given above. The main difference is that
it cancels powers of = from lower degree to higher degree, whereas the Euclidean
algorithm moves from higher degree to lower degree. In standard basis, the former
has two important benefits. Firstly, many bitwise shift operations are saved in
line 4 because there is no multiplication by z7. Secondly, if deg(F) = deg(G)
before line 4, which happens in roughly 20 % of the cases, the addition of G will
decrease the degree of F'. This reduces the number of iterations and hence the
execution time.

These two advantages of the almost inverse algorithm are irrelevant for
polynomials over larger subfields: there are no bitwise shift operations and, if
deg(F) = deg(@), the probability that the degree of F' is decreased in line 4 is
very small (approximately 1/q). The somewhat surprising conclusion is that the
Euclidean algorithm and the almost inverse algorithm have a comparable speed

for polynomials over GF(2"), the former is even slightly more efficient because
there is no division by z*.

5 Comparison with Standard Basis

An important advantage of working with coefficients in GF(2") is that no bit
operations are needed. A disadvantage is that the word size is limited because of
the memory requirements for the lookup tables. This limitation can be bypassed
in the modular reduction and in the final division step after the almost inverse
algorithm, but for the multiplication and the almost inverse algorithm, which
represent the majority of the total execution time of an elliptic curve addition,
we see no obvious way to handle w bits in one step. Therefore, an increase in
processor word size is likely to result in a larger speed gain for standard basis
implementations than for implementations based on polynomials over GF(2").

We compare our multiplication algorithm in a little more detail to the basic
multiplication algorithm in standard basis given below. We use << and >> to
denote a bitwise shift-operation to the left and to the right respectively, and we
let the line numbers start from 21 to avoid confusion with the multiplication
algorithm of Sect. 4.3.

21 if Ag =0 or By =0 then

22 Co=0

23 else {

24 for i=1 to Ay do

25 for j=0 to w—1 do

26 if j-th bit of A; is 1 then {
27 lower = By << j

28 higher = By >> (w — j)

29 C; = C; ® lower

30 for k=2 to By do {
31 Crti—1 = Ciyi—1 @ higher
32 lower = B << j

33 higher = By >> (w — j)
34 Crti-1 = Ciyi—1 & lower
35 }

36 CBo+i = CB0+i @ lower

37 }

38 update Cy

39 }

The loop formed by lines 24 and 25 is iterated n times. The test on line 26 is
successful in 50 % of the cases on average, such that the loop on lines 30 to 35 is
executed n/2 times. This loop runs over n/w values, such that lines 31 to 34 are
executed n?/(2w) times. In the multiplication algorithm of Sect. 4.3, the loop on
line 5 is iterated n/r times and the test on line 6 is almost always true (i.e., with
probability (2" — 1)/2"). The same reasoning can be repeated for lines 7 and 8,

such that the inner loop on line 9 is executed about (n/r)? times. So we can state
approximately that the algorithm in Sect. 4.3 will be faster if executing line 9 once
takes less time than executing lines 31 to 34 r? /(2w) times (for 7 = 16 and w = 32
this factor equals 4). Which one is faster depends heavily on the programming
language, compiler, microprocessor, and cache size. Similar comparisons can be
made for the inversion (the other field operations constitute only a negligible part
of the execution time of an elliptic curve operation).

Note that the standard basis algorithm given above can be optimized further.
One important optimization, which we used for our timings, is to precalculate a
table of shifted versions of B to avoid the shift operations in the inner loop.

6 Timings

We timed our routines for r = 8 and r = 16. For » = 8 the lookup tables
take only 512 bytes and will fit in the first-level cache memory of any present
day microprocessor; for r = 16 this is not the case, but the number of words is
smaller for fixed n. The latter was considerably faster in our tests, therefore we
will only give timings for this case.

The routines were written in ANSI-C. We used the WATCOM C 10.6 compiler
and executed the tests in protected mode on a Pentium/133 based PC. Table 2
gives detailed timing results for GF(2!77) in standard basis and GF(2!7%) in a
polynomial basis over GF(2!%). We used an irreducible trinomial for the modular
reduction and inversion. For standard basis, the word size w equals 32 bits.
The listed figures are for the fastest routines, e.g., the almost inverse algorithm
for standard basis and the extended Euclidean algorithm for polynomials over
GF(2'%). All routines have a comparable optimization level, although we put a
little less effort in the reduction, squaring and addition routines, since they have
a minor impact on the overall elliptic curve operations.

Table 2 also contains timing estimates for some elliptic curve operations.
These estimates were calculated by adding the times needed for the various
suboperations. For the exponentiation (i.e., the repeated elliptic curve group op-
eration), a simple double-and-add/subtract algorithm was assumed. With this
algorithm, 176 doublings and on average 59 additions/subtractions are needed
for one exponentiation.

The figures in table 2 show a small but significant advantage for the represent-
ation of the field elements as polynomials over GF(2'¢). However, the proportions
might change and even be reversed depending on the implementation, computer
platform, field size, optimization level, etc. In addition to the possible speed gain,
the routines for this alternative representation tend to be more readable and less
error prone than for standard basis.

7 Conclusion

We have presented a software implementation of basic arithmetic operations in
finite fields of characteristic 2. We have shown that other representations than

Table 2. Times for basic operations on polynomials over GF(2) and over GF(2'°).
The lengths of the polynomials are suited for field operations in GF(2'"") and GF(2'7¢)
respectively. The tests were run on a Pentium/133 based PC using the WATCOM 10.6
ANSI-C compiler.

standard basis | pol. over GF(2'%)
mult. 177/176 bits x 177/176 bits 71.8 ps 62.7 ps
inversion 177/176 bits 225 ps 160 us
mod. red. 353/351 bits to 177/176 bits 8.1 us 1.8 ps
squaring 177/176 bits 2.7 us 5.9 us
addition 177/176 bits 1.1 ps 1.2 ps
EC addition (est.) 404 ps 306 pus
EC doubling (est.) 411 ps 309 us
EC exponentiation 177 bit exponent (est.) 96 ms 72 ms

standard basis and (optimal) normal basis can be used and can have some im-
portant benefits. An interesting result is that the almost inverse algorithm offers
no advantages for calculating inverses of polynomials over a subfield larger than

GF(2).

Acknowledgment

We would like to thank R. Schroeppel for helpful comments on his Crypto’95

paper.

References

[AMV93] G.B. Agnew, R.C. Mullin and S.A. Vanstone, “An implementation of el-
liptic curve cryptosystems over Fyiss,” IEEE Journal on Selected Areas
in Communications, Vol. 11, no. 5 (June 1993), pp. 804-813.

[BCH93] H. Brunner, A. Curiger and M. Hofstetter, “On computing multiplicative
inverses in GF(2"),” IEEE Transactions on Computers, Vol. 42, no. 8
(1993), pp. 1010-1015.

[DD95] E. De Win and P. De Gersem, Studie en implementatie van arithmetische
bewerkingen in GF(2"), Master Thesis K.U.Leuven, 1995. (in Dutch)

[HMV92] G. Harper, A. Menezes and S. Vanstone, “Public-key cryptosystems with
very small key lengths,” Advances in Cryptology, Proc. Eurocrypt’92,
LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 163-173.

[K87] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,

Vol. 48, no. 177 (1987), pp. 203-209.

[LM95] R. Lercier and F. Morain, “Counting the number of points on el-
liptic curves over finite fields: strategies and performances,” Ad-
vances in Cryptology, Proc. Eurocrypt’95, LNCS 921, L.C. Guillou and
J.J. Quisquater, Eds., Springer-Verlag, 1995, pp. 79-94.

[LN83] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading,
Mass., 1983.

[M93] A. Menezes, FElliptic curve public key cryptosystems, Kluwer Academic
Publishers, 1993.

[M85] V.S. Miller, “Use of elliptic curves in cryptography,” Advances in Crypto-

logy, Proc. Crypto’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag,
1985, pp. 417-426.

[MOVWS88] R. Mullin, I. Onyszchuk, S. Vanstone and R. Wilson, “Optimal normal
bases in GF(p™),” Discrete Applied Mathematics, Vol. 22 (1988/89),
pp. 149-161.

[MV96] A. Menezes and S. Vanstone, “Standard for RSA, Diffie-Hellman and re-
lated public key cryptography,” Working draft of IEEE P1363 Standard,
Elliptic Curve Systems, February 15, 1996.

[PHTS] S. Pohlig and M. Hellman, “An improved algorithm for computing logar-
ithms over GF(p) and its cryptographic significance,” IEEE Transactions
on Information Theory, Vol. 24 (1978), pp. 106-110.

[S85] R. Schoof, “Elliptic curves over finite fields and the computation of square
roots mod p,” Mathematics of Computation, Vol. 44 (1985), pp. 483-494.

[SO0S95] R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key ex-
change with elliptic curve systems,” Advances in Cryptology, Proc.
Crypto’95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995,
pp. 43-56.

[V96] S. Vandenberghe, Snelle basisbewerkingen voor publieke sleutelsystemen
gebaseerd op elliptische curven over GF(2"), Master Thesis K.U.Leuven,
1996. (in Dutch)

This article was processed using the ITEX macro package with LLNCS style

