
 Open access Book Chapter DOI:10.1007/BFB0034836

A Fast Software Implementation for Arithmetic Operations in GF(2n)
— Source link

Erik De Win, Antoon Bosselaers, Servaas Vandenberghe, Peter De Gersem ...+1 more authors

Institutions: Katholieke Universiteit Leuven

Published on: 03 Nov 1996 - International Cryptology Conference

Topics: Normal basis, Finite field, Trinomial, Elliptic curve and Field (mathematics)

Related papers:

 Fast Key Exchange with Elliptic Curve Systems

 Elliptic curve cryptosystems

 Use of Elliptic Curves in Cryptography

 Efficient Algorithms for Elliptic Curve Cryptosystems

 Elliptic Curves in Cryptography

Share this paper:

View more about this paper here: https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-
z648i9t00c

https://typeset.io/
https://www.doi.org/10.1007/BFB0034836
https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://typeset.io/authors/erik-de-win-51u6w9i0f5
https://typeset.io/authors/antoon-bosselaers-1pt87bp53w
https://typeset.io/authors/servaas-vandenberghe-59acupus6g
https://typeset.io/authors/peter-de-gersem-20ezkipmtd
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/international-cryptology-conference-2zifzhcu
https://typeset.io/topics/normal-basis-344ispph
https://typeset.io/topics/finite-field-1a8kh9h8
https://typeset.io/topics/trinomial-3p950o3u
https://typeset.io/topics/elliptic-curve-2k716h3k
https://typeset.io/topics/field-mathematics-cke0zfff
https://typeset.io/papers/fast-key-exchange-with-elliptic-curve-systems-2wlwyd64ld
https://typeset.io/papers/elliptic-curve-cryptosystems-2ur87i8agx
https://typeset.io/papers/use-of-elliptic-curves-in-cryptography-credwc2ehh
https://typeset.io/papers/efficient-algorithms-for-elliptic-curve-cryptosystems-42dogxuqmx
https://typeset.io/papers/elliptic-curves-in-cryptography-vslnjgj2jf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://twitter.com/intent/tweet?text=A%20Fast%20Software%20Implementation%20for%20Arithmetic%20Operations%20in%20GF(2n)&url=https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c
https://typeset.io/papers/a-fast-software-implementation-for-arithmetic-operations-in-z648i9t00c

A Fast Software Implementation forArithmetic Operations in GF(2n) (PREPRINT)Erik De Win?, Antoon Bosselaers, Servaas Vandenberghe,Peter De Gersem?, Joos VandewalleKatholieke Universiteit Leuven, ESAT-COSICK. Mercierlaan 94, B-3001 Heverlee, Belgiumtel. +32-16-32.10.50, fax. +32-16-32.19.86ferik.dewin,antoon.bosselaers,servaas.vandenberghe,peter.degersem,joos.vandewalleg@esat.kuleuven.ac.beAbstract. We present a software implementation of arithmetic opera-tions in a �nite �eld GF(2n), based on an alternative representation ofthe �eld elements. An important application is in elliptic curve crypto-systems. Whereas previously reported implementations of elliptic curvecryptosystems use a standard basis or an optimal normal basis to per-form �eld operations, we represent the �eld elements as polynomials withcoe�cients in the smaller �eld GF(216). Calculations in this smaller �eldare carried out using pre-calculated lookup tables. This results in rathersimple routines matching the structure of computer memory very well.The use of an irreducible trinomial as the �eld polynomial, as was pro-posed at Crypto'95 by R. Schroeppel et al., can be extended to this rep-resentation. In our implementation, the resulting routines are slightlyfaster than standard basis routines.1 IntroductionElliptic curve public key cryptosystems are rapidly gaining popularity [M93].The use of the group of points of an elliptic curve in cryptography was �rstsuggested by Victor Miller [M85] and Neal Koblitz [K87]. The main advantageof using this particular group is that its discrete logarithm problem seems tobe much harder than in other candidate groups (e.g., the multiplicative groupof a �nite �eld). The reason is that the various subexponential algorithms thatexist for these groups up to now cannot be applied to elliptic curves. The bestknown algorithm for computing logarithms on a non-supersingular (see [M93])elliptic curve is the Pohlig-Hellman attack [PH78]. Because of the di�culty of thediscrete logarithm problem, the length of blocks and keys can be considerablysmaller, typically about 200 bits.Although the group of points of an elliptic curve can be de�ned over any �eld,the �nite �elds GF(2n) of characteristic 2 are of particular interest for crypto-systems, because they give rise to very e�cient implementations in both hardware? N.F.W.O. research assistant, sponsored by the National Fund for Scienti�c Research(Belgium).

(e.g., [AMV93]) and software (e.g., [HMV92] and [SOOS95]). The group opera-tion consists of a number of elementary arithmetic operations in the underlying�eld: addition/subtraction, squaring, multiplication, and inverse calculation. Thespeed with which these elementary operations can be executed is a crucial factorin the throughput of encryption/decryption and signature generation/veri�cation.To do calculations in a �nite �eld GF(2n), the �eld elements are representedin a basis. Most implementations use either a standard basis or an optimal normalbasis. In a standard basis, �eld elements are represented as polynomials of theform a0+a1x+� � �+an�1xn�1, where all ai are elements of GF(2), i.e., they are 0or 1, and addition is done modulo 2. Field operations on these elements consistof operations on polynomials, e.g., a �eld multiplication can be calculated as amultiplication of polynomials followed by a reduction of the result modulo a �xedirreducible polynomial of degree n. In a normal basis an element is representedas b0� + b1�2 + b2�22 + � � � + bn�1�2n�1 , where � is a �xed element of the�eld and all bi are elements of GF(2). A normal base allows for a very fastsquaring; multiplication is more complex than in standard basis, but this does notdeteriorate e�ciency if an optimal normal basis [MOVW88] is used. The optimalnormal basis representation seems to be more appropriate for hardware, but thefastest software implementations that have been reported (e.g., [SOOS95]) use astandard basis.The implementation presented in this paper uses a third representation of�eld elements that has some advantages in software. Before introducing this rep-resentation in Sect. 3, we describe elliptic curve operations in a little more detailin Sect. 2. In Sect. 4 we discuss �eld operations in the new representation andwe compare them to standard basis in Sect. 5. We conclude the paper with sometiming results.Part of the results in this paper are based on [DD95] and [V96].2 The Elliptic Curve Group OperationAn elliptic curve is the set of solutions (x; y) of a bivariate cubic equation over a�eld. In the context of public key cryptosystems, the �eld is often GF(2n) and theequation is of the form y2+xy = x3+ax2+ b, where a and b are elements of the�eld and b 6= 0. An \addition"-operation can be de�ned on the set of solutionsif the point at in�nity O is added to this set. Let P = (x1; y1) be an elementwith P 6= O, then the inverse of P is �P = (x1; x1 + y1). Let Q = (x2; y2) be asecond element with Q 6= O and Q 6= �P then the sum P +Q = (x3; y3) can becalculated as (see e.g., [SOOS95]):x3 = �2 + �+ x1 + x2 + ay3 = �(x1 + x3) + x3 + y1� = y1 + y2x1 + x2 :

These formulas are valid only if P 6= Q; for P = Q they are a little di�erent:x3 = �2 + �+ ay3 = x21 + (�+ 1)x3� = x1 + y1x1 :The point at in�nity O serves as the identity element. A multiple of P , i.e., Pmultiplied by a natural number k, can be calculated by repeated doubling andadding. The inverse operation of this, i.e., deriving k when P and kP are given,is the elliptic curve discrete log problem, which is considered to be a very hardoperation, since its running time is approximately O(2n=2).The equations show that an elliptic curve addition can be calculated with anumber of additions, multiplications, squarings, and inversions in the underlying�eld GF(2n). We will see that the addition and squaring of elements of GF(2n)are simple operations and that they require negligible time relative to the multi-plication and inversion. Thus, doubling a point or adding two points on an ellipticcurve takes approximately two �eld multiplications and one �eld inversion.In an actual implementation of an elliptic curve cryptosystem, other opera-tions are needed as well. E.g., a quadratic equation has to be solved when pointcompression [MV96] is applied. Some cryptographic algorithms require the orderof the group to be known, which can be calculated by Schoof's algorithm [S85] orone of its improved versions [LM95]. However, we will concentrate in this paperon basic arithmetic operations in GF(2n): addition, squaring, multiplication, andinversion.3 An Alternative Representation for the Field ElementsIt is well known that a �eld can be considered as a vector space over one ofits sub�elds. The proper sub�elds of GF(2n) are the �elds GF(2r), with rjnand 0 < r < n. Most implementations take r = 1, i.e., they choose a basisf
0;
1; : : : ;
n�1g � GF(2n) and the �eld elements are represented as a0
0 +a1
1 + � � � + an�1
n�1, where all ai 2 GF(2). The software implementations inthis kind of bases are characterized by a large number of bitwise operations,e.g., testing a single bit and shifting a word over a number of bits. Althoughthese operations are available, standard microprocessors are more suited for wordoperations.Generally, r can be chosen to be any divisor of n. In [HMV92] a polynomialbasis over GF(28) is suggested. We examined the slightly more general casewhere r is a multiple of 8. This limits the possible values of n to multiples of r,but if r is not too large, this causes no practical limitation.In principle there are no restrictions on the kind of basis that is used (polyno-mial, normal : : :). Although more work has to be done on this, we believe that apolynomial basis is most suited because a number of the advantages of (optimal)normal bases disappear when r > 1.

If we de�ne m = n=r, then an element of GF(2n) can be represented as apolynomial �0 + �1x + � � � + �m�1xm�1, where the �i are elements of GF(2r).An important bene�t of this basis is that each coe�cient is represented by rbits and �ts nicely in a computer word if r = 8, 16, or 32 (or even 64 on 64-bitprocessors). Arithmetic with these polynomials is identical to that with ordinarypolynomials, except that operations on the coe�cients are carried out in GF(2r).To calculate in GF(2r), a basis has to be chosen too, but this can be simpli�edby the use of lookup tables. After choosing a particular basis for GF(2r), we lookfor a generator
 and calculate all pairs (�; i) such that � =
i (� 2 GF(2r)nf0g;0 � i < 2r�1). These pairs are stored in two tables: a log-table sorted on � andan alog-table sorted on i. Each of them takes about 2r words of r bits, resultingin a total memory requirement of about 512 bytes for r = 8 and 256 Kbytes forr = 16. The option r = 32 (and a fortiori r = 64) is excluded because of excessivememory needs. These tables can be used to e�ciently calculate in GF(2r), e.g.,the product of two elements �; � 2 GF(2r) n f0g is�� = alog[(log[�] + log[�]) mod (2r � 1)] ;and also an inversion operation can be calculated with only two table lookups:��1 = alog[� log[�] mod (2r � 1)] :If we want polynomials to represent �nite �eld elements, all operations haveto be done modulo a �xed irreducible polynomial of degree m. In principle thispolynomial can also have coe�cients in GF(2r), but if we can �nd an irreduciblepolynomial with coe�cients in GF(2) � GF(2r), many table lookups can be savedin the reduction operation. The search for such an irreducible polynomial can besimpli�ed by using the fact that an m-th degree polynomial that is irreducibleover GF(2), is also irreducible over GF(2r) if gcd(m; r) = 1 [LN83, p. 107].This limits m to odd numbers because r is a power of 2. We will show that thereduction operation can be speeded up even further if an irreducible trinomial isused [SOOS95], where the requirements for the middle term are a little di�erentthan in [SOOS95]. These special irreducible polynomials are easy to �nd, Table 1lists all irreducible trinomials 1 + xt + xm with 7 � m � 15 and t � bm=2c.34 Field OperationsIn a polynomial basis, �eld operations are reduced to operations on polynomials.E.g., a �eld multiplication consists of a multiplication of the two polynomialsrepresenting the multiplicands, followed by a reduction of the result modulo theirreducible polynomial. Therefore, we will consider mainly operations on polyno-mials.3 It is easy to show that 1 + xt + xm is irreducible i� 1 + xm�t + xm is irreducible.

Table 1. List of all irreducible trinomials 1+xt+xm with 7 � m � 15 and t � bm=2c.The corresponding �eld size is given for r = 16.degree �eld size trinomial7 112 1 + x+ x71 + x3 + x79 144 1 + x+ x91 + x4 + x911 176 1 + x2 + x1115 240 1 + x+ x151 + x4 + x151 + x7 + x1517 272 1 + x3 + x171 + x5 + x171 + x6 + x174.1 Representation of Polynomials in MemoryIt is natural to store the coe�cients of a polynomial in consecutive r-bit wordsof computer memory. To keep the routines as general as possible, we also usedone word to store the length of the polynomial. In summary, a k-th degree poly-nomial A is stored in an array of length k + 2, where the �rst array-element A0contains the number of coe�cients k + 1 (rather than the degree k), A1 con-tains the constant coe�cient, : : : and Ak+1 = AA0 contains the coe�cient of thehighest power of x. A zero polynomial is represented by A0 = 0.4.2 AdditionAddition in a �nite �eld with characteristic 2 is easy: just add the correspond-ing bits modulo 2. Note that addition and subtraction modulo 2 are the sameoperations; they both correspond to a binary exclusive or (exor, �) operation.4.3 MultiplicationMultiplication of polynomials can be done using the shift-and-add method, wherethe addition is replaced by an exor. Below is an algorithm that computes theproduct of A and B and stores it in C (the notation of Sect. 4.1 is used).1 if A0 = 0 or B0 = 0 then2 C0 = 03 else f

4 initialize C to zero5 for i = 1 to A0 do6 if Ai 6= 0 then7 for j = 1 to B0 do8 if Bj 6= 0 then9 Ci+j�1 = Ci+j�1 � alog[(log[Ai] + log[Bj]) mod (2r � 1)]10 C0 = A0 +B0 � 111 gThis is a very simple algorithm, although it might look a little complicated withthe tests Ai 6= 0 and Bj 6= 0, which are necessary because the log of zerois unde�ned. No bit manipulations are needed. The complexity is linear in theproduct of the lengths of the multiplicands.A number of optimizations are possible in an actual implementation. E.g.,when the test in line 6 is successful, log[Ai] can be stored in a register duringthe execution of the inner loop. Also, the log's of the words of B can be storedin a temporary array at the beginning of the algorithm to reduce the number oftable lookups in the inner loop.4.4 SquaringThe square of a polynomial with coe�cients in GF(2r) can be calculated in amore e�cient way than multiplying it by itself. The reason is that the square ofa sum equals the sum of the squares because the cross-term vanishes modulo 2.The square of a polynomial is then given by m�1Xi=0 �ixi!2 = m�1Xi=0 �2i x2i :This results in the following algorithm to compute B = A2.if A0 = 0 thenB0 = 0else ffor i = 1 to A0 � 1 do fif Ai 6= 0 thenB2i�1 = alog[2 log[Ai] mod (2r � 1)]elseB2i�1 = 0B2i = 0gB2A0�1 = alog[2 log[AA0] mod (2r � 1)]B0 = 2A0 � 1gThe complexity of this algorithm is linear in the length of the argument. Forpractical lengths it is much faster than multiplication.

4.5 Modular ReductionIn most cases, the result of a polynomial multiplication or squaring has to bereduced modulo an irreducible polynomial. In general, a reduction of a poly-nomial A modulo a polynomial B will cancel the highest power of A, say Ai,by adding (or subtracting) a multiple of B of the form �Bxi�B0 to A, where� = AiB�1B0 . This operation is repeated for decreasing values of i, until the de-gree of A is smaller than the degree of B.A much simpler algorithm is obtained when B is a trinomial with coe�cientsin GF(2), because the calculation of � and �B is considerably simpli�ed. Theresulting algorithm is given below. A is the polynomial to be reduced, m is thedegree, and t is the middle term of the irreducible trinomial, i.e., all Bi are zero,except for B1, Bt+1 and Bm+1, which are 1.for i = A0 downto m0 do fAi�m = Ai�m �AiAi+t�m = Ai+t�m �AiAi = 0gupdate A0Each time the loop is executed, r bits of A are cancelled. If the word length of theprocessor, denoted by w, is larger than r, then it is more e�cient to eliminate wbits at the same time, but this induces some restrictions on the trinomial. E.g.,if r = 16 and w = 32, Ai and Ai�1 can be eliminated in one loop-operationif there is no overlap between Ai�1 and Ai+t�m. This condition is satis�ed ifm� t � w=r.4.6 InversionIn general B = A�1 modM i� there exists an X such that BA+XM = 1, whereA, B, X and M are polynomials in our case. B (and also X) can be computedwith an extension of Euclid's algorithm for �nding the greatest common divisor,a high level description of which is given below (deg() denotes the degree of apolynomial).initialize polynomials B = 1, C = 0, F = A and G =M1 if deg(F) = 0 then return B=F12 if deg(F) < deg(G) then exchange F ,G and exchange B,C3 j = deg(F)� deg(G), � = FF0=GG04 F = F + �xjG, B = B + �xjC5 goto 1This algorithm maintains the invariant relationships F = BA + XM and G =CA+YM (there is no need to store X and Y). In each iteration the degree of thelonger of F and G is decreased by adding an appropriate multiple of the shorter.

The invariant relationships are preserved by performing the same operation on Band C. These operations are repeated until F or G is a constant polynomial.In step 4 of this algorithm, the degree of F is decreased by at least one unit,but there is also a chance that the second-highest power of x is cancelled in F ,etc. If all Fi can be considered as random, it can be shown that the degree of Fis lowered by q=(q � 1) on average, where q = 2r is the size of the sub�eld.This number equals 2 for a standard basis, but quickly approximates 1 for largersub�elds. On the other hand, for �xed n, convergence is faster for larger r, becausein each step the length of A is decreased by about r bits. Therefore this algorithmis faster in a polynomial basis over GF(2r) than in a standard basis.In [SOOS95] the almost inverse algorithm is proposed to calculate inverses instandard basis. It �nds a polynomial B and an integer k satisfying BA+XM =xk. The inverse can be found by dividing xk into B modulo M . The algorithmcan be generalized to polynomials over larger sub�elds. A high level descriptionis given below.initialize integer k = 0, and polynomials B = 1, C = 0, F = A, G =M0 while F contains factor x do F = F=x, C = Cx, k = k + 11 if deg(F) = 0 then return B=F1, k2 if deg(F) < deg(G) then exchange F ,G and exchange B,C3 � = F0=G04 F = F + �G, B = B + �C5 goto 0The algorithm maintains the invariant relationships xkF = BA+XM and xkG =CA+YM (again, there is no need to store X and Y). Line 0 removes any factorx from F while preserving the invariant relationships. Note that after line 0neither F nor G have a factor x. Line 2 makes sure that deg(F) � deg(G). Line 4is crucial: it adds a multiple of G to F (and the same multiple of C to B andimplicitly the same multiple of Y to X to preserve the invariant relationships),such that F has a factor x again, which will be extracted in the next loop.When analyzing the almost inverse algorithm, we observe that its behaviour isvery similar to the Euclidean algorithm given above. The main di�erence is thatit cancels powers of x from lower degree to higher degree, whereas the Euclideanalgorithmmoves from higher degree to lower degree. In standard basis, the formerhas two important bene�ts. Firstly, many bitwise shift operations are saved inline 4 because there is no multiplication by xj . Secondly, if deg(F) = deg(G)before line 4, which happens in roughly 20 % of the cases, the addition of G willdecrease the degree of F . This reduces the number of iterations and hence theexecution time.These two advantages of the almost inverse algorithm are irrelevant forpolynomials over larger sub�elds: there are no bitwise shift operations and, ifdeg(F) = deg(G), the probability that the degree of F is decreased in line 4 isvery small (approximately 1=q). The somewhat surprising conclusion is that theEuclidean algorithm and the almost inverse algorithm have a comparable speed

for polynomials over GF(2r), the former is even slightly more e�cient becausethere is no division by xk.5 Comparison with Standard BasisAn important advantage of working with coe�cients in GF(2r) is that no bitoperations are needed. A disadvantage is that the word size is limited because ofthe memory requirements for the lookup tables. This limitation can be bypassedin the modular reduction and in the �nal division step after the almost inversealgorithm, but for the multiplication and the almost inverse algorithm, whichrepresent the majority of the total execution time of an elliptic curve addition,we see no obvious way to handle w bits in one step. Therefore, an increase inprocessor word size is likely to result in a larger speed gain for standard basisimplementations than for implementations based on polynomials over GF(2r).We compare our multiplication algorithm in a little more detail to the basicmultiplication algorithm in standard basis given below. We use << and >> todenote a bitwise shift-operation to the left and to the right respectively, and welet the line numbers start from 21 to avoid confusion with the multiplicationalgorithm of Sect. 4.3.21 if A0 = 0 or B0 = 0 then22 C0 = 023 else f24 for i = 1 to A0 do25 for j = 0 to w � 1 do26 if j-th bit of Ai is 1 then f27 lower = B1 << j28 higher = B1 >> (w � j)29 Ci = Ci � lower30 for k = 2 to B0 do f31 Ck+i�1 = Ck+i�1 � higher32 lower = Bk << j33 higher = Bk >> (w � j)34 Ck+i�1 = Ck+i�1 � lower35 g36 CB0+i = CB0+i � lower37 g38 update C039 gThe loop formed by lines 24 and 25 is iterated n times. The test on line 26 issuccessful in 50 % of the cases on average, such that the loop on lines 30 to 35 isexecuted n=2 times. This loop runs over n=w values, such that lines 31 to 34 areexecuted n2=(2w) times. In the multiplication algorithm of Sect. 4.3, the loop online 5 is iterated n=r times and the test on line 6 is almost always true (i.e., withprobability (2r � 1)=2r). The same reasoning can be repeated for lines 7 and 8,

such that the inner loop on line 9 is executed about (n=r)2 times. So we can stateapproximately that the algorithm in Sect. 4.3 will be faster if executing line 9 oncetakes less time than executing lines 31 to 34 r2=(2w) times (for r = 16 and w = 32this factor equals 4). Which one is faster depends heavily on the programminglanguage, compiler, microprocessor, and cache size. Similar comparisons can bemade for the inversion (the other �eld operations constitute only a negligible partof the execution time of an elliptic curve operation).Note that the standard basis algorithm given above can be optimized further.One important optimization, which we used for our timings, is to precalculate atable of shifted versions of B to avoid the shift operations in the inner loop.6 TimingsWe timed our routines for r = 8 and r = 16. For r = 8 the lookup tablestake only 512 bytes and will �t in the �rst-level cache memory of any presentday microprocessor; for r = 16 this is not the case, but the number of words issmaller for �xed n. The latter was considerably faster in our tests, therefore wewill only give timings for this case.The routines were written in ANSI-C. We used theWATCOMC 10.6 compilerand executed the tests in protected mode on a Pentium/133 based PC. Table 2gives detailed timing results for GF(2177) in standard basis and GF(2176) in apolynomial basis over GF(216). We used an irreducible trinomial for the modularreduction and inversion. For standard basis, the word size w equals 32 bits.The listed �gures are for the fastest routines, e.g., the almost inverse algorithmfor standard basis and the extended Euclidean algorithm for polynomials overGF(216). All routines have a comparable optimization level, although we put alittle less e�ort in the reduction, squaring and addition routines, since they havea minor impact on the overall elliptic curve operations.Table 2 also contains timing estimates for some elliptic curve operations.These estimates were calculated by adding the times needed for the varioussuboperations. For the exponentiation (i.e., the repeated elliptic curve group op-eration), a simple double-and-add/subtract algorithm was assumed. With thisalgorithm, 176 doublings and on average 59 additions/subtractions are neededfor one exponentiation.The �gures in table 2 show a small but signi�cant advantage for the represent-ation of the �eld elements as polynomials over GF(216). However, the proportionsmight change and even be reversed depending on the implementation, computerplatform, �eld size, optimization level, etc. In addition to the possible speed gain,the routines for this alternative representation tend to be more readable and lesserror prone than for standard basis.7 ConclusionWe have presented a software implementation of basic arithmetic operations in�nite �elds of characteristic 2. We have shown that other representations than

Table 2. Times for basic operations on polynomials over GF(2) and over GF(216).The lengths of the polynomials are suited for �eld operations in GF(2177) and GF(2176)respectively. The tests were run on a Pentium/133 based PC using the WATCOM 10.6ANSI-C compiler. standard basis pol. over GF(216)mult. 177/176 bits � 177/176 bits 71.8 �s 62.7 �sinversion 177/176 bits 225 �s 160 �smod. red. 353/351 bits to 177/176 bits 8.1 �s 1.8 �ssquaring 177/176 bits 2.7 �s 5.9 �saddition 177/176 bits 1.1 �s 1.2 �sEC addition (est.) 404 �s 306 �sEC doubling (est.) 411 �s 309 �sEC exponentiation 177 bit exponent (est.) 96 ms 72 msstandard basis and (optimal) normal basis can be used and can have some im-portant bene�ts. An interesting result is that the almost inverse algorithm o�ersno advantages for calculating inverses of polynomials over a sub�eld larger thanGF(2).AcknowledgmentWe would like to thank R. Schroeppel for helpful comments on his Crypto'95paper.References[AMV93] G.B. Agnew, R.C. Mullin and S.A. Vanstone, \An implementation of el-liptic curve cryptosystems over F2155 ," IEEE Journal on Selected Areasin Communications, Vol. 11, no. 5 (June 1993), pp. 804{813.[BCH93] H. Brunner, A. Curiger and M. Hofstetter, \On computing multiplicativeinverses in GF(2n)," IEEE Transactions on Computers, Vol. 42, no. 8(1993), pp. 1010{1015.[DD95] E. De Win and P. De Gersem, Studie en implementatie van arithmetischebewerkingen in GF(2n), Master Thesis K.U.Leuven, 1995. (in Dutch)[HMV92] G. Harper, A. Menezes and S. Vanstone, \Public-key cryptosystems withvery small key lengths," Advances in Cryptology, Proc. Eurocrypt'92,LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 163{173.[K87] N. Koblitz, \Elliptic curve cryptosystems," Mathematics of Computation,Vol. 48, no. 177 (1987), pp. 203{209.

[LM95] R. Lercier and F. Morain, \Counting the number of points on el-liptic curves over �nite �elds: strategies and performances," Ad-vances in Cryptology, Proc. Eurocrypt'95, LNCS 921, L.C. Guillou andJ.J. Quisquater, Eds., Springer-Verlag, 1995, pp. 79{94.[LN83] R. Lidl and H. Niederreiter, Finite �elds, Addison-Wesley, Reading,Mass., 1983.[M93] A. Menezes, Elliptic curve public key cryptosystems, Kluwer AcademicPublishers, 1993.[M85] V.S. Miller, \Use of elliptic curves in cryptography," Advances in Crypto-logy, Proc. Crypto'85, LNCS 218, H.C. Williams, Ed., Springer-Verlag,1985, pp. 417{426.[MOVW88] R. Mullin, I. Onyszchuk, S. Vanstone and R. Wilson, \Optimal normalbases in GF(pn)," Discrete Applied Mathematics, Vol. 22 (1988/89),pp. 149{161.[MV96] A. Menezes and S. Vanstone, \Standard for RSA, Di�e-Hellman and re-lated public key cryptography," Working draft of IEEE P1363 Standard,Elliptic Curve Systems, February 15, 1996.[PH78] S. Pohlig and M. Hellman, \An improved algorithm for computing logar-ithms over GF(p) and its cryptographic signi�cance," IEEE Transactionson Information Theory, Vol. 24 (1978), pp. 106{110.[S85] R. Schoof, \Elliptic curves over �nite �elds and the computation of squareroots mod p," Mathematics of Computation, Vol. 44 (1985), pp. 483{494.[SOOS95] R. Schroeppel, H. Orman, S. O'Malley and O. Spatscheck, \Fast key ex-change with elliptic curve systems," Advances in Cryptology, Proc.Crypto'95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995,pp. 43{56.[V96] S. Vandenberghe, Snelle basisbewerkingen voor publieke sleutelsystemengebaseerd op elliptische curven over GF(2n), Master Thesis K.U.Leuven,1996. (in Dutch)

This article was processed using the LATEX macro package with LLNCS style

