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Abstract

We present in this paper an algorithm that is capable of clustering images taken by an unknown number of unknown

digital cameras into groups, such that each contains only images taken by the same source camera. It first extracts a

sensor pattern noise (SPN) from each image, which serves as the fingerprint of the camera that has taken the image.

The image clustering is performed based on the pairwise correlations between camera fingerprints extracted from

images. During this process, each SPN is treated as a random variable and a Markov random field (MRF) approach is

employed to iteratively assign a class label to each SPN (i.e., random variable). The clustering process requires no a

priori knowledge about the dataset from the user. A concise yet effective cost function is formulated to allow different

“neighbors” different voting power in determining the class label of the image in question depending on their

similarities. Comparative experiments were carried out on the Dresden image database to demonstrate the

advantages of the proposed clustering algorithm.
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1 Introduction
Nowadays, digital imaging devices, especially mobile

phones with built-in cameras, have become an essential

part of modern life. They enable us to record every detail

of our life anytime and anywhere. Meanwhile, the rise of

social media, such as Facebook, Twitter, and Instagram,

has fostered and stimulated our interest in sharing pho-

tos and videos of life moments over social networks using

mobile imaging devices. On the one hand, social media

affords us a new way to express friendship, intimacy, and

community. But on the other hand, the difficulty of veri-

fying the profiles or identities of users on social networks

also gives rise to the cyber crime.

A typical circumstance is that a number of images are

collected under proper legal procedures from social net-

works for forensic analysis, but the devices which have

been used to take these images are not available. If those

images can be clustered into a number of groups, each

including the images acquired by the same camera, the

forensic investigators will be able to link the images to

particular devices and in a better position to associate
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different social media accounts belonging to a person of

interest. We refer to this task as source-oriented image

clustering. This can be particularly useful in a variety of

forensic cases, e.g., identifying fake user profiles, find-

ing stolen camera devices, or defending against Internet

defamation. Fortunately, with the advances in multime-

dia forensics, we are able to extract “device fingerprints”

from images and videos and trace back to their source

device. By resorting to device fingerprints extracted from

images, source-oriented image clustering can be divided

into two main sequential operations: the extraction of

device fingerprint from images followed by an image clus-

tering operation based on the device fingerprints. The

main challenges in this scenario are:

• The investigator does not have the cameras that have

taken the photos to generate quality reference device

fingerprint.
• No prior knowledge about the number and types of

the cameras are available.
• Given the sheer number of photos, analyzing each

image in its full size is computationally prohibitive.
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1.1 The challenges of source-oriented image clustering

and related works

There are many factors that affect the performance of

the clustering system. One is the accuracy of the finger-

prints extracted from images. Various forms of device

fingerprints such as sensor pattern noise (SPN) [1–12],

camera response function [13], re-sampling artifacts [14],

color filter array (CFA) interpolation artifacts [15, 16],

JPEG compression [17], and lens aberration [12, 18]

have been proposed in recent years. Other device and

image attributes such as binary similarity measures, image

quality measures, and higher order wavelet statistics

have also been adopted for identifying source imaging

devices [19–22]. While many methods [13–16] make

specific assumptions in their applications, SPN-based

methods [1–12] do not require such assumptions to

be satisfied and thus have drawn much more atten-

tion. Another merit of SPN is that it is unique to each

device, which means it is capable of differentiating indi-

vidual devices of the same model [1, 3, 5, 11]. These

merits make SPN a good candidate for various digital

forensic applications.

Another factor is the system’s effectiveness in clustering

images based on device fingerprints. The main objective

in clustering applications is to group samples into clusters

of similar features (e.g., the SPNs). Among a wide variety

of methods, k-means [23, 24] and fuzzy c-means [25–27]

have been intensively employed in various applications.

However, classical k-means and fuzzy c-means clustering

methods rely on the user to provide the number of clus-

ters and initial centroids. Moreover, they are sensitive to

outliers, and the computational complexities are very high

for high-dimensional data, which make them unsuitable

for clustering high-dimensional camera fingerprints.

The difficulty of specifying an appropriate cluster num-

ber also exists in graph clustering-based methods, such as

[28–30]. In [31], the camera fingerprints clustering is for-

mulated as a weighted graph clustering problem, where

SPNs are considered as the vertices in a graph, while

the weight of each edge is represented by the correlation

between the SPN pair connected by the edge. A k-class

spectral clustering algorithm [32] is employed to group

the vertices into a number of partitions. To determine the

optimal cluster number, the same spectral clustering algo-

rithm is repeated for different value of k until the smallest

size of the resultant clusters equals 1, i.e., one singleton

cluster is generated. However, it is easy to form single-

ton clusters when some SPNs are severely contaminated

by other interferences. So the feasibility of such manner of

determining the optimal cluster number is still an issue.

To work without knowing the number of clusters, the

agglomerative hierarchical clustering algorithms [33, 34]

were adopted to cluster SPNs. Starting with the pair-

wise correlation matrix, the algorithms initially consider

each SPN as a cluster and iteratively merge the two most

similar clusters according to the average linkage criterion.

At each iteration, an overall silhouette coefficient, which

measures the cohesion inside clusters and the separation

among clusters, is calculated to measure the quality of

partition. This process stops when all SPNs have been

merged into one cluster and the partition corresponding

to the best clustering quality is deemed as the final par-

tition. These two algorithms are relatively slow, because

their time complexity isO(N2 logN), whereN is the num-

ber of SPNs. Another limitation, which also exists in other

more advanced hierarchical clustering-based algorithms

such as CURE [35], ROCK [36], and CHAMELEON [37],

is that once an object is assigned to a cluster, it will not be

considered again in the ensuing process [38]. In the con-

text of SPN clustering, the misclassification at the earlier

stage is likely to induce error propagation in the succeed-

ing merge and produce large clusters containing SPNs of

different cameras.

Since the intrinsic quality of SPNs depends on many

complex factors [11, 12, 39, 40], the average correlation

between SPNs of one cameramay be significantly different

from that of other cameras. Therefore, SPN-based image

clustering is a typical problem of finding clusters of differ-

ent densities. The classical density-based algorithms, such

as DBSCAN [41] and DENCLUE [42], are not applica-

ble in this scenario, because their density-based definition

of core points cannot identify the core points of varying

density clusters. To overcome this problem, a shared near-

est neighbor (SNN)-based clustering algorithm has been

proposed in [43] to find clusters of different sizes and den-

sities. However, choosing appropriate parameters for the

algorithm is not easy if the data to be clustered is not

well understood.

Considering the fact that the estimation of SPN

improves if more images from the same camera are

involved in the calculation, Bloy [44] presented an ad-hoc

algorithm for clustering images based on SPN. The algo-

rithm starts with selecting two images at random with

their SPN correlation greater than an adaptive thresh-

old that gradually increases as the number SPNs N in

the cluster. The average SPN of this cluster is used as

cluster centroid to attract more images whose SPN cor-

relation with the centroid is greater than the adaptive

threshold. This procedure repeats until the current clus-

ter has grown to a pre-specified size (i.e., 50) or the

entire dataset has been exhausted. If the cluster grows

to the pre-specified size before the entire dataset is

exhausted, a second pass through the dataset is conducted

to include the images with similar SPN into the cluster

without updating the centroid and the threshold. Once

a cluster is formed, the algorithm repeats to form new

clusters until no further clustering is possible. The algo-

rithm allows the threshold to increase, but the adaptive
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threshold is calculated from a quadratic curve, whose

parameters are obtained by fitting the correlation values of

four Canon cameras. However, the threshold’s quadratic

dependence on the number of SPNs is questionable. A

clustering algorithm requires no a priori knowledge about

the nature of the SPNs and the threshold is certainly

more desirable.

To overcome the infeasibility of the manner of deter-

mining the optimal cluster number in [31], Amerini et al.

[45] proposed a blind SPN clustering algorithm based

on normalized cut criterion [46]. Similar to [31], SPNs

are considered as the vertices in a graph and the weight

of each edge measures the similarity between the two

vertices connected by the edge. With the pairwise similar-

ities between SPNs, the graph is bipartitioned recursively

by finding the splitting point that minimizes the corre-

sponding normalized cut. This recursive bipartition ter-

minates when the mean value of intra-cluster weights is

less than a pre-defined threshold Th for all clusters. Th

is experimentally set to the value giving the best aver-

age performance on five datasets in terms of ROC curves.

This normalized cut-based algorithm is fast and was

reported to have better performance than [31] and [33] on

datasets composed of hundreds of images taken by a few

cameras.

More recently, Marra et al. introduced a two-step clus-

tering algorithm in [47]. In the first step, the pairwise

correlation matrix of SPNs is adjusted by subtracting

a constant α = μ0 + 3σ0, where μ0 and σ0 are the

mean and standard deviation, respectively, of the inter-

camera correlations obtained from a training set. Then,

the adjusted correlation matrix is fed into the correla-

tion clustering algorithm [48] to generate a large num-

ber of over-partitioned clusters. While in the second

step, an ad hoc refinement procedure is performed to

progressively merge the clusters generated in the first

step. The refinement step separates the clusters into two

sets, a set of “large” clusters and a set of “small” clus-

ters. If the majority of the SPNs in a small cluster are

similar to (i.e., by comparing to a pre-defined thresh-

old β) the centroid of a large cluster, the small cluster

will be merged into the large cluster and the centroid

will be updated accordingly. This process continues until

no further merge can be performed. This algorithm was

reported to outperform almost uniformly the state-of-

the-art algorithms [47], but it requires all the SPNs to

be retained in the RAM for efficiently updating the cen-

troids of clusters, which makes it unsuitable for relatively

large datasets.

We presented our preliminary study in [49], where each

SPN is treated as a random variable and Markov ran-

dom field (MRF) is used to iteratively update the class

labels. Based on the pairwise correlation matrix, a refer-

ence similarity is determined using the k-means (k = 2)

clustering algorithm and a membership committee, which

consists of the most similar SPNs of each SPN, is estab-

lished. The similarity values and the class labels assigned

to the members of membership committee are used to

estimate the likelihood probability of assigning each class

label to the corresponding SPN. Then, the class label

with the highest probability is assigned to the SPN. This

process terminates when there are no more class label

changes in two consecutive iterations. This algorithm

performs well on small datasets, but its performance dete-

riorates as the size of dataset grows. Moreover, it is very

slow because the likelihood probability involves all the

class labels in the membership committee and has to

be calculated for every SPN in every iteration. The time

complexity is nearly O(N3) in the first iteration, which

makes it computationally prohibitive for large datasets.

Therefore, a faster and more reliable algorithm that can

handle large datasets is desirable for source-oriented

image clustering.

1.2 Our contributions

In view of the aforementioned challenges in the context of

device fingerprint-based image clustering, we conduct an

in-depth study based on the work in [49] and propose a

fast clustering framework for images of unknown sources.

It makes several major contributions:

• First, we propose a fast and reliable algorithm for

clustering camera fingerprints. Aiming at overcoming

the limitations of the work in [49], the proposed

algorithm makes the following improvements: (1)

redefining the similarity in terms of the shared

nearest neighbors; (2) speeding up the calculation of

the reference similarity; (3) refining the

determination of the membership committee; (4)

reducing the complexity of calculations in each

iteration; and (5) accelerating the speed of

convergence. Not only the presentation of the

clustering methodology is more comprehensive and

detailed in this work, but also the proposed algorithm

is much more efficient and reliable than that in [49].
• Secondly, we discuss in detail the related SPN

clustering algorithms, namely the spectral, the

hierarchical, the shared nearest neighbor, the

normalized cut, and our previous MRF-based

clustering methods [49]. These algorithms are

evaluated and compared on real-world databases to

provide insight into the pros and cons of each

algorithm and offer a valuable reference for practical

applications.
• Finally, we evaluate the proposed algorithm on a large

and challenging image database which contains 7400

images taken by 74 cameras, covering 27 camera

models and 14 brands, while the database used in [49]
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includes only six cameras. Furthermore, the quality of

clustering is characterized by F1-measure and

Adjusted Rand Index, which are more suitable for

evaluating clustering results than only the true

positive rate or accuracy used in [31, 33, 34, 49].

1.3 Outline of this paper

The remainder of this work is organized as follows. The

formulation and discussion of the proposed algorithm are

given in Section 2. In Section 3, respectively. The param-

eter selection of the proposed algorithm as well as the

comparison with other related works is presented. Finally,

Section 5 concludes this work.

2 Methods
To facilitate the clustering, the SPN of a small block at

the center of each of the given N images are extracted.

An N × N correlation matrix is established, with one ele-

ment, (i, j), representing the correlation between the SPNs

of image i and j. Then, an alternative similarity matrix

in terms of shared nearest neighbors is constructed from

the correlation matrix. By making the pairwise similarities

available in the matrix, the system does not have to repeat

the similarity calculation when the similarity of the same

pair of images is required again in the iterative clustering

process. Although the number of image classes (cameras)

can be much greater than 2, for each image, there are

only two types of similarity: intra-class and inter-class.

Based on the similarity matrix, each SPN is treated as a

random variable to be assigned a class label, and a refer-

ence similarity r is estimated to serve as a rough boundary

between the intra- and inter-class similarities in order

to encode a cost function using a Markov random field

(MRF). Separating the similarities into intra- and inter-

class similarities enables us to find clusters of different

densities, because the average intra-class similarity indi-

cates the “density” of the cluster that each SPN belongs to.

In the following subsections, we will provide the details of

the proposed algorithm.

2.1 SPN extraction

Given an image I, the following equation is used to extract

the SPN, n, from a block of the size specified by the user

from the center:

n = I − F(I), (1)

where F is the denoising algorithm proposed in [50].

Each SPN is further preprocessed by the Wiener fil-

tering (WF) in the DFT domain [2] to suppress the

non-unique artifacts. Note that the reason we do not

use our recent preprocessing scheme in [11] is that,

the peaks in the DFT spectrum of a single SPN are

not as distinct as those in the spectrum of a clean

reference SPN.

2.2 Establishment of similarity matrix

During the process of clustering, similarities between

SPNs are to be used to determine the class membership

of each image (or SPN). As will be seen in Section 2.3.4,

the process of class label update, which involves the

calculation of similarities between SPNs, has to be iter-

ated until the stop criterion is met. However, repeat-

ing the similarity calculation of the same SPN pairs is

time-consuming. Therefore, the purpose of establishing

an N × N similarity matrix is to calculate the similar-

ity only once for each SPN pair. When a similarity value

is needed at any stage, the value is retrieved from the

similarity matrix. The similarity between any two SPNs

ni and nj is initially measured by the normalized cross

correlation (NCC)

ρij =
(ni − n̄i) · (nj − n̄j)

‖ni − n̄i‖ · ‖nj − n̄j‖
, i, j ∈[ 1,N] , (2)

where ‖ · ‖ is the L2 norm and the mean value is denoted

with a bar. In this way, we establish an N × N correla-

tion matrix ρ, with element ρij indicating the closeness

between SPNs ni and nj. Because of the symmetrical

nature of the correlation matrix and that the elements

(self-correlations) along the diagonal axis is always 1, only

N × (N − 1)/2 correlations need to be calculated.

However, due to the varying qualities of SPNs of dif-

ferent cameras, the average correlation between SPNs of

one camera may be different from that of another cam-

era. As exemplified in Fig. 1a, the average correlation the

class highlighted by the green rectangle is higher than

that of the class highlighted by the blue rectangle. This

problem makes the clustering of SPNs more challeng-

ing. An alternative definition of similarity in terms of

shared nearest neighbors, as proposed in [36, 43, 51],

is a promising way to overcome this problem. Specifi-

cally, the similarity Wij between two SPNs ni and nj is

redefined as

Wij = |N(ni) ∩ N(nj)|, (3)

where N(ni) and N(nj) are, respectively, the κ-nearest

neighbors of ni and nj constructed from the corre-

lation matrix ρ. So Wij measures the number of κ-

nearest neighbors shared by ni and nj. The constructed

similarity matrix in terms of shared nearest neighbors

(SNN) is shown in Fig. 1b, where the divergences of

similarities in different classes have been significantly

reduced. Also note that, even when the SNN similarity

is applied, the intra-class connectivity remains weak for

the images taken by Casio EX-Z150, as highlighted in

the red rectangle. The underlying reason is the irregular

geometric distortions related to the different focal length

settings when capturing different images, as reported

in [52].
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(a) (b)

Fig. 1 Pairwise similarities of 1000 images taken by 25 cameras (each responsible for 40 images). a Correlation matrix ρ . b Similarity matrixW in

terms of shared κ-nearest neighbor (κ = 15)

Procedure 1 f = fastClustering(W ,m)

1: f ← randPerm(N); ⊲ Assign unique random class labels

2: ri ← fastSplit(Wi:, ini, low, high); ⊲ Find the reference

similarity of ni
3: Ci ← establishMC(Wi:,m); ⊲ Establish the MC of ni
4: pi ← 0; qi ← 2; stable ← 2; iteration ← 0;

5: while stable > 0 or ++iteration ≤ 50 do

6: for i = 1 to N do

7: if pi then continue; ⊲ Stop updating for ni if

pi = 1

8: Li ← {fj|j ∈ Ci}; ⊲ Class labels in the MC of ni

9: for each l ∈ Li do

10: Ui(l,WCi , Li) ←
∑

j∈Ci
s(l, fj)(Wij − ri);

11: end for

12: f̂i ← argminl∈Li U(l,WCi , Li);

13: if fi �= f̂i then

14: fi ← f̂i; pi ← 0; ⊲ Update the class label of ni

15: else

16: if --qi < 1 then

17: pi ← 1; ⊲ Stop updating for ni

18: end if

19: end if

20: if
∑

i pi==0 then

21: stable--;

22: end if

23: end for

24: end while

25: return f ;

2.3 Clustering

Taking the similarity matrix W as input, the task of this

step is to identify image groups such that each group cor-

responds to one camera. Our previous experience of using

Markov random field (MRF) approach to image segmen-

tation [53, 54] and many others’ successful applications

of MRF [9, 55–57] suggest that the local characteristics

of MRFs (also known as Markovianity) allow global opti-

mization problems to be solved iteratively by taking local

information into account. Suppose there are K classes of

images in the subset, with the value of K unknown, and

denote D = {dk|k = 1, 2, . . . ,K} as the set of class labels

and fi ∈ D as the class label of SPN ni. By considering the

label fi of each SPN ni as a random variable, the objec-

tive of clustering is to assign an optimal class label dk to

each random variable ni in an iterative manner until the

stop criterion is met. The pseudo code of clustering is

shown in Procedure 1, and the details will be explained

as follows.

2.3.1 Assign unique initial class labels

Because the number of classes K is unknown, before the

first iteration of the labeling process starts, each SPN ni is

treated as a singleton cluster and assigned a unique ran-

dom class label, as shown in step 1 of Procedure 1. That is

to say that K = N and fi = di, i ∈ 1, 2, . . . ,N . The class

label of each SPN in question will be updated iteratively

in Step 14 of Procedure 1 based on (1) the similarities

between the SPN in question and the SPNs in its member-

ship committee and (2) the current class labels of the SPNs

in the membership committee. So eventually when the

algorithm converges, or the stop criterion is met, images

taken by the same camera will be given the same class

label. By doing so, the algorithm starts with a set of N sin-

gleton clusters without requiring the user to specify the

number of clusters.
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2.3.2 Calculate reference similarity

Although the actual number of classes, K, is unknown, we

can expect that normally the similarities between SPNs

of the same class (called intra-class similarity) are greater

than the similarities between SPNs of different classes

(called inter-class similarity). So for each SPN ni, its inter-

class and intra-class similarities are expected to be sepa-

rable. In [49], a simple k-means clustering method (k = 2)

is used to cluster the N − 1 similarity values into two

groups (one as intra-class and the other inter-class). Then,

the average of the centroids of the two clusters is taken

as a reference similarity r to separate the two distribu-

tions. However, the general-purpose k-means is slow and

quickly becomes inefficient for large datasets. Be aware

that we are dealing with the binary separation of one-

dimensional data, and we have the prior knowledge of

the approximate range where the cutoff point should lie

in, so we propose a fast method, which shares the same

essence as k-means, to iteratively search for the appro-

priate cutoff point, as shown in step 2 of Procedure 1,

where Wi: is the similarities between ni and the other

(N − 1) SPNs.

The details of the algorithm are given in Procedure 2.

We assume that the reference similarity r to be deter-

mined lies in between [ low, high], so the sum and size

of the similarities between (0, low) and (high,N) can be

pre-calculated before the iterative update. The purposes

of limiting the search range to [ low, high] are twofold.

First, it narrows down the search range and therefore

speeds up the search process. Second, it forces the opti-

mal r to fall within an appropriate range so as to alleviate

the problem of “local minimal”. The search process is fur-

ther sped up by specifying a value ini as the initial r. In

step 6 of Procedure 2, I represents the “binary” (0 or 1)

class labels of the similarities in [ low, high]. The midpoint

of the means of the two classes is used to update r, as

provided in step 9 of Procedure 2. The update terminates

when label assignments no longer change. Incorporating

ini, low and high to facilitate the determination of r makes

the search process faster and more flexible. In some cases,

such prior information is already known to the user. In

our experiments, low, ini and high were set to 0, 1 and 5,

respectively.

The output r of Procedure 2 serves the purpose of

dividing the intra- and inter-class similarities and can be

used to encode the cost function to be defined in Eq. (6).

Although the similarities are both scene- and device-

dependent, we could expect that most intra-class similar-

ities are greater than r while most inter-class similarities

are less than r. It is also intuitive that, for most cases, a

similarity value farther away from r on the left-hand side

indicates a higher probability that the two corresponding

images are taken by different devices. On the other hand,

we have higher confidence in believing that a similarity

value farther away from r on the right-hand side indi-

cates that the two corresponding images are taken by the

same device. The closer to r, the less confidence we have

on the similarity value in telling us the situation. This

suggests that, if we treat classification as an optimization

problem, the distance between a similarity Wij and r can

be used to encode an objective function for guiding the

search for the optimal class label of each image. We will

explain how we make use of this useful information in

Section 2.3.4.

Procedure 2 r = fastSplit(v, ini, low, high)

1: L = {vi|vi < low};

2: H = {vi|vi > high};

3: M = {vi|vi ≥ low&&vi ≤ high};

4: sz_L ← size(L); sum_L ← sum(L);

5: sz_H ← size(H); sum_H ← sum(H);

6: I ← {M > ini};

7: do

8: J ← I ;

9: r ← 0.5×
(

sum_L+sum(M
Ĩ

)

sz_L+sum(Ĩ)
+ sum_H+sum(MI )

sz_H+sum(I)

)

;

10: I ← {M > r};

11: while I �= J

12: return r;

2.3.3 Establishmembership committee

When determining the class label for each SPN ni, instead

of involving the entire dataset in the decision-making pro-

cess, the theory of Markov random fields allows us to

involve only a small local “neighborhood” of that SPN.

As displayed in Step 3 of Procedure 1, we establish a

“neighborhood” Ci (i.e., membership committee (MC) in

[49] and this work) with m key members that are most

similar to ni. The membership committee can be effi-

ciently established by partially selecting the m SPNs with

the largest similarities in each row of W (e.g., using the

partial sorting algorithm proposed in [58]). Note that

the reason we use the term “membership committee”,

instead of “neighborhood”, is because information such as

similarities and current class labels of the SPNs within

the membership committee determines the class label

(i.e., membership) of the SPN in question. The m key

members contribute “positive” votes (i.e., class labels)

which tell the system what the most likely labels are,

while the similarity value encoded in the cost function

and the associated probability tell the system whether

a committee member is a likely one. In so doing, we

could ensure that in the main feature of Markov random

fields, the local characteristics [53] are exploited in the

clustering process.
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2.3.4 Update class labels usingMRF

During the clustering process, each SPN is iteratively

visited and re-labeled until the stop criterion is met.

In terms of Markov random fields, when an SPN ni
is being visited, the probability p(·) of assigning each

class label l currently assigned to the members of Ci is

calculated using

p(fi = l|WCi , Li) =
1

Zi
e−Ui(l,WCi

,Li), (4)

where fi is the class label of SPN ni,WCi is the similarities

between SPN ni and the corresponding members of Ci,

i.e., WCi = {Wij|j ∈ Ci}, and Li is the set of class labels

currently assigned to the members of Ci, i.e., Li = {fj|j ∈

Ci}, l ∈ Li. Zi is the partition function [25]

Zi =
∑

l∈Li

e−Ui(l,WCi
,Li), (5)

where Ui(l,WCi , Li) is the cost of assigning label l to ni
givenWCi and Li. It is defined as

Ui(l,WCi , Li) =
∑

j∈Ci

s(l, fj)(Wij − ri), (6)

where Wij is the similarity (see Eq. (2)) between ni and

nj (j ∈ Ci), ri is the reference similarity described in

Section 2.3.2, and s(l, fj) is a sign function defined as

s(l, fj) =

{

+1, l �= fj
−1, l = fj.

(7)

It is clear to see that the probability of each label l to be

assigned to fi is based on the observed data and the cur-

rent local class configuration Li. From the cost function

U(·) in Eq. (6), we can see that the closer the similarity

Wij is to ri, the less significant nj is in determining the

class label for SPN ni. From the sign function in Eq. (7)

and its role in Eq. (6), we can see that the formulation

of Eq. (6) encourages appropriate label assignment with a

reward (i.e., a negative costU(·) to increase the probability

of that label). By the same token, it penalizes inappro-

priate decisions to reduce the probability of assigning

an inappropriate label by imposing a positive cost U(·).

The following explains these two cases, each with two

different scenarios.

• Rewarding appropriate label assignments

Scenario 1: IfWij < ri (i.e., SPNs ni and nj belong to

different classes) and the label l under investigation is

different from fj (i.e., l �= fj), then s(l, fj) = +1 will be

used in Eq. (6). As a result, a negative value of

s(l, fj)(Wij − ri) is contributed to U(·), which will in

turn increase the probability of p(fi = l|WCi , Li) in

Eq. (4).

Scenario 2: IfWij > ri (i.e., SPNs ni and nj belong to

the same class) and the label l under investigation is

also the same as fj (i.e., l = fj), then s(l, fj) = −1 will

be used in Eq. (6). A negative value of s(l, fj)(Wij − ri)

is contributed to U(·), which will in turn increase the

probability of p(fi = l|WCi , Li) in Eq. (4).
• Penalizing inappropriate label assignments

Scenario 3: IfWij < ri (i.e., SPNs ni and nj belong to

different classes) but the label l under investigation is

the same as fj (i.e., l = fj), then s(l, fj) = −1 will be

used in Eq. (6). As a result, a positive value of

s(l, fj)(Wij − ri) is contributed to U(·), which will in

turn reduce the probability of p(fi = l|WCi , Li) in

Eq. (4).

Scenario 4: IfWij > ri (i.e., SPNs ni and nj belong to

the same class) but the label l under investigation is

different from fj (i.e., l �= fj), then s(l, fj) = +1 will be

used in Eq. (6). A positive value of s(l, fj)(Wij − ri) is

contributed to U(·), which will in turn reduce the

probability of p(fi = l|WCi , Li) in Eq. (4).

From these four scenarios, we can also see that the far-

ther away Wij is from ri, the greater the reward (penalty)

will be when an appropriate (inappropriate) decision is

made. Like other MRF approaches to optimization prob-

lems, deterministic and stochastic relaxation [54] can be

used to pick a new label l for fi based on p(fi = l|WCi , Li).

Because of the low convergence rate of stochastic relax-

ation, we pick label l in a deterministic sense according to

f̂i = argmax
l∈Li

p(fi = l|WCi , Li). (8)

Since Zi is the same for all class labels in Li, max-

imizing p(fi = l|WCi , Li) is equivalent to minimizing

Ui(l,WCi , Li), as implemented in step 12 of Procedure 1.

The m most similar SPNs in the membership commit-

tee play a decisive role in determining the class label,

so once the label of an SPN has been determined by

Eq. (8), it actually triggers a convergence process among

the SPNs in itsmembership committee. As a consequence,

the class labels of most SPNs quickly become stable, and

continually updating those labels helps little in improv-

ing the performance. Therefore, we stop updating the

class label of an SPN if no label changes in two con-

secutive iterations, as shown in step 7 of Procedure 1.

This configuration significantly reduces the number of
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SPNs updated in each iteration and has little effect on

the performance. Finally, the stop criterion we employ

is that there are no changes of class labels to any SPNs

in two consecutive iterations, or the iteration number

reaches 50.

3 Discussion
The reasons why the classifier can work without the user

specifying the reference similarity r and the number of

classes K can be summarized as follows.

• The fact that the similarity values between each SPN

and the rest of the dataset can be grouped into

intra-class and inter-class as described in

Section 2.3.2 facilitates adaptive determination of the

reference similarity r automatically. This adaptability

also allows the algorithm to get rid of the tricky

threshold specification (e.g., the similarity threshold

used in [44] and the binarization threshold in [59]).
• The clustering process starts with a class label space

as big as the entire dataset (i.e., the worse case with

each SPN ni as a singleton cluster) and themost
similar SPNs are always kept in ni’s membership

committee Ci, so the clusters can merge and

converge to a certain number of final clusters quickly.

The termWij − ri in Eq. (6) also provides adaptability

and helps the clustering to converge because it gives

more say to the SPNs with the similarity value farther

away from the reference similarity r in determining

the class label for the SPN in question.

4 Results
4.1 Experimental setup

We conducted the experiments on the Dresden image

database [60]. 7400 images acquired in JPEG format by

74 cameras (each responsible for 100 images), covering 27

camera models and 14 manufacturers, were involved in

the experiments. We only considered the green channel of

each image and tested our proposed algorithm on image

blocks of three different sizes, namely s = 1024×1024, s =

512 × 512, and s = 512 × 256 pixels. All the experiments

were performed on a laptop with an Intel(R) Core(TM)

i7-6600U CPU @2.6 GHz and a RAM of 16 GB.

4.2 Evaluation measures

We used the ground-truth class labels to evaluate the

clustering results. To avoid confusion, we will refer to

the images from the same camera as a class and refer to

those clustered into the same group by the clustering algo-

rithm as a cluster. Suppose � = {ω1,ω2, . . . ,ωj, . . . ,ωJ }

are the set of ground-truth classes, and N images are par-

titioned to a set of clusters, C = {c1, c2, . . . , ci, . . . , cI},

by clustering algorithm. We used different measures to

evaluate the quality of clustering. The first measure

is F1-measure:

F = 2 ·
P · R

P + R
, (9)

where the average precision rate P and the average recall

rateR are defined as
{

P =
∑

i |ci ∩ ωji |/
∑

i |ci|

R =
∑

i |ci ∩ ωji |/
∑

i |ωji |.
(10)

Here, |ci| is the size of cluster ci, |ωji | is the size of the

most frequent class, ωji , in cluster ci.

Another popular measure of clustering quality is Rand

Index [61], which measures the agreement between C and

�. Among the
(N
2

)

distinct pairs, there are four different

types of pairs:

i) True positive pair: images in the pair fall in the same

class in � and in the same cluster in C.
ii) True negative pair: images in the pair fall in different

classes in � and in different clusters in C.
iii) False positive pair: images in the pair fall in different

classes in � but in the same cluster in C.
iv) False negative pair: images in the pair fall in the same

class in � but in different clusters in C.

The Rand Index RI is defined as:

RI =
TP + TN

TP + FP + TN + FN
, (11)

where TP, TN, FP, and FN are the numbers of true posi-

tive, true negative, false positive, and false negative pairs,

respectively. RI ranges from 0 to 1, but its expectation RI

does not equal to 0. To get rid of this bias, we adopted the

Adjusted Rand Index [62]:

A =
RI − RI

1 − RI
. (12)

The last measure we used is the ratio of the number of

discovered clusters to the number of ground-true classes:

N =
nd

ng
, (13)

where nd is the number of discovered clusters and ng is

the number of ground-truth classes. We will refer toN as

the cluster-to-class ratio in the rest of this paper.

Note that for F ∈[ 0, 1] and Adjusted Rand Index A ∈

[−1, 1], a higher value indicates better clustering perfor-

mance. For N , a value close to 1 does not necessarily

indicate a good performance, but a value much larger than

1 does indicate that the clustering algorithm produces a

large number of small or even singleton clusters.

4.3 Parameter settings

Two parameters need to be set for our proposed algo-

rithm, the size of the nearest neighbors κ and the size of

the membership committee m. κ determines the highest
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SNN similarity between SPNs, because two SPNs can only

share at most κ nearest neighbors according to Eq. (3). If

κ is too small, even two dissimilar SPNs are likely to have

a similarity of κ and the difference between the “similar”

and “dissimilar” pairs will be obscured. On the other hand,

if κ is too large, the SNN similarity is insensitive to local

variations, and the algorithm tends to produce large clus-

ters containing the images from different actual “classes”.

Similarly, ifm is too small, there will be not enough infor-

mation for determining the class label of SPNs. As a conse-

quence, the assigned labels remain random and unreliable,

which hinders the convergence of the algorithm and result

in many singleton clusters. While if m is too large, more

and more dissimilar SPNs will be involved in the cal-

culation and therefore mislead the algorithm to make

wrong decisions.

To see how κ and m affect the clustering quality, we

applied the proposed clustering algorithm on two small

subsets randomly sampled from the Dresden database.

The first subset (i.e., D4 in Section 4.4.1) consists of

1000 images taken by 50 cameras, with the number of

images acquired by different cameras ranging from 10 to

60, and the second subset (i.e., D5 in section 4.4.1) con-

sists of 1024 images, with 24 additional singleton images

(i.e., they are from 24 different cameras) added to the

first subset. We varied κ from 1 to 50 and m from

5 to 50.

Results on the first and the second subset are shown

in the first and second row of Fig. 2, respectively. As

can be seen, if κ is too small (e.g., < 5), the algorithm

produces many small clusters and results in a very low

recall rate (see Fig. 2b, f). As κ increases, the clusters

belonging to different classes are likely to be merged

together, which gives rise to a lower precision rate (see

Fig. 2a, e). For the size of the membership committee,

a small m leads to a low recall rate (see Fig. 2a, e). As

m goes up to a point where “enough” similar SPNs can

help to make trustworthy decisions, it strikes a good bal-

ance between the precision rate and the recall rate, and

therefore achieves a favorable F1-measure and Adjusted

Rand Index (see Fig. 2c, d, g, and h). But if we keep

increasing m, there is a chance to decrease the precision

rate (see Fig. 2a, e) due to the misleading information

provided by the membership committee. The results on

the first and the second subset share very similar pat-

terns and trends, but the areas corresponding to high

clustering quality (i.e., the areas highlighted in dark red

in Fig. 2d, h) shrink towards the left-bottom corner.

It indicates that a relatively smaller κ or m is prefer-

able when singleton images are present in the database.

In our following experiments, both κ and m are set

to 15.

4.4 Comparisons and analyses

To illustrate the advantages of our proposed algorithm, we

compared it with other five clustering methods: (1) the

multi-class spectral clustering (SC) method [31], (2) the

hierarchical clustering (HC) method [34], (3) the shared

nearest neighbor clustering (SNNC) method [43], (4) the

normalized cut-based clustering (NCUT) method [45],

and (5) the Markov random field based clustering (MRF)

method [49]. We did not include Boly’s algorithm [44] and

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 How κ andm affect the clustering quality. a Precision rates onD4 , b recall rates onD4 , c F1-measures onD4 , d adjusted Rand Indexes on

D4 , e precision rates onD5 , f recall rates onD5 , g F1-measures onD5 , and h adjusted Rand Indexes onD5
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Marra’s algorithm [47], because both algorithms retain

the fingerprints in the RAM for updating the centroids of

clusters, which makes them unsuitable for relatively large

datasets. Moreover, for Marra’s algorithm [47], the selec-

tion of β , the average level of correlation for same-camera

residuals, can be tricky since β varies across different

cameras.

For fair comparison, we used a fully connected graph

for SC rather than the sparse k-nearest neighbor graph

in [31]. Also, note that we did not use the hierarchi-

cal clustering proposed in [33] for comparison, because

we found in experiments that the algorithm in [34] per-

forms slightly faster and better than that in [33]. For

SNNC, there are three parameters: the size of the nearest

neighbors κ , the similarity threshold Eps for calculat-

ing the SNN density, and the density threshold MinPts

for finding the core points. We set κ to the same value

as our proposed algorithm, i.e., κ = 15, and set Eps

and MinPts to 2 and 10, respectively. For NCUT, we

set the aggregation threshold Th to 0.0037 rather than

the 0.037 in [45], which results in many singleton clus-

ters. For MRF, to avoid going into infinite iterations

when the algorithm does not converge, we set the max-

imum number of iterations to 50. We will conduct two

experiments, one on datasets of fixed size with vary-

ing class distributions and different levels of clustering

difficulty to test the adaptability of algorithms and the

other on datasets of varying sizes to test the scalability of

algorithms.

4.4.1 Clustering on datasets of fixed size

In this experiment, we first set up four datasets of

fixed size and based on the Dresden database. As we

know that, images acquired by cameras of the same

model may undergo the same or similar image process-

ing pipeline. As a result, the non-unique artifacts left

in the images make them more difficult to be distin-

guished from each other. We therefore categorize the

clustering difficulties into easy and hard levels. For the

easy level, the images in different classes are taken by

cameras of different models, while on the hard level,

images in some of the different classes are taken by

devices of the same model. Additionally, it is common

in practical situation that the numbers of images vary

widely across devices. So we categorize the distribu-

tions of images into symmetric and asymmetric. Based

on these considerations, we set up the following four

different datasets:

• D1: easy symmetric dataset, which consists of 1000

images taken by 25 cameras of different models (each

accounting for 40 images). It nearly covers all the

popular camera manufacturers, such as Canon,

Nikon, Olympus, Pentax, Samsung, and Sony.

• D2: easy asymmetric dataset. 20, 30, 40, 50, and 60

images are alternatively selected from the images

taken by each of the 25 cameras in D1 to make up a

total of 1000 images.
• D3: hard symmetric dataset, which consists of 1000

images taken by 50 cameras (each accounting for 20

images). The 50 cameras only cover 12 models, so

some of them are of the same model.
• D4: hard asymmetric dataset. 10, 15, 20, 25, and 30

images are alternatively selected from the images

taken by each of the 50 cameras in D3 to make up a

total of 1000 images.

Our proposed clustering algorithm essentially exploits

the affinities between neighboring images. Thus, it would

be interesting to see how the proposed algorithm deals

with singleton classes, i.e., classes composed by only one

single image as no other images from the same cam-

era are present in the database. Recall that the images

in our entire database are from 74 cameras and the

images in dataset D4 are from 50 of them. We there-

fore randomly select one image from those taken by

each of the remaining 24 cameras and add them to

D4 to form an extra database, D5, consisting of 1024

images. This setting allows us to investigate the influence

of singleton classes by comparing the performance on

D4 andD5.

We tested the six algorithms on D1, D2, D3, D4, and

D5. For each dataset, three pairwise correlation matrices

are calculated using SPNs of three different sizes, namely

1024× 1024, 512× 512, and 512× 256 pixels. The results

on D1 − D5 are listed in Tables 1, 2, 3, 4, and 5, respec-

tively. The best F1-measures, adjusted Rand Indexes, and

the cluster-to-class ratios are highlighted in bold.

As can be seen, SC performs poorly on challenging

datasets D3, D4, and D5 even using SPNs of 1024 × 1024

pixels, withF = 0.18,A = 0.06 in Table 3 and even worse

in Tables 4 and 5. However, SC performs surprisingly bet-

ter on smaller block sizes, 512 × 512 pixels. The rather

contradictory results are due to the stop criterion of SC,

because the algorithm terminates when the size of the

smallest cluster equals 1. But the smallest class size of

D3 and D4 is no larger than 20, so it is easy to form

singleton clusters and result in premature termination of

the algorithm, while the more ambiguous information in

the SPNs extracted from smaller image blocks impedes

the separation of images taken by different cameras and

therefore forces the algorithm to try out more possible

partitions. For example, the optimal number of partitions

determined by SC is 5 when using SPNs of 1024 × 1024

pixels on D3, but when using SPNs of 512 × 512 pix-

els, the number of partitions increases to 9, which is

closer to the ground truth class number 50 and therefore

ends up with a better performance. Because of the larger
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Table 1 Comparison of clustering algorithms onD1

Algorithms

1024 × 1024 512 × 512 512 × 256

P R F A N P R F A N P R F A N

SC [31] 0.36 0.99 0.53 0.27 0.36 0.23 0.94 0.36 0.08 0.24 0.25 0.88 0.39 0.10 0.28

HC [34] 0.71 0.57 0.63 0.54 1.24 0.94 0.18 0.30 0.72 5.20 0.87 0.10 0.19 0.49 8.40

SNNC [43] 0.90 0.48 0.63 0.77 1.88 0.63 0.23 0.34 0.42 2.68 0.59 0.19 0.29 0.35 3.08

NCUT [45] 0.86 0.16 0.27 0.65 5.44 0.73 0.24 0.36 0.51 3.08 0.68 0.24 0.36 0.48 2.80

MRF [49] 0.96 0.43 0.60 0.87 2.24 0.82 0.41 0.55 0.62 2.00 0.78 0.65 0.71 0.60 1.20

Proposed 0.99 0.80 0.88 0.93 1.24 0.93 0.83 0.88 0.84 1.12 0.86 0.72 0.78 0.72 1.20

Table 2 Comparison of clustering algorithms onD2

Algorithms

1024 × 1024 512 × 512 512 × 256

P R F A N P R F A N P R F A N

SC [31] 0.34 0.98 0.51 0.17 0.28 0.35 0.97 0.51 0.19 0.32 0.41 0.78 0.54 0.21 0.44

HC [34] 0.82 0.58 0.68 0.63 1.48 0.50 0.77 0.61 0.28 0.68 0.85 0.14 0.24 0.59 5.60

SNNC [43] 0.88 0.48 0.62 0.76 1.80 0.60 0.19 0.29 0.37 2.80 0.54 0.16 0.24 0.27 3.16

NCUT [45] 0.86 0.20 0.33 0.71 4.28 0.75 0.30 0.43 0.61 2.56 0.72 0.38 0.50 0.58 1.76

MRF [49] 0.97 0.49 0.65 0.91 1.88 0.79 0.47 0.59 0.58 1.56 0.76 0.50 0.60 0.53 1.44

Proposed 0.97 0.78 0.86 0.91 1.20 0.92 0.87 0.89 0.87 1.04 0.88 0.83 0.85 0.78 1.04

Table 3 Comparison of clustering algorithms onD3

Algorithms

1024 × 1024 512 × 512 512 × 256

P R F A N P R F A N P R F A N

SC [31] 0.10 1.00 0.18 0.06 0.10 0.17 0.94 0.29 0.09 0.18 0.41 0.72 0.52 0.20 0.56

HC [34] 0.71 0.50 0.58 0.44 1.44 0.81 0.21 0.33 0.52 3.92 0.76 0.13 0.22 0.31 5.94

SNNC [43] 0.45 0.26 0.32 0.23 1.74 0.35 0.15 0.21 0.11 2.34 0.30 0.12 0.17 0.07 2.50

NCUT [45] 0.92 0.13 0.22 0.52 7.30 0.72 0.14 0.24 0.37 4.96 0.53 0.15 0.23 0.25 3.58

MRF [49] 0.51 0.47 0.49 0.21 1.08 0.44 0.45 0.44 0.15 0.96 0.32 0.47 0.38 0.11 0.68

Proposed 0.87 0.75 0.80 0.74 1.16 0.68 0.64 0.66 0.48 1.06 0.52 0.47 0.49 0.16 1.10

Table 4 Comparison of clustering algorithms onD4

Algorithms

1024 × 1024 512 × 512 512 × 256

P R F A N P R F A N P R F A N

SC [31] 0.03 0.64 0.06 0.00 0.04 0.18 0.94 0.30 0.05 0.14 0.37 0.83 0.52 0.17 0.36

HC [34] 0.51 0.65 0.57 0.23 0.76 0.83 0.30 0.44 0.65 2.66 0.79 0.16 0.26 0.44 4.66

SNNC [43] 0.48 0.29 0.36 0.26 1.52 0.44 0.19 0.27 0.20 2.08 0.33 0.13 0.19 0.09 2.26

NCUT [45] 0.88 0.13 0.23 0.55 6.32 0.71 0.20 0.31 0.48 3.34 0.59 0.23 0.33 0.40 2.28

MRF [49] 0.63 0.56 0.59 0.31 1.04 0.56 0.54 0.55 0.26 0.94 0.51 0.55 0.53 0.22 0.86

Proposed 0.90 0.77 0.83 0.81 1.10 0.74 0.76 0.75 0.58 0.86 0.64 0.65 0.64 0.39 0.86
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Table 5 Comparison of clustering algorithms onD5

Algorithms

1024 × 1024 512 × 512 512 × 256

P R F A N P R F A N P R F A N

SC [31] 0.03 0.64 0.06 0.00 0.03 0.17 0.94 0.29 0.04 0.09 0.36 0.80 0.50 0.15 0.24

HC [34] 0.46 0.65 0.54 0.22 0.50 0.81 0.31 0.45 0.65 1.72 0.78 0.15 0.26 0.44 3.35

SNNC [43] 0.47 0.27 0.34 0.24 1.08 0.44 0.20 0.28 0.21 1.38 0.35 0.14 0.20 0.10 1.55

NCUT [45] 0.89 0.13 0.23 0.58 4.68 0.73 0.18 0.29 0.51 2.77 0.58 0.19 0.29 0.36 2.01

MRF [49] 0.60 0.54 0.57 0.29 0.70 0.55 0.55 0.55 0.24 0.62 0.43 0.57 0.49 0.16 0.49

Proposed 0.88 0.79 0.83 0.79 0.74 0.74 0.76 0.75 0.58 0.61 0.63 0.65 0.64 0.40 0.58

class size and easier separation of different classes, SC is

able to produce much better results on D1 and D2, with

F = 0.53,A = 0.27 for D1 and F = 0.51,A = 0.17

forD2.

The performance of HC is generally good in terms of

F1-measure, but it is not as good as reported in [33] and

[34], where the datasets used were less challenging in

terms of both the number of cameras and the number of

images captured by each camera. An interesting observa-

tion is that when using SPNs of 512 × 512 and 512 × 256

pixels, HC achieves the highest precision rates in most

cases. But as can be seen in Tables 1, 3, 4, and 5, the

high P comes at the expense of low R, which means HC

tends to over-partition the datasets. This is also reflected

in the values of N that are much larger than 1 in the

corresponding rows.

SNNC performs well on the easy datasets D1 and D2,

but its performance onD3−D5 is yet far from satisfactory.

We found that SNNC is very sensitive to parameters. For

example, if we increase Eps from 2 to 4, the performance

drops dramatically for D1 (with F = 0.40,A = 0.34) and

D2 (with F = 0.33,A = 0.30). Another drawback of SNN

is that it does not cluster all data points, because it dis-

cards the non-core data points that are not within a radius

of Eps of a core point (i.e., the noise points in [43]). When

the parameters are not set appropriately, a large fraction

of data points may be identified as noise points. Taking

dataset D3 for example, about 25% of SPNs are identified

as noise and discarded when Eps is set to 4. However, it

is difficult to determine the “right” parameters that are

applicable to different datasets.

Similar to HC, NCUT tends to over-partition the

datasets, which results in high precision rates, low recall

rates, and cluster-to-class ratios much higher than 1. It is

worth noting that there are some inconsistencies between

F and A measures. Taking the measures on dataset D4

using SPNs of 1024 × 1024 pixels (i.e., Table 3) for exam-

ple, theF = 0.22 of NCUT is the second worst among the

six methods, but its A = 0.52 turns out to be the second

best performance. The main reason is that the measure

F tends to be in favor of clusters of large granularity.

To see this, let us consider clustering a dataset of 1000

images taken by 10 cameras, each responsible for 100

images. If all the 1000 images are grouped into one clus-

ter, A gives a measure of 0 while F gives a measure of

0.18. If for each camera, its 80 images form a cluster

and the remaining 20 images form 20 singleton clusters,

then A gives a measure of 0.76, but F only gives a mea-

sure of 0.09. So F is more prone to heavily penalize

singleton clusters.

By resorting to the MRF approach and the shared

κ-nearest neighbor technique, our proposed algorithm

is able to find high-quality clusters. Using SPNs of

1024 × 1024 pixels, it outperforms other five algorithms

in terms of both F1-measure and adjusted Rand Index. It

achievesF>= 0.86,A>=0.91 on easydatasets (D1 andD2)

and F >= 0.80,A >= 0.74 on hard datasets (D3 − D5).

Even using the SPNs of 512 × 256 pixels, F and A can

be as high as 0.72 on the two easy datasets. Compared

with the MRF method in [49], the proposed algorithm

shows a significantly better performance. On challenging

datasets (D3 − D5), the improvement can be as high as

80% (e.g., D3) and 170% (e.g., D5) in terms of F and A,

respectively. But the 24 singleton classes added to D5 do

decrease the precision rate as some of the singleton classes

may be wrongly attributed to the clusters close to them.

One attractive feature of our proposed algorithm is that it

is able to find clusters with high precision rate (i.e., high

purity). The high precision rate is important and prefer-

able in the context of forensic investigation, because the

false attribution error (i.e., 1 − P) can cause more serious

problems, such as accusing an innocent person.

4.4.2 Clustering on datasets of varying sizes

In the second experiment, we aim to compare the time

complexities and the clustering qualities of the six algo-

rithms on datasets of varying sizes. To generate the

datasets, we incrementally added 1000 images captured by

10 cameras (100 images per camera) to an empty dataset

until all the 74 cameras in the Dresden database had been
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covered. The six algorithms were run and evaluated on

each of these datasets.

The log-scale running time (in seconds) is shown in

Fig. 3. Our proposed algorithm requires the calculation of

the SNN similarity before clustering, so the time used to

calculate the SNN similarity is highlighted in green in the

stacked bar. Since the running time obtained using SPNs

of different lengths exhibit the same trend, we only show

the running time for SPNs of 1024×1024 pixels. As can be

observed in Fig. 3, MRF is the slowest one, followed by HC

and SC. Although SC repeats spectral clustering process

several times to search for the optimal number of clus-

ters, the time complexity of each clustering process is only

O
(

N
3
2K + NK2

)

(K is the number of partitions), which

is lower than the time complexity O(N2 logN) of HC

when N ≫ m. Our proposed algorithm is slightly slower

than NCUT and SNNC but is much faster than the other

three algorithms. By reducing the complexity of calcula-

tion in each iteration and accelerating the convergence,

the speed of the algorithm has been significantly improved

when compared to our preliminary study in [49]. Most of

the running time of our proposed algorithm is spent on

constructing the SNN similarity matrix. When the SNN

similarity matrix is available, the actual clustering process

only takes less than 40 s (the orange bar beneath the green

bar in Fig. 3) even for the dataset containing 7400 images.

The clustering qualities of different algorithms are illus-

trated in Fig. 4. As can be seen, our proposed algorithm

performs apparently better than the other three algo-

rithms in terms of both the F1-measure and adjusted

Rand Index. In particular, when using the SPNs of

1024 × 1024 pixels, our proposed algorithm delivers a

23% higher F and a 13% higher A on average than

the second best algorithm (see Fig. 4g, j). Its precision

rate consistently stays at a very high level (> 96%).

Even using the SPNs of 512 × 256 pixels, the pre-

cision rate can reach about 80%. The high precision

rate makes the proposed algorithm attractive in foren-

sic applications. Another important observation is that

while the performances of the other five algorithms, espe-

cially SC and SNNC, decline considerably in terms of

F or A when the size of the dataset increases, the

performance of our proposed algorithm is quite sta-

ble in terms of F , A, and N . This high stability is

preferable in practice when applying the algorithm to

new databases.

5 Conclusions
In this work, we have proposed a novel algorithm

for clustering images taken by an unknown num-

ber and unknown types of digital cameras based

on the sensor pattern noises extracted from images.

The clustering algorithm infers the class memberships

of images from a random initial membership con-

figuration in the dataset. By giving different “neigh-

bors” different voting power in the concise yet effec-

tive cost function depending on their similarity with

the image in question, the algorithm is able to con-

verge to the optimal cluster configuration accurately

and efficiently. The experiments on the Dresden image

database show that the proposed clustering scheme

is fast and delivers very good performance. Despite

the present advances, the most time-consuming step

for image clustering based on SPNs is the calcu-

lation of the pairwise similarity matrix due to the

high dimension of SPNs. We are currently working

towards formulating a compact representation of SPNs

in order to facilitate the large-scale source-oriented

image clustering.

Fig. 3 Comparison of the running time (in seconds) of six clustering algorithms using SPNs of 1024 × 1024 pixels
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(j) (k) (l)

(m) (n) (o)

(i)

Fig. 4 Comparison of different clustering algorithms on datasets of varying sizes. a Precision rates, image block size s = 1024 × 1024 pixels;

b precision rates, s = 512 × 512; c precision rates, s = 512 × 256; d recall rates, s = 1024 × 1024; e recall rates, s = 512 × 512; f recall rates,

s = 512 × 256; g F1-measures, s = 1024 × 1024; h F1-measures, s = 512 × 512; i F1-measures, s = 512 × 256; j adjusted Rand Indexes,

s = 1024 × 1024; k adjusted Rand Indexes, s = 512 × 512; l adjusted Rand Indexes, s = 512 × 256;m cluster-to-class ratios, s = 1024 × 1024;

n cluster-to-class ratios, s = 512 × 512; and o cluster-to-class ratios, s = 512 × 256
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