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A FAST SPHERICAL HARMONICS TRANSFORM ALGORITHM

REIJI SUDA AND MASAYASU TAKAMI

Abstract. The spectral method with discrete spherical harmonics transform
plays an important role in many applications. In spite of its advantages, the
spherical harmonics transform has a drawback of high computational complex-
ity, which is determined by that of the associated Legendre transform, and the
direct computation requires time of O(N3) for cut-off frequency N . In this
paper, we propose a fast approximate algorithm for the associated Legendre
transform. Our algorithm evaluates the transform by means of polynomial
interpolation accelerated by the Fast Multipole Method (FMM). The divide-
and-conquer approach with split Legendre functions gives computational com-
plexity O(N2 logN). Experimental results show that our algorithm is stable
and is faster than the direct computation for N ≥ 511.

1. Introduction

The discrete spherical harmonics transform plays an essential role in many ap-
plications, such as those in computational physics/chemistry/astronomy. The reso-
lution of the spherical harmonics expansion is uniform on a sphere, thus stable and
reliable numerical computation is possible. The Laplace equation is easy to solve
because the spherical harmonics are the eigenfunctions of the Laplace operator on
a sphere. Those advantages make numerical computations with the spherical har-
monics transform highly reliable. However, the spherical harmonics transform lacks
a fast transform algorithm. The computational complexity of the direct computa-
tion of the spherical harmonics transform is O(N3) for cut-off frequency N . There
are some propositions of fast spherical harmonics transform algorithms, but they
need further developments for practical use.

In this paper, we propose a novel fast spherical harmonics transform algorithm
that runs in time O(N2 logN). Our algorithm is based on fast polynomial inter-
polation accelerated by the FMM (Fast Multipole Method). We introduce split
Legendre functions, which enables the numerically stable divide-and-conquer ap-
proach. Experimental results show that our algorithm is faster than the direct
computation for N ≥ 511 and is numerically stable.

This paper is organized as follows. The rest of this section provides some ba-
sic properties of the spherical harmonics transform and surveys other research on
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fast spherical harmonics transform algorithms. Our algorithm is explained in Sec-
tion 2, where split Legendre functions, the linear-time polynomial interpolation
algorithm, stabilization of the interpolation, and the divide-and-conquer approach
are discussed, and experimental results are presented. Section 3 presents a brief
summary and direction for future work.

1.1. The spherical harmonics transform. We consider the discrete spherical
harmonics transform evaluation on a set of evaluation points {(λj , µk) : 1 ≤ j ≤
J, 1 ≤ k ≤ K} (−1 ≤ µk ≤ 1, 0 ≤ λj < 2π)

g(λj , µk) =
N∑
m=0

N∑
n=m

gmn Y
m
n (λj , µk).(1)

The expansion that is to compute gmn from g(λ, µ) can be done by the Gauss integral
scheme

gmn =
J∑
j=1

K∑
k=1

wjkg(λj , µk)Y mn (λj , µk),

where λj and µk are the integral nodes and wjk are the weights. For ease of the
expansion, the evaluation points are usually chosen as the integral nodes. In many
cases, the number of points J and K are determined by the so-called alias-free
condition

J ≥ 3N + 1, K ≥ (3N + 1)/2.(2)

We assume J ≈ 3N and K ≈ 3N/2 in the following discussion.
A spherical harmonic Y mn (λ, µ) is the product of a trigonometric function and

an associated Legendre function Pmn

Y mn (λ, µ) = Pmn (µ)eimλ.

Thus, the spherical harmonics transform can be evaluated by successive computa-
tions of the associated Legendre transform evaluation and of the inverse Fourier
transform

gm(µk) =
N∑

n=m

gmn P
m
n (µk),(3)

g(λj , µk) =
N∑
m=0

gm(µk)eimλj .

Similarly, the spherical harmonics expansion becomes

gm(µk) =
1
J

J∑
j=1

g(λj , µk)eimλj ,

gmn =
K∑
k=1

wkg
m(µk)Pmn (µk).(4)

In both transforms, the Fourier transforms can be done by the FFT and consume
time O(N2 logN), because J = O(N) and K = O(N). Usually, the associated
Legendre transforms are directly computed and require time O(N3). Therefore, a
fast associated Legendre transform algorithm is required to accelerate the spherical
harmonics transform.
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The associated Legendre transforms (3) and (4) are matrix-vector products, and
the matrix for the expansion is the transposed matrix for the evaluation. Thus, it
is enough to consider only the evaluation problem (3).

1.2. Other research for the fast transform. This subsection surveys some algo-
rithms for the fast associated Legendre transform. An associated Legendre function
Pmn (x) is related to an ultraspherical polynomial qmn−m(x) with some constant cmn
as

Pmn (x) = cmn P
m
m (x)qmn−m(x).(5)

Using that relation, the associated Legendre transform can be done through polyno-
mial computations. Some researchers [6, 12] proposed algorithms of the associated
Legendre transform based on fast polynomial computation algorithms with FFT or
FCT (Fast Cosine Transform). Those algorithms are precise (i.e., not approximate)
and run in time O(N2 log2N), but tend to lack numerical stability. Some devices to
remedy the instability are proposed [12], but the computational complexity under
those devices is unknown.

Mohlenkamp [8] reported that a wavelet approach attains fast transform algo-
rithms that run in time O(N5/2 logN) and O(N2 log2N). The performance of the
algorithm of complexity O(N5/2 logN) was much improved [9], but performances
are reported only when N ’s are powers of two.

There are some algorithms for the fast Legendre polynomial transform (i.e.,
only for m = 0). Alpert and Rokhlin [1] showed that the Legendre polynomial
expansion can be transformed into the Chebyshev polynomial expansion in time
O(N). Beylkin et al. [2] showed that the same transform can be done in linear time
using a wavelet approach. The Chebyshev polynomial expansion can be evaluated
in time O(N logN) using FFT. Their approaches are based on the similarity of the
Legendre polynomials and the Chebyshev polynomials, so the performance will be
worse for large m.

Orszag [11] proposed a fast evaluation scheme based on the WKB approxima-
tion for Sturm-Liouville eigenfunction transforms including the associated Legendre
transform. His algorithm can be improved to have the computational complexity
O(N logN) for m = 0 [10]. For higher m, although his scheme is applicable, the pre-
cision of asymptotic approximations becomes worse, and the computational costs
will increase.

The following research is on a fast algorithm for related computations. Boyd
[3] pointed out that the FMM enables linear-time interpolation of the functions
expanded by the associated Legendre functions. That fact is important in our
context in two ways. First, transform algorithms are free from restrictions on the
evaluation points. The value at any point can be computed in linear time from
the values on other points. Second, one can accelerate the associated Legendre
transform by interpolation. We can evaluate the transform on some N − m + 1
points, then interpolate the values on the other required points. Assuming the
alias-free condition (2), the asymptotic computational costs become 4/9 of that
without fast interpolation, but are still O(N3). However, considerations on the
stability of the interpolation are lacking in his discussion. We enhance his idea
with split Legendre functions and stabilization of the interpolation.
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Jakob-Chien and Alpert [7] proposed a fast spherical filter algorithm that runs
in time O(N2 logN). Their algorithm also uses FMM, and their experiments show
high stability and high speed.

2. Our fast transform algorithm

In this section, we propose a novel fast associated Legendre transform algorithm.
First, split Legendre functions are introduced, and some of their properties are
discussed. Second, the linear-time interpolation algorithm with the FMM, which
is pointed out by Boyd [3], is reviewed, and a stabilization scheme is proposed.
Third, the divide-and-conquer approach in our algorithm is explained, and the
computational complexity of our algorithm is discussed. Last, some experimental
results on speed and precision are reported.

2.1. Split Legendre functions. Associated Legendre functions satisfy the recur-
rence formula

(2n+ 1)xPmn (x) = (n−m+ 1)Pmn+1(x) + (n+m)Pmn−1(x).

From that formula, we can easily see that the following theorem holds.

Theorem 1. An associated Legendre function can be split into the sum of two
functions as

Pmn (x) = Pm,0n,ν (x) + Pm,1n,ν (x),(6)

where each split Legendre function Pm,ln,ν (x) (l = 0, 1) is the product of a polynomial
and an associated Legendre function as

Pm,ln,ν (x) = qm,ln,ν (x)Pmν+l(x).(7)

That polynomial becomes qm,ln,ν (x) ≡ 0 if n− ν+ l− 1 = 0, otherwise deg(qm,ln,ν (x)) =
|n− ν + l − 1| − 1.

The split is trivial for ν = n or ν = n − 1 and coincides with the recurrence
formula for ν = n+ 1 and ν = n− 2. For the other values of ν, we can easily prove
it by induction. The polynomial qm,ln,ν (x) is called the shifted Legendre polynomial
by some researchers [6].

We call the parameter ν the split point. Splits at different split points

Pmn (x) = Pm,0n,ν0
(x) + Pm,1n,ν0

(x)

= Pm,0n,ν1
(x) + Pm,1n,ν1

(x)

are related as

Pm,0n,ν1
(x) = Tm,00

ν0,ν1
(x)Pm,0n,ν0

(x) + Tm,10
ν0,ν1

(x)Pm,1n,ν0
(x),

Pm,1n,ν1
(x) = Tm,01

ν0,ν1
(x)Pm,0n,ν0

(x) + Tm,11
ν0,ν1

(x)Pm,1n,ν0
(x),(8)

where the coefficients are

Tm,l0l1ν0,ν1
(x) = Pm,l1ν0+l0,ν1

(x)/Pmν0+l0(x).

Note that Tm,l0l1ν0,ν1
(x) is independent of n. The equation (8) provides a method to

compute the split at ν1 from the split at ν0. We call that process the shift of split
points.

The split (6) and the shift (8) are numerically stable for ν ≤ n and ν1 ≤ ν0. Their
stability is directly connected with that of the recurrence formula, and they are
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found in the direct computation (known as Horner’s rule or Clenshaw algorithm).
In the direct computation, the associated Legendre transform is computed as

gm(µk) = c10(µk)Pmm+1(µk) + c00(µk)Pmm (µk),

where the cln(µk) are computed through the dual recurrence

c1n(µk) =
(2n+ 1)µk
n−m+ 1

c1n+1(µk) + c0n+1(µk)

c0n(µk) =
n+m

n−m+ 1
c1n+1(µk) + gmn

with initial values c1N−1 = gmN and c0N−1 = gmN−1. Defining

sln(µk) = cln(µk)Pmn+l(µk),

we can see that these values are the split partial sum

sln(µk) =
N∑

n′=n

gmn′P
m,l
n′,n(µk),

and that the dual recurrence is a shift of the split point from n+ 1 to n.
However, it is known that the backward recurrence formula

Pmn−1(x) =
2n+ 1
n+m

xPmn (x) − n−m+ 1
n+m

Pmn+1(x)

is unstable for m ≤ n < 2m. For n ≥ 2m it behaves better, but the stability is not
as good as the forward recurrence.

2.2. The linear-time interpolation algorithm. Next, we remind the reader of
the linear-time interpolation algorithm [3]. Assume that the values of a polynomial
p(x) are known on a set of points (sampling points) {xi}Ni=1. If the number of
points N > deg(p), then the values of the polynomial on another set of points
(target points) {yj}Mj=1 can be computed by interpolation:

p(yj) = ω(yj)
N∑
i=1

1
yj − xi

p(xi)
ωi(xi)

,

where ω(x) =
∏N
i=1(x − xi) and ωi(x) = ω(x)/(x − xi). If the sets {xi} and {yj}

are fixed, then we can pre-compute ω(yj) and ωi(xi) and do the interpolation in
three steps:

ξi =
p(xi)
ωi(xi)

for i = 1, · · · , N ,

ηj =
N∑
i=1

ξi
yj − xi

for j = 1, · · · ,M ,

p(yj) = ω(yj)ηj for j = 1, · · · ,M .

It is clear that the first and the third steps are computed in time O(N) and
O(M), respectively. The second step can be computed approximately in time
O((N + M) log(1/ε)) by the Fast Multipole Method (FMM) [5], where ε is a pa-
rameter that determines the precision. The original paper on the FMM [5] assumes
uniform distribution of the points, but it is proven that the FMM runs in linear
time for any distribution of the points [13].
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The fast interpolation algorithm is applicable to associated Legendre functions.
Because an associated Legendre function is factorized as (5), it can be interpolated
as

Pmn (yj) = Pmm (yj)ω(yj)
N∑
i=1

1
yj − xi

Pmn (xi)
Pmm (xi)ωi(xi)

,

where N > n−m. The split Legendre functions can be interpolated similarly. The
interpolation algorithm itself was pointed out by Boyd [3] and others [4].

2.3. Choosing sampling points for stable interpolation. Numerical stability
of interpolation is mostly dependent on the set of sampling points {xi}. Defining
the interpolation matrix Θ as

Θji =
Pmm (yj)ωi(yj)
Pmm (xi)ωi(xi)

,

the interpolation is unstable if max{|Θji|} is large. Because the resulting value
Pmn (yj) is independent of the sampling points, large Θji entries mean canceling,
which incurs loss of precision. Thus, it is necessary to keep |Θji| small.

Θji can be defined as the solution of the linear equation with coefficient matrix
Ξ, whose entries are Ξni = Pmn (xi). Cramer’s rule gives Θji = det Ξ(ji)/ det Ξ,
where Ξ(ji) is the same as Ξ but the i-th column is replaced by Pmn (yj). Thus, if
the set of sampling points {xi} is chosen so as to maximize | det Ξ|, then |Θji| ≤ 1.
That fact proves that stable interpolation is attainable by an appropriate choice of
the sampling points.

However, we do not know of an efficient algorithm for choosing the best set of
sampling points. It is a kind of combinatorial optimization, and a näıve algorithm
takes an impractical amount of time for large problems.

We propose the following algorithm for choosing the sampling points for stable
interpolation. Given the number of sampling points N and the set of evaluation
points M, the algorithm chooses sampling points {xi}Ni=1 from M.

(1) Initialize as w1(µ) = Pmm (µ) for each µ ∈M.
(2) Set i = 1.
(3) Choose the i-th sampling point xi ∈ M such that |wi(xi)| = max |wi(µ)|.
(4) Let wi+1(µ) = (µ− xi)wi(µ) for each µ ∈M.
(5) If i < N , then increment i and go to step 3.

wi(µ) is the partially evaluated Pmm (µ)ω(µ) for the first i− 1 sampling points. The
algorithm chooses the point that gives the largest |wi(µ)| as the next sampling
point, so as to make denominators larger and numerators smaller in Θji.

For sampling points for split Legendre functions, the sum of the sets of the sam-
pling points for Pmν and Pmν+1 will work. Although it does not change the asymptotic
computational complexity, such a strategy doubles the number of sampling points
and the computational costs. We propose the following algorithm for restricting
the number of sampling points without affecting the numerical stability much.

(1) Initialize as w0
1(µ) = Pmν (µ) and w1

1(µ) = Pmν+1(µ) for each µ ∈M.
(2) Set i = 1.
(3) Choose the i-th sampling point xi ∈ M so that min{|w0

i (xi)|/max{|w0
i (µ)|},

|w1
i (xi)|/max{|w1

i (µ)|}} is maximized.
(4) Let w0

i+1(µ) = (µ− xi)w0
i (µ) and w1

i+1(µ) = (µ− xi)w1
i (µ) for each µ ∈M.

(5) If i < N , then increment i and go to step 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A FAST SPHERICAL HARMONICS TRANSFORM ALGORITHM 709

In the case of split functions, it might not be able to maximize w0(µ) and w1(µ)
at the same time, so we use a max-min strategy. Although these algorithms are
simple greedy optimizations, interpolations using those sampling points were quite
stable in our experiments.

The linear-time interpolation algorithm with the above algorithms for choosing
sampling points can be used to accelerate the associated Legendre transform by
dividing it into two steps of computations:

(1) Evaluate transforms on N −m+ 1 = deg(qmN ) + 1 chosen points.
(2) Interpolate the values on the other evaluation points.

The second step can be computed in O(N2) time using the linear-time interpolation
algorithm. The first step takes O(N3) time, but the constant coefficient is 4/9 of
the direct computation, assuming K = 3N/2 from (2). To attain lower asymptotic
computational complexity, acceleration of the first step is required.

2.4. The divide-and-conquer approach. Our algorithm uses the divide-and-
conquer approach to accelerate the first step discussed in the previous subsection.
To evaluate the transform on N −m+ 1 points, our algorithm chooses the division
point n0 ≈ (m+ N)/2 and divides the sum into two partial sums of roughly equal
size as

gm(µk) = gm0 (µk) + gm1 (µk),

gm0 (µk) =
n0−1∑
n=m

gmn P
m
n (µk),

gm1 (µk) =
N∑

n=n0

gmn P
m
n (µk).

Since gm0 (x) is the product of a polynomial of degree n0 −m and Pmm (x), it can be
evaluated in two steps: evaluation on n0 −m sampling points and interpolation.

Evaluation of gm1 (µk) can be done by interpolation as well. For efficient interpo-
lation, the partial sum gm1 (µk) should be split as

gm1 (µk) = gm,01,ν (µk) + gm,11,ν (µk),

gm,01,ν (µk) =
N∑

n=n0

gmn P
m,0
n,ν (µk),

gm,11,ν (µk) =
N∑

n=n0

gmn P
m,1
n,ν (µk).

Choosing ν = n0, each split partial sum becomes the product of a polynomial of
degree ≤ N − n0 + 1 and an associated Legendre function. Thus we can efficiently
evaluate gm,l1,ν (µk) (l = 0, 1) by interpolation. If the numerical stability allows us to
choose ν ≈ (n0 +N)/2, the interpolation becomes more efficient because the degree
of the polynomial is nearly halved.
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The computations of gm0 (µk) and gm,l1,ν (µk) on the sampling points are computed
recursively using polynomial interpolations. Each gm,l1,ν (µk) is divided as

gm,l1,ν (µk) = gm,l10,ν(µk) + gm,l11,ν(µk),

gm,l10,ν(µk) =
n1l−1∑
n=n0

gmn P
m,l
n,ν (µk),

gm,l11,ν(µk) =
N∑

n=n1l

gmn P
m,l
n,ν (µk),

and the gm,l1p,ν(µk) (p = 0, 1) are again computed by interpolation. Here, the split
point ν is not the best for them, so a better split point νp should be used for each
p, and after interpolation, gm,l1p,ν(µk) will be obtained by the shift of split points as

gm,l1p,ν(µk) = Tm,0lνp,ν g
m,0
1p,νp

(µk) + Tm,1lνp,ν g
m,1
1p,νp

(µk).

The recursion stops when the evaluation-interpolation scheme needs more com-
putational costs than the direct computation.

The following pseudo-code describes the proposed algorithm. Here, a split pair
of vectors 〈g0, g1〉 is represented using a bar as ḡ.
getsingle(m, γ, n0, n1,M)
// computing g(µ) =

∑n1
n=n0

γmn P
m
n (µ) for µ ∈ M

if (interpolation is inefficient)
Directly evaluate g on M

else // evaluate and interpolate

if (n0 = m) // Interpolate without split

Choose the sampling points M′ ⊆M
if (divide-and-conquer is inefficient)

Directly evaluate g on M′
else

Choose the division point nm
g0 = getsingle(m, γ, n0, nm − 1,M′)
g1 = getsingle(m, γ, nm, n1,M′)
g = g0 + g1

Interpolate g onto M
else // interpolate with split

Choose the split point ν and the sampling points M′ ⊆M
if (divide-and-conquer is inefficient)

Directly evaluate ḡ on M′
else

Choose the division point nm
ḡ0 = getdual(m, γ, n0, nm − 1, ν,M′)
ḡ1 = getdual(m, γ, nm, n1, ν,M′)
ḡ = ḡ0 + ḡ1

Interpolate ḡ onto M
g = g0 + g1

return g

getdual(m, γ, n0, n1, ν,M)
// computing ḡ: gl(µ) =

∑n1
n=n0

γmn P
m,l
n,ν (µ) for l = 0, 1 and µ ∈M
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if (interpolation is inefficient)
Directly evaluate ḡ on M

else // evaluate and interpolate

Choose the split point ν′ and the sampling points M′ ⊆M
if (divide-and-conquer is inefficient)

Directly evaluate ḡ on M′
else

Choose the division point nm
ḡ0 = getdual(m, g, n0, nm − 1, ν′,M′)
ḡ1 = getdual(m, g, nm, n1, ν

′,M′)
ḡ = ḡ0 + ḡ1

Interpolate ḡ onto M
Shift split point of ḡ to ν

return ḡ

2.5. Computational complexity of the algorithm. In this subsection, we con-
sider the computational complexity of our algorithm. In the analysis, the evalu-
ation points are assumed to be fixed, and the following data are assumed to be
pre-computed.

(1) The division points nm.
(2) The split points ν and ν′.
(3) The sampling points M′.
(4) The functions Pmn0

(µ), Pmν (µ) and Pmν+1(µ) for direct computation.
(5) The factors Pmν+l(yj)ω(yj) and Pmν+l(xi)ωi(xi) for interpolations.
(6) The coefficients Tm,l1l0ν0,ν1

(µ) for shifts of the split points.
(7) The trees for FMM.
Our algorithm uses the divide-and-conquer approach, and the major computa-

tional costs are of the interpolations and of the shifts of split points. The costs
of both computations are linear to the number of points to be evaluated, which
is linear to the number of the summand of the partial sum. Thus, the total
computational costs at each recursion level is O(N). Because the linear combi-
nations can be divided into two roughly equal partial sums, the recursion stops in
O(logN) levels. Therefore, the computational complexity to evaluate an associated
Legendre expansion on O(N) points is O(N logN). Since there are O(N) trans-
forms (m = 0, · · · , N) to evaluate, the computational complexity for the spherical
harmonics transform is O(N2 logN).

The above analysis assumes that the precision of FMM is fixed. Complexity of
FMM is proportional to log(1/ε), where ε is the precision of FMM. Experimental
results show that our algorithm is quite stable, but we do not yet have any analytical
bounds on the approximation errors of our algorithm.

The preprocessing steps 3–6 require time O(N3). We will not discuss how to
choose the division points and the split points in this paper. However, nm =
(n0 + n1)/2 and ν = ν′ = n0 work and do not change the complexity of the
transform.

2.6. Experimental results. This section reports some results of our implementa-
tion of the proposed algorithm. The program is written in C and compiled by gcc
with option -O2. It is run on SUN Enterprise 450 (300MHz). The evaluation points
are the nodes of the Gauss-Legendre integral. The associated Legendre functions
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Table 1. The precision and the speed of the proposed algorithm.
K: The order of expansions in FMM; N : the cut-off frequency;
error: relative error of the results in the max norm; Tf : time for
our algorithm; Td: time for lazy direct computation; T0: estimated
time for full direct computation; Td/Tf : the speed-up rate against
the lazy direct computation; T0/Tf : the speed-up rate against the
full direct computation. The times are measured in seconds.

K N error Tf Td T0 Td/Tf T0/Tf
10 341 5.13E-06 0.832 0.840 1.143 1.01 1.37
14 341 1.59E-08 0.848 0.881 1.168 1.04 1.38
18 341 1.59E-10 0.862 0.887 1.166 1.03 1.35
22 341 2.74E-13 0.896 0.875 1.133 0.98 1.27

10 511 6.14E-06 2.506 2.843 3.968 1.13 1.58
14 511 1.52E-08 2.734 3.004 4.079 1.10 1.49
18 511 8.61E-11 2.861 3.037 4.076 1.06 1.42
22 511 4.48E-13 3.052 3.035 4.061 0.99 1.33

10 682 6.53E-06 5.379 7.098 9.889 1.32 1.84
14 682 7.17E-08 6.198 7.050 9.796 1.14 1.58
18 682 1.03E-09 6.489 7.660 10.389 1.18 1.60
22 682 1.91E-12 6.477 6.928 9.449 1.07 1.46

10 1023 1.50E-05 16.063 25.033 35.329 1.56 2.20
14 1023 1.47E-07 18.440 26.637 36.883 1.44 2.00
18 1023 1.57E-09 19.661 25.941 35.863 1.32 1.82
22 1023 1.36E-11 21.583 26.827 36.499 1.24 1.69

10 1365 8.89E-06 33.921 62.418 88.677 1.84 2.61
14 1365 7.29E-08 38.810 64.743 91.548 1.67 2.36
18 1365 1.01E-09 43.691 63.689 88.830 1.46 2.03
22 1365 1.59E-11 47.668 63.979 88.343 1.34 1.85

10 2047 3.37E-05 98.062 233.450 333.790 2.38 3.40
14 2047 8.38E-07 115.169 235.493 333.215 2.04 2.89
18 2047 1.25E-09 124.836 232.700 325.763 1.86 2.61
22 2047 2.54E-11 139.115 237.069 333.282 1.70 2.40

10 2730 1.24E-05 202.077 567.975 816.783 2.81 4.04
14 2730 1.48E-07 242.160 566.347 808.492 2.34 3.34
18 2730 1.60E-09 271.347 573.762 817.067 2.11 3.01
22 2730 2.57E-11 296.666 587.312 825.074 1.98 2.78

10 4095 2.92E-05 567.141 2078.464 2983.363 3.66 5.26
14 4095 1.75E-07 675.425 2131.294 3051.445 3.16 4.52
18 4095 2.25E-09 774.313 2231.551 3146.774 2.88 4.06
22 4095 7.39E-11 869.345 2069.444 2957.820 2.38 3.40

are scaled as

P̃mn (x) =

√
(2n+ 1)

(n−m)!
(n+m)!

Pmn (x),

which gives
∫ 1

−1 |P̃mn (x)|2dx = 2.
For both the direct computation and the fast transform, the computational costs

are halved by symmetry. Furthermore, we drop computations for |Pmn (x)| ≤ θ (the
threshold θ is chosen according to the required precision) in the direct computation,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A FAST SPHERICAL HARMONICS TRANSFORM ALGORITHM 713

including that used in the proposed algorithm. We call the direct computation with
that dropping the “lazy direct computation” and that without the dropping the “full
direct computation”. Such a device improves not only the performance of the direct
computation without much affecting the precision, but also the numerical stability
because it avoids overflows in computing the dual recurrence.

In our algorithm, the split point ν is chosen as the lower bound (ν = n0 in
the pseudo-code in the previous section), because we found that the error is quite
sensitive to the stability of the split. The division point nm is chosen as (n0 +n1)/2.
That is a natural choice, but is not necessarily the best for performance. The
implementations, especially that of the FMM, are rather rough, and they can be
refined and tuned for higher performance.

Table 1 reports the precision and the performance of our algorithm. K and N are
the order of the expansions in the FMM and the cut-off frequency, respectively. We
chose 20 values for m = 0, N/20, . . . , 19N/20, then the time for each m is measured,
and the sum of them is multiplied by N/20. (We cannot help using sampling-based
evaluations for large N , because the preprocessing takes a considerable amount of
time to avoid underflows for large m. To estimate the influence of the sampling,
we have run the program for all m for some parameter sets. The difference on
the relative performance is less than 5%; the total time consumption is 5–10% less
than that of sampling-based estimation; and the errors are 2–10 times larger than
those in the table.) The estimated transform times obtained in that way are shown
in the table: Tf is the time for our algorithm; Td is the time for the lazy direct
computation; and T0 is the time for the full direct computation, which is estimated
from Td by counting the number of the floating-point operations. Td/Tf and T0/Tf
are the speed-up rates of our algorithm against the lazy direct computation and the
full direct computation, respectively. To estimate the precision of our algorithm,
the transform is computed for several random vectors, and the maximum of the
relative difference in the max norm of the vectors computed with our algorithm
and with the direct computation is shown in the “error” column of the table.

The computational costs of the lazy direct computation is about 2/3 of that of
the full direct computation, and slightly decreases for smaller K, because we set
larger thresholds for the dropping. Our algorithm in the current implementation
does not accelerate the transform for N = 341, but the speed-up rate gradually
increases for larger N . The times for N = 4095 is about 2.8 times larger than the
times for N = 2730. The coefficient 2.8 is a little larger than 1.52 = 2.25, but
clearly smaller than 1.53 = 3.375.

Our algorithm is quite stable, and the relative error is only a few orders larger
than the precision of the FMM. The errors for the same K seem to increase for
larger N . The main reason for the small error for small N is that the approximation
is restricted to small m (our scheme uses the direct computation if interpolation is
inefficient), where the relative error tends to be small.

3. Summary

In this paper, we proposed a novel fast stable algorithm for the spherical har-
monics transform. Our algorithm is a fast approximate evaluation of the associated
Legendre transform. The computational complexity is reduced using the linear-time
polynomial interpolation algorithm based on the FMM (Fast Multipole Method)
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and the divide-and-conquer approach with split Legendre functions. In experi-
mental implementation, our algorithm was faster than the direct computation for
N ≥ 511.

However, current implementation of the FMM is rather primitive, and the Cheby-
shev approximation or the singular value decomposition must be introduced to at-
tain higher performance. Because the distribution of the points is far from uniform,
it requires some devices to cope with non-uniformity in the FMM. The effects of the
choices on split points, sampling points, and division points on the approximation
error and on the computational costs must be clarified. Then the trade-off between
the approximation error and the computational costs should be solved. The storage
requirements for the transform are also to be considered. The time and the storage
for preprocessing must be reduced.

Our algorithm was successful in its stability, while some earlier algorithms [6, 12]
had difficulty at this point. They share the divide-and-conquer approach with us,
where a partial sum is represented by a linear combination

∑
cjψj(x). The speed

of the algorithms comes from the efficiency of the algorithm to add two partial sums
in that representation. The difference of the stability comes from the stability of
the representation, that is, how much the linear combination is distorted if the
coefficients cj are rounded. In our algorithm, the stability of the representation
is indirectly controlled by choosing the sampling points so that the entries in the
interpolation matrix become as small as possible. The sampling points are chosen
for each partial sum, so the variety of the characteristics of the associated Legendre
functions is not a problem.

However, complete analysis on the stability and the precision is not done. Anal-
ysis, prediction, and control of the approximation errors will be necessary for higher
reliability. It will require more effort to obtain practical analytical bounds on the
approximation errors.
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