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Abstract

In this paper we describe a fully integrated system for detecting, lo-

calizing, and tracking pedestrians from a moving vehicle. The system

can reliably detect upright pedestrians to a range of 40 m in lightly

cluttered urban environments. The system uses range data from stereo

vision to segment the scene into regions of interest, from which shape

features are extracted and used to classify pedestrians. The regions

are tracked using shape and appearance features. Tracking is used to

temporally filter classifications to improve performance and to esti-

mate the velocity of pedestrians for use in path planning. The end-to-

end system runs at 5 Hz on 1�024 � 768 imagery using a standard

2.4 GHz Intel Core 2 Quad processor, and has been integrated and

tested on multiple ground vehicles and environments. We show per-

formance on a diverse set of datasets with groundtruth in outdoor

environments with varying degrees of pedestrian density and clutter.

In highly cluttered urban environments, the detection rates are on a

par with state-of-the-art but significantly slower systems.

KEY WORDS—pedestrian detection, human detection,

stereo, tracking

1. Introduction

The ability of autonomous vehicles to detect and predict the

motion of pedestrians or personnel in their vicinity is critical

to ensure that the vehicles operate safely around people. Un-

manned ground vehicles (UGVs) being developed for military
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applications are large, heavy, and potentially fast-moving ve-

hicles. One of the highest-priority issues in the development

of these UGVs is that they do not injure people, either dur-

ing the research and development phase or in deployed oper-

ations. Vehicles must be able to detect people in urban and

cross-country environments, including flat, uneven, and multi-

level terrain, with widely varying degrees of clutter, occlusion,

and illumination (and ultimately for operating day or night, in

all weather, and in the presence of atmospheric obscurants).

To support high-speed driving, reliable detection to ranges of

approximately 100 m are likely to be necessary. The ability

to detect pedestrians from a moving vehicle in a cluttered,

dynamic urban environments is also applicable to automatic

driver-assistance systems or smaller autonomous robots navi-

gating in environments such as a sidewalk or marketplace.

In this paper we describe a fully integrated system capa-

ble of reliably detecting, localizing, and tracking upright (sta-

tionary, walking, or running) human adults at 5 Hz out to a

range of 40 m from a moving platform. Although not explic-

itly designed to handle partial occlusion, non-upright postures,

or children, the system performs reasonably well in these situ-

ations. Our approach uses imagery and dense range data from

stereo cameras for the detection, tracking, and velocity estima-

tion of pedestrians. The system runs on a standard 2.4 GHz In-

tel Core 2 Quad processor on 1�024�768 imagery. The ability

to process this high-resolution imagery enables the system to

achieve better performance at long range compared with other

state-of-the-art implementations. As the system segments and

classifies people based on stereo range data, it is largely in-

variant to the variability of pedestrians’ appearance (due to the

different types and styles of clothing) and scale. The system

also handles different viewpoints (frontal versus side views)

and poses (including articulations and walking) of pedestri-

ans, and is robust to objects being carried or worn by them.

Furthermore, the system makes no assumption of a ground-
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Fig. 1. Examples of test scenarios and the output of our pedestrian detection system (yellow boxes are detections with range and

track ID text and a green overlay of the segmented person� the cyan boxes are missed detections).

plane to detect or track people, and similarly makes no as-

sumption about the predictability of a person’s motion other

than a maximum velocity. When a vehicle motion estimate is

not available from other sensors (such as an inertial navigation

system (INS)), the system is also capable of visually estimat-

ing the motion of the vehicle, even in highly cluttered, dynamic

scenes. However, the system does not require motion of the ve-

hicle or people for detection.

The use of stereo vision is a key advantage of our approach.

Research to date has not achieved the detection ranges or relia-

bility needed in deployed systems to detect upright pedestrians

in flat, relatively uncluttered terrain, let alone in more com-

plex environments and with people in postures that are more

difficult to detect. Range data is essential to solve this problem.

Combining range data with high-resolution imagery may en-

able higher performance than range data alone because image

appearance can complement shape information in range data

and because cameras may offer higher angular resolution than

typical range sensors. The experiments shown in Section 4.1

indicate that pixels-on-target is the key factor in the correct

classification of people. This makes stereo vision a promising

approach for several reasons: image resolution is high and will

continue to increase, the physical size and power dissipation

of the cameras and computers will continue to decrease, and

stereo cameras provide range data and imagery that are auto-

matically spatially and temporally registered. Our results show

that a stereo-based approach is currently competitive with al-

ternative sensors and can be improved with higher-resolution

cameras. It can also be applied to infrared stereo imagery for

low-light or night-time operations.

The novelty of our system resides primarily in the method

of finding regions-of-interest from stereo data and the use of

a small set of simple, computationally efficient shape fea-

tures for classification, both of which are effective at ranges

significantly further than most other systems have addressed.

The classifier and tracker are both implementations of stan-

dard concepts. The system is also one of very few that has

been tested and analyzed on a very large and diverse corpus of

data.

The performance of the system is demonstrated on a variety

of ground-truthed datasets in various outdoor environments,

with different degrees of person density and clutter. An exam-

ple of these scenes is shown in Figure 1. The majority of new

datasets taken to evaluate the system consist of scenarios sim-

ulating the operation of a UGV traveling at moderate speed in

semi-urban terrain (paved roads with light clutter and people

walking along or into the road). In these scenarios, the sys-

tem is capable of initial detections of pedestrians up to 60 m,

and reliable detection and tracking of pedestrians up to 40 m.

In addition to testing on ground-truthed datasets, we describe

previous and upcoming live testing and evaluation of the fully

integrated system running onboard a UGV in these scenarios.

Finally, we present performance results of our system on re-

cently published datasets of crowded street scenes. Although

not specifically designed for highly cluttered urban environ-

ments, we show that results of our system are comparable
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to the state-of-the-art systems while able to run significantly

faster.

2. Related Work

There has been extensive research on pedestrian detection

from manned and unmanned ground vehicles using scanning

laser rangefinders (LIDAR) and monocular and stereo vision

in visible, near-infrared, and thermal infrared wavelengths.

Most such work assumes that the scene contains a dominant

ground plane that supports all of the pedestrians in upright pos-

tures. Maximum detection ranges tend to be 30 m or less. Rates

of missed detections and false alarms are not good enough to

be satisfactory in deployed systems. Most prior work on pedes-

trian detection has been done for applications to smart automo-

biles, robotic vehicles, or surveillance. This literature is very

large, so we only cover recent highlights and the main trends

here.

2.1. Smart Automobiles

Research on pedestrian detection for smart automobiles has

employed monocular vision (Shashua et al. 2004� Arndt et

al. 2007� Ma et al. 2007) stereo vision (Sotelo et al. 2006�

Bertozzi et al. 2007� Gavrila and Munder 2007� Liebe et al.

2007� Tomiuc et al. 2007), and LIDAR (Fuerstenberg et al.

2002). Vision-based methods have used visible (Shashua et al.

2004� Ma et al. 2007), near-infrared (Arndt et al. 2007), and

thermal imagery (Bertozzi et al. 2007). Most work in this area

has been strongly motivated by the requirement to be very low

cost in eventual production.

The monocular vision work reported by Shashua et al.

(2004) appears to be among the most mature in the automo-

tive arena. They detect regions of interest (ROIs) in each image

using a flat ground assumption to constrain the search, then ex-

tract gradient-based features from each ROI and classify and

track the ROIs over successive frames. The range to objects is

estimated by assuming that the bottom of each ROI is on the

ground plane. The system uses 640� 480 imagery with a 47�

field of view and is designed to detect pedestrians at 10 Hz

within 25 m of the camera. Single-frame classification perfor-

mance evaluated with many hours of imagery recorded in ur-

ban driving was given as a false positive rate per ROI of 8%

(“false positives per window”, FPPW) at a probability of de-

tection (Pd) of 93.5%. They process an average of 75 ROIs per

image, which results in the system producing approximately

six false alarms per image. Tracking is done over a minimum

of four frames before results are output� multi-frame analysis

reduces the false alarm rate by factors of between 103 and 106,

depending on where the pedestrians appear and if/how they are

moving. For the hardest case of stationary, out-of-path pedes-

trians, they reported a system-level Pd of 85% with 1.7 false

positives per minute. Performance evaluation did not include

partially occluded pedestrians.

Methods using stereo vision have a similar architecture,

but use the range data to aid in detecting ROIs and to esti-

mate the range to objects. The stereo vision systems gener-

ally output sparse depth maps with range to edge features� the

best described systems use 320 � 240 imagery (Sotelo et al.

2006� Gavrila and Munder 2007) and also aim for a maximum

range of 25 m. Details of the ROI detection, feature extrac-

tion, classification, and tracking algorithms vary by author. A

key feature they have in common is that, although the range

data from stereo is used in detecting ROIs, feature extraction

and classification is done with image data, not range data.

Gavrila and Munder (2007) reports frame-level performance

at a Pd of 61% with 17.3 false positives per minute for pedes-

trians within �4 m to each side of the vehicle path. This false

positive rate is equivalent to a precision of 52.6%� precision

is the fraction of reported detections that are really pedestri-

ans. For trajectory-level performance, the false positive rate

drops to 3.5 per minute. Sotelo et al. (2006) reports a Pd of

93.2% with a precision of 92.6%� since this is not evaluated

on the same data set, it is unclear what explains the perfor-

mance difference between these two systems. These two sys-

tems process imagery at 6–20 Hz with one 2.4 GHz Pentium 4

PC. Liebe’s system (Liebe et al. 2007) also uses 320 � 240

imagery, but runs much more slowly. Their performance eval-

uation included pedestrians up to 50 m away with up to 70%

occlusion� at a Pd of 42%, they experience 1.7 false alarms

per frame. Presumably this lower performance is due at least

in part to the greater maximum range and partial occlusions

in the test data. Extensions of this work include that of Ess et

al. (2007, 2008), which uses 640� 480 imagery and reports a

Pd of 40% to 55% at one false positive per frame on cluttered

urban sidewalks. We specifically compare our system directly

to theirs (in Section 4.2) as they have published their datasets.

Near-infrared and thermal infrared imagery have been em-

ployed to address operation at night (Arndt et al. 2007�

Bertozzi et al. 2007). The algorithm architectures are analo-

gous to those above. Work with LIDAR for the automotive

domain includes use of the four-beam scanner by IBEO (Fuer-

stenberg et al. 2002), which now has a range exceeding 100 m.

Claims are made for very good pedestrian detection and false

alarm rates, but the systems and experiments are described in

less detail than other related work, making performance hard

to compare.

2.2. Robotic Vehicles

Most work on pedestrian detection for robotic vehicles in out-

door applications is being done under the Army Research Lab

(ARL) Robotics Collaborative Technology Alliance (RCTA)

program. This work includes methods that perform range sens-

ing with two-dimensional LIDAR, three-dimensional LIDAR,
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stereo vision, and/or structure from motion and do image sens-

ing with visible and/or thermal infrared cameras. At a high

level, algorithm architectures are analogous to the systems

for the automotive domain, involving ROI detection, clas-

sification, and tracking, although the order and details of these

steps differ. Some approaches (Navarro-Serment et al. 2008�

Thornton et al. 2008) detect which objects are moving be-

fore performing classification. As a group, there is more em-

phasis in this domain on classification based on the three-

dimensional shape of the objects as perceived by LIDAR or

stereo vision than there is in the automotive domain. The fea-

ture extraction and classification algorithms tend to be simpler

than those used in either the automotive or video surveillance

domains.

Thornton et al. (2008) uses a LIDAR that scans 180� hor-

izontally and has many beams vertically to provide a three-

dimensional range image� sensor details are proprietary, but

the functionality is similar to the commercially available LI-

DAR from Velodyne. Above-ground objects are segmented

into distinct point clouds, which are tracked to estimate their

velocity. A “strength-of-detection” function combines simple

features of the density, shape, velocity, and temporal stability

of the point cloud to provide a confidence measure that the

point cloud is a pedestrian. Preliminary work was also done

with long-wave thermal infrared imagery to detect pedestri-

ans beyond the range of the LIDAR and in non-upright pos-

tures that are hard to recognize with LIDAR data. Navarro-

Serment et al. (2008) employs a similar sequence of operations

with two-dimensional LIDAR scans in a plane parallel to the

ground.

Stereo vision-based approaches have been explored in the

RCTA program by Howard et al. (2007) and Bajracharya et

al. (2008) at the Jet Propulsion Laboratory (JPL), in an ear-

lier version of the work reported here, and by Abd-Almageed

et al. (2007) at the University of Maryland (UMd). Howard

processed 1�024�768 stereo imagery into 512�384 range im-

ages (60� field of view), transformed the range data into two-

dimensional maps in a horizontal reference frame, segmented

upright objects in those maps, and performed classification on

the resulting three-dimensional point clouds for each object.

This was based on a dense, area correlation-based stereo vi-

sion algorithm that outputs range estimates for most pixels of

the image� this is distinct from the main trend in automotive

applications, which use sparse range data at the edges. The

point clouds were also used to compute rectangular ROIs in

image space for input to an image-based classifier. The sys-

tem ran at 3.75 Hz. Bajracharya et al. (2008) extended this

approach by improving detection of candidate objects with the

range data, improving the feature extraction and shape-based

classification stages of the system, and modifying the system

to run on 1�024�768 imagery at the same rate as its predeces-

sor. Abd-Almageed et al. (2007) used image ROIs computed

from the JPL stereo vision-based range data as input to a clas-

sifier based on Adaboost.

The RCTA program conducts “Safe Operations” (SafeOps)

field experiments in the fall of each year to quantitatively mea-

sure the performance of pedestrian detection systems. All of

the systems discussed above were evaluated in the FY2007

experiment, which was on a flat road about 250 m long with

10 moving pedestrians, four stationary mannequins, and as-

sorted moving and stationary clutter objects� overall the scene

was relatively uncluttered. For the FY2007 experiment, the

course was run 32 times to generate performance statistics

for LIDAR and stereo vision-based systems� results are dis-

cussed by Bodt (2008). The median distance to first detec-

tion of people and mannequins varied from about 25 to 45 m

for LIDAR-based systems and 25 to 32 m for stereo vision-

based systems. Detection rates were evaluated as a function

of how many frames each target was detected in on a given

run, which we will call “persistence”. For a persistence of four

frames, algorithms using three-dimensional LIDAR data had

detection rates of 95–100% for moving people and stationary

mannequins combined. The detection rates for stereo vision-

based algorithms are ambiguous, because the evaluation may

not (yet) have properly scored targets that were not in the field

of view of the cameras. With that caveat, the four frame persis-

tence for stereo vision was at least 57%. Classification errors

on clutter objects were scored similarly� for four frame persis-

tence, 10–20% of clutter objects were misclassified as human

for the algorithms using three-dimensional LIDAR or stereo

vision (precision of 80–90%). Pickup trucks and human-sized

crates, in particular, caused classification errors. The reasons

for this have not yet been analyzed in depth, but it may be that

for these sensors the range data on pickup trucks breaks up

into human-sized blobs. Results available to date from the ex-

periment analysis do not allow direct comparison of the false

alarm rate from the SafeOps experiment to false alarm rates

published in the automotive domain� moreover, the types of

scenes in the respective data sets differ enough that such a

comparison would be inconclusive.

2.3. Surveillance

Work on pedestrian detection in the surveillance arena largely

divides into work with image sequences from stationary cam-

eras, where background subtraction and/or image differenc-

ing is used to detect moving objects (Beymer and Konolige

1999� Viola et al. 2003� Zhao et al. 2008), and work that ap-

plies trained pattern classifiers to individual images (Dalal and

Triggs 2005� Sabzmeydani and Mori 2007� Seeman et al. 2007�

Tuzel et al. 2007�Wu and Nevatia 2007). The former group is

less relevant here, because background subtraction and tempo-

ral image differencing are more difficult to use from moving

cameras. Stereo data has been used in this area to segment,

classify, and track people (Beymer and Konolige 1999), how-

ever the methods still rely on background modeling (Eveland

et al. 1998) and so do not handle camera translations, and have
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been limited in range (to less than 20 m). The latter group

uses a variety of feature extraction and classification meth-

ods to achieve better Pd and FPPW rates than single-frame

results reported in the automotive pedestrian detection liter-

ature� however, the results are not directly comparable for a

number of reasons. Since real-time performance on embedded

computers is not required, computational requirements gener-

ally are higher or not stated. The testing protocol often used is

not a good match to driving scenarios, since it either uses im-

age databases where positive examples are already centered

in image chips or performs exhaustive search over position

and scale of ROIs in test imagery. Finally, not having a track-

ing module that helps detection and false alarm performance

leads to different algorithm design and computational trade-

offs. For these reasons we do not elaborate on these methods

here� nevertheless, this research does offer the potential to im-

prove single-frame performance of classifiers used in automo-

tive and robotic vehicle domains.

3. System Description

Our pedestrian detection system is primarily designed to en-

able autonomous vehicles to safely navigate when people are

present. Consequently, the system must be able to detect a per-

son with enough time for a planner to generate a plan to avoid

the person and the vehicle to execute this plan. Furthermore,

it must be able to predict the person’s motion and maintain a

false positive rate that prevents the vehicle from unnecessar-

ily avoiding objects. The detection system’s requirements are

highly dependent on the overall system configuration and re-

quirements, however we are specifically targeting a car-sized

vehicle driving at 30 km h�1 in lightly cluttered terrain, and

ultimately desire to drive at 50 km h�1 in highly cluttered ter-

rain.

Our system consists of the following modules, which are

each described in more detail in the balance of this section.

� Stereo vision. The stereo vision module takes synchro-

nized images from a pair of cameras and computes a

dense range image.

� Visual odometry. The visual odometry module takes

two sequential pairs of stereo images and computes the

frame-to-frame camera motion. In practice, if a good

pose estimate is available from other vehicle sensors

(such as an INS), this step is skipped.

� ROI detection. The ROI detection module projects

stereo data into a polar-perspective map (PPM) and then

segments the map to produce clusters of pixels cor-

responding to upright objects. These clusters are then

filtered for human-sized objects based on their three-

dimensional shape statistics.

� Classification. The classification module computes geo-

metric features of the 3D point cloud of each ROI and

classifies the object, resulting in a probability of being

human.

� Tracking. The tracking module associates ROIs in se-

quential frames, accounting for vehicle motion, and es-

timates the velocity of the detected objects. The proba-

bilities for each tracked object are filtered over time to

produce a final detection result.

The system architecture allows the possibility of using ap-

pearance and motion features to improve the classification of

people, but we currently do not make use of these features. We

intend to use them in the future to improve the performance of

the system, particularly on partially occluded or non-upright

people. However, one advantage of only using shape infor-

mation is that the algorithm could, in principle, be applied to

range data from other sensors.

3.1. Stereo Vision

The first step in our system is to compute dense range data

from stereo images. We use a multi-processor version of the

algorithm described by Goldberg et al. (2002) previously used

on the NASA Mars Exploration Rovers and in the DARPA Per-

ceptOR program. On a 2.4 GHz Intel Core 2 Quad processor,

the algorithm can process 1�024 � 768 imagery at 10 frames

per second. The algorithm has also been ported to a filed-

programmable gate array (FPGA), which can process 1�024�

768 imagery at 15 frames per second. When run in software,

the stereo processing dominates the computation time of the

overall system and is the only component of the system that

takes advantage of the multiple cores of the CPU.

3.2. Visual Odometry

When the pose of the vehicle is not available from an INS,

accurate knowledge of frame-to-frame camera motion is pro-

duced by visual pose estimation. We use the visual odometry

algorithm described by Howard (2008) that tracks point fea-

tures in imagery and uses the dense range data to provide the

range to each feature. Briefly, the algorithm detects features in

each frame with a corner detector, matches features between

frames using their sum-of-absolute-differences over local win-

dows, finds the largest set of self-consistent matches (inliers),

and then finds the frame-to-frame motion that minimizes the

reprojection error for features in the inlier set. The algorithm

exploits intermediate steps in the stereo processing pipeline to

optimize execution and is able to process 1�024� 768 images

in 10 to 20 ms per frame. In static environments, typical accu-

racy is better than 1 m over 400 m of travel.
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Fig. 2. (a) An example image from an urban sequence (Ess et al. 2007), with feature tracks from visual odometry. (b) Frame-to-

frame translations computed by visual odometry, in centimeters� the x- and z-axes correspond to lateral and forward motion of

the camera, respectively

This algorithm also performs reliably in cluttered, dynamic

environments (such as urban sidewalks). For example, Fig-

ure 2(a) shows an image from one of the urban sequences de-

scribed in Ess et al. (2007). While there is no ground truth

for this sequence, we know from visual inspection that the

camera motion is smooth and approximately linear� we can

therefore assess the reliability of visual odometry by looking at

the estimated frame-to-frame change in pose. The scatter plot

in Figure 2(b) shows the camera translations in forward and

lateral directions. Note that there are no large jumps or kine-

matically infeasible lateral translations, indicating that visual

odometry has correctly extracted the camera motion while ig-

noring the independent movers. Visual odometry cannot work

for all scenes, however� if the environment is heavily occluded

by movers additional sensors or kinematic constraints must be

applied to disambiguate the multiple motions present in the

scene.

3.3. ROI Detection

Detecting ROI areas from the stereo data serves as a focus-

of-attention mechanism to reduce the runtime of subsequent

classifiers and segments foreground pixels from background

pixels in a region. This allows a shape-based classifier to be

run on the 3D points that make up a specific object, rather

than sliding a window over the image and explicitly perform-

ing foreground/background segmentation in each window.

The steps of the ROI detection algorithm are illustrated in

Figure 3. Figure 3(a) shows a simple test scene with two people

at 5 and 30 m distances from the cameras. Figure 3(b) shows a

depth map produced by the dense stereo matching algorithm�

color codes represent the distance, with red closest, blue fur-

thest, and dark red representing pixels with no range data. The

range data is projected into a two-dimensional grid map, which

is then segmented based on map cell statistics. In order to cap-

ture the variable resolution and preserve the coherency of the

stereo range data, the map is represented as a PPM. Unlike a

traditional Cartesian map, which is divided into cells of fixed

size in Cartesian �x� y� space, the PPM is divided into cells

with a fixed angular resolution but variable range resolution in

polar �r� �� space. The range resolution (r-axis, up each col-

umn in Figure 3(c)) corresponds to stereo disparity, propor-

tional to inverse range, and consequently accounts for stereo

range error by accumulating all of the points that lie within the

expected stereo range error. Each row in the PPM corresponds

to a fixed interval of stereo disparity� each column corresponds

to one (or more) columns of the depth map. The stereo range

data is transformed into a gravity-leveled frame and then pro-

jected into the PPM, which accumulates the number of points

projected into each cell. The map is then smoothed with an

averaging filter with an adaptive bandwidth in polar space cor-

responding to a fixed bandwidth in Cartesian space. For com-

putational efficiency the filter is implemented by first comput-

ing the integral image of the map. Figure 3(c) shows the PPM

for the depth map in Figure 3(b) after smoothing. The diago-

nal row of blobs on the left corresponds to the row of trees.

The person at 5 m is the distinct blob at the bottom of the

map. About halfway up the image, the blob to the right of the

trees is from the overhanging branch visible at the top of the

image in Figure 3(a). Farther up the image, another blob on

the right side of the trees corresponds to the person at 30 m.
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Fig. 3. An example of the stereo-based segmentation for region-of-interest detection: (a) the left image of a stereo pair� (b) the

resulting depth map� (c) the PPM of point counts smoothed with an averaging filter� (d) a close up of the map with segmented

regions overlaid� and (e) the segmented regions, with examples of the foreground/background separation.

Overhangs are currently not removed before projecting data

into the PPM, however segmented blobs are post-processed to

remove outliers. The additional clutter in the PPM caused by

overhangs is generally insignificant in the semi-urban datasets

used, but can be problematic in urban environments, result-

ing in missed detections. This will be a subject of future

work.

After smoothing, the map gradient is used to find all of the

peaks in the map. The peaks are grown down to valleys (an

inflection point in the gradient), resulting in a segmentation of
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Fig. 4. Examples of ROI detection from a semi-urban sequence. The first column shows a thumbnail of the image� the second

shows the depth map� the third column shows the segmented regions� and the fourth column shows the foreground/background

segmentation for specific regions. The top row shows an easily separable case with people at 30 m� the middle row shows a case

of partial occlusion, with a person at 30 m� and the bottom row shows a person at 45 m who is difficult to distinguish visually.

the map. As the minimum expected size of the objects being

detecting is known, segmented blobs whose peaks fall within

half of this size are then merged together. Figure 3(d) gives a

close-up of the PPM around the person at 30 m� although the

map blob corresponding to the person is not completely dis-

joint from the blob for the nearest tree, it is still segmented as

a separate ROI. Figure 3(e) illustrates the segmentation results

in image space.

Figure 4 shows several more examples of segmentation, in-

cluding more challenging cases. The top row shows the seg-

mentation of two people at approximately 30 m, where the

people are easily distinguishable in the stereo data. Stereo

matching causes “foreground fattening” of the regions contain-

ing people, but the effect tends to be consistent and so can be

accounted for during classification. Alternatively, a more so-

phisticated stereo algorithm could be applied in each region

to reduce this effect, but we have not yet implemented this.

The middle rows shows the segmentation of a person at 25 m

partially occluding a mannequin several meters behind them.

As the mannequin falls into a cell well behind the person, the

mannequin is segmented correctly, but includes a portion of

the ground. The bottom row shows a person at 45 m walking

in front of a vehicle with a similar color. In this case, the person

is difficult to distinguish from the vehicle visually, but can still

be segmented correctly because of the range data on the person

at other locations on his body. Note, however, that the vehicle

is over-segmented into many separate regions. This is due to

the patchy stereo of the flat vehicle, resulting in many regions

that are then smoothed and merged, resulting in human-sized

regions. Overall, on this semi-urban data, our approach rarely

fails to correctly segment a person closer than 60 m. Even

on the urban datasets, the segmentation rarely fails to detect

people when the stereo coverage is sufficient. The problems

with the segmentation tend to be with over-segmenting non-

human objects into human-sized objects or merging multiple

people into a single region. The latter could be addressed by

improving the post-processing of the regions, or by selecting

sub-regions to provide to the classifier. The former is more

difficult to address, but could potentially be alleviated by us-

ing multiply sized and oriented filters, prefiltering the range

data before projecting it into the PPM, or improving the stereo

algorithm to provide more range data in low-texture areas of

the image.

3.4. Classification

Geometric features of each segmented three-dimensional point

cloud are used to classify them as human or not human

based on shape. For efficiency, the regions are first prefiltered,

and shape-based features are then computed on the remain-

ing regions. The regions are classified using a discriminative

quadratic classifier based on a logistic regression model.
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Prefiltering of regions based on shape moments is used to

reduce the number of regions and create more balanced train-

ing data. The prefilter uses a fixed threshold on the width,

height, and depth variance of each segmented region. This

threshold is simply selected as the 3� values obtained from

the training data. After prefiltering, the features used for clas-

sification are computed for each region’s point cloud.

Our features include the fixed-frame shape moments (vari-

ances of point clouds in a fixed frame), rotationally invariant

shape moments (the eigenvalues of the point cloud’s scatter

matrix), and “soft-counts” of various width, height, depth, and

volume constraints. The logarithmic and empirical logit trans-

forms of these moments and counts are used to improve the

normality of the feature distribution (resulting in “soft” counts,

as opposed to raw counts). The features were selected based on

our prior experience and similar features shown to be effective

in other work (Howard et al. 2007� Thornton et al. 2008).

To compute the features, we start by centering the point

cloud about the x-axis by its mean value and setting the mini-

mum depth z and height y to zero. The first feature is defined

by the logarithm of the second-order moment of the height:

f1 � � log�� 2
y�� (1)

We use the negative sign for the logs in order to have feature

values be more positive for the (smaller) human blobs. We also

off-center the y moment by redefining it as � 2
y � E�y � 0�5�2

where E denotes the expectation operator. The particular off-

set value (of 0.5 m) was experimentally found to enhance per-

formance and more generally could be automatically learned

from data. Finally, we center the distribution of all features by

subtracting a constant shift value so the “cross-over” value of

each feature is near zero. Such linear shifts in the log-domain

correspond to (arbitrary) scale factors in the original coordi-

nates and are omitted in the equations presented.

The “soft-count” features are defined by the number of

points that fall inside certain preset coordinate bounds (or vol-

umes). Such count-based features ignore “true shape” and fo-

cus instead on the object’s size or extent. Unlike moment-

based features, count-based features are more tolerant of out-

lier noise and some artifacts of stereo processing. Naturally

there are strong correlations between these two different sets

of features. However, this correlation or redundancy can be

quite helpful for modeling purposes. For the total number of

points n in a blob point cloud, we define nx � #�	x 	 � 1�

as the number (subset) of three-dimensional points whose x

value is less than 1 m (in absolute value), ny0
� #�y � 2� and

ny1
� #�y 	 1� as the number of points whose height value is

less than 2 m and greater than 1 m, and nz0
� #�z � 4� and

nz1
� #�z � 3�5� as the number of points with a depth value

less than 4 and 3.5 m, respectively. We also define n
 to be the

number of three-dimensional points that satisfy all three width,

height, and depth constraints simultaneously (i.e. the number

of points that fall within the prescribed rectangular volume of

size 1 m� 2 m� 4 m). Although these constraints were se-

lected empirically, the process could easily be automated. In

order to normalize the data as well as account for uncertainty

due to the sample size (n), we use a logit transform with an

empirical prior count c:

f2 � log
nx 
 cx

n � nx 
 cx

�

f3 � log
ny0

 cy0

n � ny0

 cy0

�

f4 � log
nz0

 cz0

n � nz0

 cz0

�

f5 � log
n
 
 c


n � n
 
 c

�

f6 � log
ny1

 cy1

n � ny1

 cy1

�

f7 � log
nz1

 cz1

n � nz1

 cz1

� (2)

The rotationally invariant features are the logarithms of the

eigenvalues of the point cloud’s covariance (inertia) matrix,

where (�x � �y� �z) correspond to the major, intermediate, and

minor axes, respectively:

f8 � � log��x ��

f9 � � log��y��

f10 � � log��z�� (3)

We note that f8 would be redundant with f1 if all of the

blobs were oriented correctly (upright and “facing” down-

range). However, this is often not the case due to artifacts in

stereo processing or slight errors in roll/pitch estimates, result-

ing in point clouds that are tilted and/or slanted. We once again

use the negative sign convention (so human feature values are

more positive) and likewise use appropriate additive shifts to

center the distributions even though these values are not shown

in the equations.

Analysis of the shape features indicated that a linear clas-

sifier (with a linear decision boundary) was too simple to

always work effectively. However, a more complex decision

boundary can be achieved while still using a linear classifier

(which is desirable for its computational efficiency and robust-

ness) by expanding the feature set to use higher-order terms.

Specifically, a quadratic decision boundary is modeled using

the augmented feature set:

x � [1 � fi � � fi f j �i� j � f
2
i �]

T� (4)

Using this feature vector, we use Bayesian parameter es-

timation for a discriminative classifier based on a standard
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generalized linear model for binary outcomes (human versus

non-human). For this probabilistic model, the logit of the class

membership probability p�y � 
1� is modeled by the lin-

ear term wTx, where w is the vector of feature weights (our

classifier parameters). Equivalently, this means using a lo-

gistic sigmoid function on wTx to model output probabilities

p  [0� 1]:

p�yi � 
1 	 xi �w� � logit
�1�wTxi � �

1

1
 e�wTxi
� (5)

This is simply the probability for a Bernoulli model (of being

human) given an input feature vector xi . Given that our y labels

are �1 and that p�y � 
1� � 1� p�y � �1� and exploiting

the symmetry of the logistic function itself, the full likelihood

for the entire training set can be written in this compact form

p�y 	 X�w� �

n�

i�1

�1
 e�yi wTxi ��1� (6)

where y is the vector of output labels and the matrix X collects

all training feature vectors xi in its columns.

All that remains is to posit a prior distribution on our pa-

rameters, and for convenience we use a zero-mean Gaussian

p�w� � � �0� ��. If this was the first training set we encoun-

tered, we could use a non-informative (diffuse) prior by setting

� very large (and diagonal). More importantly, we can use

the posterior distribution inferred from previous training sets

as the prior distribution on new sets. The Bayesian derivation

is completed by examining the posterior distribution which is

proportional to the joint distribution

p�w 	 X� y� � p�y 	 X�w�p�w�� (7)

More conveniently, we form the log-posterior

�w� � log p�w 	 X� y� � �
1

2
wT��1w

�

n�

i�1

log�1
 e�yi wTxi �
 constant� (8)

which for this model (using a log-quadratic prior) is conve-

niently log-concave. This means that the posterior distribution

has a single global maximum which is easy to find by iterative

non-linear optimization methods. The technique of choice for

this class of models is the iteratively reweighted least squares

(IRLS) algorithm, which uses Newton–Raphson updates to

solve a set n coupled non-linear equations for ��w� � 0.

Having reached the mode �w this optimization procedure also

yields the local curvature or Hessian: H � �2�w�. Al-

though the log-posterior is unimodal, it is generally skewed

(non-Gaussian) but if n is large, then a Gaussian approxima-

tion becomes increasingly accurate. Therefore, it is often ade-

quate to model the w posterior by a Gaussian with mean �w and

covariance matrix defined by the (negative) inverse Hessian,

V � �H�1

p�w 	 X� y� � � � �w�V�� (9)

We note that because we have an analytic closed-form expres-

sion for the (unnormalized) joint distribution of �w� y� it is not

difficult to stochastically sample from the exact posterior of

w using standard Markov chain Monte Carlo (MCMC) meth-

ods (e.g. the Metropolis–Hastings algorithm or importance re-

sampling, etc.). When there are large number of training data,

the simple Gaussian modal approximation in Equation (9) is

usually sufficient for posterior predictive sampling (where it is

trivially easy to sample from a multivariate Gaussian).

The expected posterior probability of being human for a

new feature vector x� is then given by marginalizing over the

uncertainty in the w posterior

Ep�y� � 
1 	 x��X� y� �

�
1

1
e�wTx�
p�w 	 X� y� dw� (10)

which can be reduced to a simple one-dimensional integral by

working with the posterior distribution of the scalar random

variable wTx�. If instead of the Gaussian approximation to the

posterior, we wish to use the exact posterior to evaluate this

integral, stochastic methods using MCMC can be used. Nev-

ertheless, it is convenient to output a single maximum a pos-

teriori (MAP) estimate of the output probability by using the

mode �w

��� �
1

1
 e� �w
Tx�
� (11)

This approximate predictive probability becomes more accu-

rate as the number of observations n approaches infinity (since

the posterior then approaches a � function centered at �w). We

use the MAP estimate in all of the results presented in this pa-

per.

3.5. Tracking

Tracking ROIs in the scene is used to both reduce incorrect

detections and estimate the velocity of the detected objects.

By associating ROIs across multiple frames, the single frame

classifications can be aggregated to eliminate false positives.

Similarly, using the positions of a tracked object from stereo

and the motion of the vehicle, estimated by visual odometry or

provided by an INS, the velocity of the object can be computed

and extrapolated to provide a predicted motion to a path plan-

ner. The tracking algorithm is designed to be extremely com-

putationally efficient and makes very few assumptions about

the motions of objects.

Tracking of ROIs is actually implemented as data associa-

tion, rather than explicit tracking. The ROIs extracted in a new

frame are matched to existing nearby tracks by computing a

cost based on each ROI’s segmented foreground appearance



Bajracharya et al. / A Fast Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle 11

and then solving a one-to-one assignment problem. For com-

putational efficiency and simplicity, the cost between a ROI

and a track is computed by comparing the new ROI to the last

ROI in the track. Only ROIs within a fixed distance are con-

sidered� the distance is computed by using an assumed max-

imum velocity of 2 m s�1 in any direction for each object.

The cost between ROIs is then computed as the Bhattacharyya

distance of a color (RGB) histogram between each ROI. The

resulting linear assignment problem could be solved optimally

by the Hungarian method or sub-optimally with a greedy al-

gorithm, but these methods are relatively expensive (O�n3�

and O�n2 log n�, respectively). Instead, we simply require as-

signments to be co-occurring minima (O�n2�). If a ROI does

not match an existing track, a new track is started. Tracks that

are not matched for a fixed number of frames are eliminated.

To reduce the number of ROIs tracked, only ROIs that pass

the pre-filter based on size variances (Section 3.4) are consid-

ered. This also increases the stability of the ROIs by elimi-

nating small, similarly colored regions nearby a larger region.

Although we have experimented with many-to-one and one-to-

many matching, we found one-to-one matching to be sufficient

and simpler. We have not yet invested in more sophisticated

methods, such as multiple hypothesis tracking, joint proba-

bilistic data association filters, or kernel-based tracking, as the

need has not justified the increased computational cost. An ex-

ample of tracked pedestrians is shown in Figure 5. Figure 5(c)

shows the individual tracks for the scene shown in Figure 5(b)

(the multiple overlapping tracks are due to the fact that the

vehicle, whose path is shown as the red line, doubled-backed

across the intersection).

Analyzing the single frame output of our classifier for each

track, we observed that many false positives were only present

in a single frame or in multiple non-consecutive frames. Con-

versely, true positives (the pedestrians) were detected consis-

tently over many frames, and when detections were missed it

was typically for only one or two frames before the person

was detected again. To eliminate the spikes in classification

scores that led to false positives, while still maintaining detec-

tions on true positives where the classification score dropped

for a small number of frames, we considered several methods

of filtering the scores. These included computing the mean,

median, maximum, and minimum score over a varying number

of frames, and waiting a varying number of frames required to

make a classification decision. In our experiments, two differ-

ent combinations of the filtering method and minimum num-

ber of frames were found to work well. The first combination

was to compute the median of three consecutive scores and re-

quiring three consecutive frames of detection before making a

classification decision. The second combination was to com-

pute the minimum of four consecutive scores and require two

consecutive frames of detection before making a classification

decision. We ultimately fielded the first combination, but tem-

poral filtering can also be disabled depending on the classifier

operating point.

Trade-offs in temporally filtering the classification scores

include the latency it introduces when declaring detections and

the quality of tracking (length of tracks). Although temporal

filtering can eliminate spurious detections, it also reduces the

true positives. This results in the reduction of the detection rate

at high false alarm per frame (FAPF) rates, but generally in-

creases the detection rates at low FAPF rates, as shown in Fig-

ure 5(a).

The velocity of tracks is estimated by fitting a linear mo-

tion model over a sliding window of detections. We origi-

nally utilized independent Kalman filters to compute the ex-

pected position and velocity of each track, but found that due

to the periodic motion of a person’s gait, it did not provide sig-

nificantly better results. Comparing the frame-to-frame posi-

tion of a walking person tends to result in an oscillating veloc-

ity, but fitting a linear model over several frames smooths the

motion. We estimate the position and velocity uncertainty by

combining the expected stereo error with the model fit. An ex-

ample of the computed velocity vectors and variances is shown

in Figure 5(d) for the scene in Figure 5(b).

4. Experimental Results

The end-to-end system has been tested on datasets with hand-

labeled ground-truth and integrated onboard a vehicle for live

testing. The primary datasets were collected from the vehi-

cle on which the system was integrated in semi-urban, lightly

cluttered scenarios. Although relatively simple compared with

what a deployed system might encounter, they are representa-

tive of the RCTA SafeOps field experiments used to evaluate

the system. The results on the datasets show that our system

can achieve initial detections at a range of 60 m, with detec-

tions reliable enough for autonomous navigation out to 40 m.

To demonstrate that the system’s performance is competitive

with state-of-the-art systems in highly cluttered, urban scenar-

ios, we also make use of datasets published by Ess et al. (2007,

2008). We show that we can achieve performance similar to

Ess et al. on these datasets while running at 10 Hz.

4.1. Semi-urban Datasets

The primary datasets used to evaluate the system use input

imagery from a three CCD color stereo camera pair with

1�024� 768 pixels, a 50 cm baseline, a field of view approxi-

mately 60� wide, and with frame rates between 3.5 and 10 Hz.

The cameras were either mounted on the roof of a sports util-

ity vehicle (SUV) at a height of approximately 2 m above the

ground, and pointed down by approximately 5�, or on the pan–

tilt head of an unmanned vehicle at a height of approximate

2 m above the ground, and pointed down by 20�. The scenar-

ios include the vehicle driving down a road at speeds varying

from 15 to 30 km h�1, with stationary mannequins and people
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Fig. 5. (a) The performance for a single semi-urban sequence illustrating how tracking can be beneficial at low FAPF, but reduces

the detection rate at high FAPF by introducing a latency. (b) An example detection from the scene (yellow boxes are detections,

with a green overlay of the segmented person� the cyan boxes are missed detections). (c) The individual tracks detected during

the run, with the vehicle path shown as the red line� note that the vehicle double-backed across the intersection, resulting in

overlapping tracks. (d) The 3D point cloud of a region with estimated velocity vectors (cyan lines) and uncertainties (cyan

ellipses) for the detections in (b).

standing, walking, and running along the side of and across

the road in varying directions. The scene also contains station-

ary and moving cars, trucks, and trailers, along with stationary

crates, cones, barrels, sticks, and other similar objects. In many

cases, the pedestrians experience a period of partial to full oc-

clusion by these objects or each other. Several variations of the
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scenario also include one or two people walking in front of the

vehicle, weaving between each other and occasionally going

out of the field of view.

The imagery was manually ground-truthed by annotating

a bounding box around each person in the left image of each

frame, to a range of approximately 100 m. In total, our cor-

pus includes approximately 6,000 annotated frames with ap-

proximately 10,000 annotated people, although we restrict our

analysis to specific datasets which are representative of oper-

ational scenarios. Although people are annotated regardless of

their posture or degree of occlusion, we only consider peo-

ple who are in an upright posture with less than 50% occlu-

sion for our analysis. We use the measure of the area of the

intersection over the area of the union of the annotated and

detected bounding boxes to declare a correct detection. How-

ever, for these datasets, we found that relaxing the common

evaluation criteria of 50% intersection-over-union to 25% pro-

duced more meaningful results. This is because we are inter-

ested in detection at relatively long range where the segmen-

tation error is dominated by the foreground fattening effect of

stereo matching. As the scenes are relatively uncluttered, us-

ing a looser matching criteria still remains representative of

actual detections. In order to present results that are meaning-

ful when developing a complete, autonomous system capable

of safe navigation, we present our results as the Pd, defined as

the number of detections divided by the true number of people

in the scene, versus the FAPF, defined as the number of incor-

rect detections divided by the number of frames in the dataset.

We have observed that pixels-on-target are a dominating factor

to classification performance, so we also illustrate the perfor-

mance as a function of range, restricting the detections and

annotations to several maximum ranges. This provides an in-

dication of how the algorithm will perform with different res-

olution imagery or different camera or sensor configurations.

To demonstrate the effectiveness of our feature set and clas-

sifier, we first present results on a cross-validation test over

many of our datasets. Figure 6(a) shows the performance of

the system as an average of 1,000 trials on a dataset com-

bined from many different scenarios, totaling 4,396 frames

with 3,409 annotated people. From these sequences, 21,824

ROIs were extracted and each curve was generated by ran-

domly selecting 80% of these ROIs for training and using the

remaining 20% for testing. The resulting number of effective

frames in each test sequence is thus 879, and the average num-

ber of humans is shown in the plot for the respective range

restriction. For this test, no temporal filtering was used to ad-

just the classification scores. Figure 6(b) shows a sample of

the images of the sequences used. The detections shown are

indicative of the performance of the system (but are, in fact,

based on a system trained without that sequence). Across our

datasets, the system can achieve a 95% Pd at 0.1 FAPF for

people less than 30 m and 85% Pd at 0.1 FAPF for people less

than 40 m. For people out to 50 and 100 m, the system achieves

95% and 90% Pd respectively at 1 FAPF.

As the cross-validation results sample across all of the

datasets being tested, they do not necessarily provide com-

pelling evidence that the system is effective in new, unseen

scenarios. To demonstrate that our system is robust in new

environments, we show the performance on individual se-

quences that have never been used for training. Although less

statistically significant, they are perhaps more indicative of

the performance to be expected of the fielded system. Fig-

ure 7(a) and (b) show the results of the system without tempo-

ral filtering on two sequences held out from the training data

(for which example images with detections are shown in Fig-

ure 7(c) and (d)). The same system was run on both datasets

with no modification. As the plots show, the sequence shown

in Figure 7(a) and (c) is more difficult than Figure 7(b) and (d),

containing more clutter and occlusion. The system achieves

well above 95% Pd at 0.1 FAPF for pedestrians less than 30 m

and 80% Pd for less than 40 m. For a fielded system, we gen-

erally run at an operating point closer to 0.02 FAPF, which

results in 90% Pd for �30 m and 65% Pd for �40 m, and

maintain some degree of persistence of detected objects, prop-

agating them with their predicted velocity for path planning.

The main source of false alarms of our system in these en-

vironments is due to the over segmentation of vehicles. An ex-

ample of a false alarm on the front of a pickup truck is shown

in the lower image of Figure 6(b). The individual distracter ob-

jects, such as barrels, tripods, and sign posts are only occasion-

ally misclassified because they are normally segmented cor-

rectly. The main source of missed detections is due to variabil-

ity of the stereo range data at long range, partial occlusion, and

occasionally due to imprecise localization of the person due to

under or over segmentation. Our system has some robustness

to partial occlusion, but tends to break down after greater than

50% occlusion. The sequence shown in Figure 8 shows several

examples of performance on occluding and overlapping peo-

ple. The people in the near field are detected when they are

unoccluded, or only slightly occluded. They are not detected

when partially occluded either vertically (due to crossing the

other person) or horizontally (due to the posts). Note, how-

ever, that the people are all tracked throughout the sequence

(although with one incorrect association). The people in the

far field are similarly not detected when they are partially oc-

cluded by the vehicles (or too far away), but are detected when

they emerge into the open. The failure to detect partially oc-

cluded people is understandable because we only train a single

classifier with data that does not contain many occluded peo-

ple. An approach to addressing partial occlusion might be to

train multiple classifiers for the different types of occlusion ex-

pected (lower torso, upper torso, left side, etc.). Alternatively,

a parts-based classifier could be used to detect distinct por-

tions of people. However, this approach would likely require

a ground-plane assumption in order to detect the body parts

correctly.

In addition to testing on ground-truthed datasets, the end-

to-end system has been integrated into several systems for
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Fig. 6. (a) The performance resulting from 1,000 trials of 80%/20% split cross-validation tests on 4,396 frames drawn from

various scenarios. (b) Examples of images and detections from the various scenarios, with an example false alarm on the truck in

the bottom image. The yellow boxes are detections, with a green overlay of the segmented person.
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Fig. 7. (a) The performance for the run shown in (c), and (b) the performance for the run shown in (d). The yellow boxes are

detections, with a green overlay of the segmented person� the cyan boxes are missed detections.

live testing. An earlier version of the system was fielded as

part of the RCTA program SafeOps test, as reported by Bodt

(2008). The system described here has been integrated onboard

the test vehicle for an upcoming test, for which results will

be published in the future. The system has also been used to

demonstrate autonomous navigation in a lightly cluttered dy-

namic environment on a small vehicle (with cameras at ap-

proximately 1 m high and with a 12 cm baseline) traveling at

approximately 1 m s�1.

4.2. Urban Datasets

To illustrate that our system is competitive with other state-

of-the-art stereo-based pedestrian detection systems, we also

evaluated our system on datasets published by Ess et al. (2007,

2008). These datasets consist of 640 � 480 resolution color

Bayer tiled imagery, taken at 15 Hz, with a 40 cm baseline

camera pair pointed straight out at a height of approximately

1 m. The scenarios are significantly more complex than the

semi-urban data, with many people in a busy shopping dis-

trict in Zürich, Switzerland, with significant occlusion, clutter,
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Fig. 8. A sequence of frames showing detections (yellow boxes, with green overlay the segmented person) and misses (cyan

boxes) for people under occlusion. The number above the boxes indicates the range, and the number below indicates the track

ID.
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Fig. 9. (a) The performance curves for sequences from Ess et al. (2007, 2008) presented with the same evaluation criteria as

their work. (b) The performance curves for the same sequences when all annotation that have less than 10% stereo coverage are

eliminated, indicating that most of the misses in (a) are due to lack of stereo depth data on the people.

and motion. The annotations include all people whose torso

is partially visible, and include children and partially upright

postures, but not people sitting. To make a direct comparison

to the results published by Ess et al., we use his detection crite-

ria (50% intersection-over-union) and restrict the annotations

used in the same way they do (with height greater than 80 pix-

els for sequence 2 of the 2008 data, and 60 pixels for all other

data). We completely omit sequence 1 of the 2008 data be-

cause we were unable to generate acceptable stereo depth maps

based on the camera models provided. The depth data density

on all other sequences is acceptable, but not as dense as it could

be, and results in reduced performance as discussed later. For

direct comparison, we also train on exactly the same data as

well (sequence 0 of the 2007 data).

The performance curves of our end-to-end system with the

Ess et al. test sequences using exactly the same evaluation cri-

teria are shown in Figure 9(a). Although the performance does

not appear very good (between 0.4 and 0.7 recall at 1 false

positive per frame, and with maximum achievable recalls be-

tween 0.5 and 0.75), it is very similar to the results reported

by Ess et al.. In fact, the results are slightly better at 1 FAPF

on all sequences except sequence 2 of the 2008 data (which

is due to less stereo coverage). Examples of the scenes, along

with stereo and the predicted velocity of certain pedestrians,

are shown in Figures 10 and 11. Note that people are detected

when they are in various poses or stages of walking and while

carrying bags or briefcases. The main cause of the missed de-

tections is simply due to a lack of stereo depth data density

on people who are either too close or occluded. To illustrate

this point, we also show the performance for the sequences

where annotated people must have at least 10% stereo cover-

age (of the pixels defined by the annotated bounding box) in

Figure 9(b). As our system relies on stereo data for both de-

tection and classification, it can never find these people, nor

would it be able to localize them to plan around them in a fully

autonomous mode.

Our system misses detections and produces false positives

in some understandable situations. For instance, it misses most

children (left image of Figure 10), which were not included

in any training data, and detects mannequins in shop win-

dows or reflections of people in windows (right image of Fig-

ure 10). However, the majority of false detections is due to

patchy stereo on flat surfaces such as buildings or cars, which

results in the objects being over-segmented into a human-sized

objects (as seen on the car in the left image of Figure 11).

Many times, this results in false positives high up on build-

ings (as seen in the center image of Figure 11), that could be

removed by only considering people who might enter the street

or be a danger. In other cases, explicitly detecting other objects

such as cars would remove the false detections. Despite not de-

signing for many of these situations, our system is capable of

achieving competitive performance while running at 10 Hz on

the 640� 480 imagery.

5. Conclusion

The results of our stereo-based pedestrian detection system

show it to be effective at detecting people out to a range of

40 m in semi-urban environments. It achieves results compa-

rable with alternative approaches with other sensors, but offers
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Fig. 10. Examples of detections (yellow boxes, with green overlay of segmented people) and misses (cyan boxes) (top row), the

corresponding depth map (middle row) and velocity estimates on the three-dimensional point cloud (bottom row) for sequences

from Ess et al. (2007). The false detection in the sequence 3 example is due to a reflection in the window.

Fig. 11. Examples of detections (yellow boxes, with green overlay of segmented people) and misses (cyan boxes) (top row), the

corresponding depth map (middle row) for sequence 2 from Ess et al. (2008). There are false alarms on the car in the left image

and the bus in the middle image. The misses are generally due to lack of stereo coverage or excessive clutter.
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the potential for long-term scalability to higher spatial reso-

lution, smaller size, and lower cost than other sensors. It also

performs similarly to state-of-the-art results from recent liter-

ature, while running significantly faster.

Our system can be improved in many ways, but we have

identified several specific approaches that we feel would be

most beneficial. In particular, adding appearance and motion

features could substantially improve the detection rates. At

close range, where there are many pixels-on-target, using ap-

pearance features will help to detect people under partial oc-

clusion and in non-upright postures. At long range, using mo-

tion to segment moving objects from the background will help

to increase the detection rate (although one cannot rely on mo-

tion exclusively, since stationary pedestrians are in as much

danger as moving people). All of these techniques will benefit

from increased camera resolution, but doing so will increase

the computational cost. This strongly motivates the study of

methods for efficiently focusing attention of specific areas of

high resolution imagery.
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