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Abstract. This proceedings contribution presents a novel, non-linear extension to the

Lomb-Scargle periodogram that allows periodograms to be generated for arbitrary signal

shapes. Such periodograms are already known as “template periodograms” or “peri-

odic matched filters,” but current implementations are computationally inefficient. The

“fast template periodogram” presented here improves existing techniques by a factor of

∼a few for small test cases (O(10) observations), and over three orders of magnitude for

lightcurves containingO(104) observations. The fast template periodogram scales asymp-

totically as O(HNf log HNf +H4Nf ), where H denotes the number of harmonics required

to adequately approximate the template and Nf is the number of trial frequencies. Exist-

ing implementations scale as O(NobsNf ), where Nobs is the number of observations in the

lightcurve. An open source Python implementation is available on GitHub.

1 Introduction

Template fitting, or periodic matched filtering, is a powerful technique for identifying, classifying,

and characterizing periodic variability in noisy time series data. However, template fitting requires

several orders of magnitude more computational resources than running a Lomb Scargle periodogram

([1–4]) on the same lightcurve, and the computational requirements scale as NobsNf , where Nobs is the

number of observations in the lightcurve and Nf is the number of trial frequencies.

For example, [5] used template fitting to model RR Lyrae in the Pan-STARRS DR1 ([6]) and

found that, for a given completeness, template fitting produced purer samples of RR Lyrae than

Lomb-Scargle or multi-term extensions ([7]). However, [5] found that the computational resources

needed to produce template fits (approximately 30 minutes per source per CPU) limited the number

of lightcurves for which a full template fit could be performed to O(103) out of O(106) Pan-STARRS

DR1 lightcurves.

Pan-STARRS lightcurves typically have less than 35 observations in 5 photometric filters (∼ 7

per filter), but many photometric surveys have orders of magnitude more observations – CoRoT ([8]),

SuperWASP ([9]), HATNet ([10]), and Kepler ([11]), for example, have O(104−105) observations per

lightcurve. Since template fitting scales as O(N2
obs

),1 running template periodograms on these surveys

currently requires a prohibitively large amount of computational resources.
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1The actual scaling is technically O(NobsN f ), however the number of trial frequencies N f scales linearly with Nobs ([12]).
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However, if template periodograms were computationally efficient enough to run on entire surveys

with O(103 − 105) observations per lightcurve, they would have the potential to be a powerful tool for

automated classification. For example, by selecting a group of templates that capture the variety of

periodic signals present in astrophysical data, a template periodogram could provide simultaneous de-

tection and (pre-)classification of all lightcurves with higher signal to noise ratio than multi-harmonic

periodograms, which are also designed to detect non-sinusoidal signals.

The advantage of templates is that there are only three free parameters (amplitude, phase, and a

constant offset), compared to the multi-harmonic periodogram, which has 2H + 1 free parameters,

where H is the number of harmonics. Using a collection of templates encodes “domain knowledge”

(see, e.g., [13]) into the periodogram, which helps to reduce the parameter space to a set of physically

plausible lightcurve shapes.

2 Extending Lomb-Scargle to arbitrary shapes

The Lomb-Scargle periodogram ([1–4]) is also known as least squares spectral analysis. The formu-

lation of the periodogram given in [1] and [2] fits a linear model

ŷ(t|θ, ω) = θ1 cosωt + θ2 cosωt (1)

to time series data D = {tn, yn, σn|n < N} at a number of trial frequencies ω. The Lomb-Scargle

periodogram,

PLS(ω) =
1

2σ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

[∑N
n=1(yn − ȳ) cosωtn

]2
∑N

n=1 cos2 ωti
+

[∑N
n=1(yn − ȳ) sinωtn

]2
∑N

n=1 sin2 ωti

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2)

is similar to a Fourier intensity for unevenly spaced data. As shown in [2], the periodogram can be

derived by minimizing the squared residuals and setting

P(ω) =
χ2

0 − χ2(ω)

χ2
0

, (3)

where χ2(ω) is the minimum (weighted) sum of squared residuals for a model fit at frequency ω, and

χ2
0 is the weighted sum of squared residuals for a constant fit.

There are many extensions to the Lomb-Scargle periodogram that are useful for time domain

astronomy. [14] used weighted squared residuals and added a constant offset to ŷ, [7, 15] further

extended the Lomb-Scargle periodogram for models with more than one harmonic,

ŷ(t|θ, ω) = θ0 +

H∑

h=1

θ2h cos hωt + θ2h−1 sin hωt, (4)

and recently [12] provided a formalism for applying periodograms to multi-band time series.

The multiharmonic periodogram is designed to find non-sinusoidal periodic signals in irregularly

spaced time series data. However, as shown in [12], increased flexibility comes at a cost – the noise

level of the periodogram relative to the maximum peak height tends to increase as the number of free

parameters in the model ŷ increases, and in some cases the best frequency can tend to a harmonic or

a subharmonic of the true frequency.

If the signal shape of interest is known a priori and can be expressed as a truncated Fourier series

with H harmonics,
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M(ωt) =
H∑

h=1

ψ2h cos hωt + ψ2h−1 sin hωt, (5)

then a model of the form

ŷM(t|θ, ω) = θ0 + θ1M(ω(t − θ2)) (6)

should provide improved signal to noise over the multiharmonic periodogram, since there are only

three free parameters at each trial frequency, regardless of the number of harmonics used to express

the template M. The difference between the template periodogram (i.e., the periodogram derived

from ŷM) and the multiharmonic periodogram of [7, 15] is that the harmonic amplitudes ψi are not
free parameters in the template periodogram, while they are free parameters for the multiharmonic

periodogram.

Unlike the Lomb-Scargle extensions previously mentioned, the template periodogram is non-
linear. The non-linearity arises from the phase shift parameter θ2. For Lomb-Scargle and multi-

harmonic periodograms, the phase shift is equivalent to changing the relative amplitudes of the cosine

and sine terms. This is not true for the template periodogram, since ψi terms are deliberately fixed.

Instead, by working with x ≡ cosωθ2, the template can be expressed as:

M(ω(t − θ2)) =

H∑

h=1

[(
ψ2hTh(x) ∓ ψ2h−1

√
1 − x2Uh−1(x)

)
cos hωt

+
(
ψ2h−1Th(x) ± ψ2h

√
1 − x2Uh−1(x)

)
sin hωt

]
, (7)

where Tn and Un are the Chebyshev polynomials of the first and second kind, respectively, and the ±
sign ambiguity reflects the two possible signs of sinωθ2.

Detailed derivations of the template periodogram will be presented in a later paper, but the non-

linearity of the template periodogram can be reduced to finding the real roots of a polynomial of order

∼ 6 H at each trial frequency. The root finding step scales as O(H3 − H4) at each trial frequency,

and the polynomial coefficients can be computed with a single non-equispaced fast Fourier transform

(NFFT, [16]) of size Nf H. Thus, the template periodogram scales as

O(Nf H4 + Nf H log Nf H). (8)

3 Implementation

A Python implementation of the fast template periodogram is available at

https://github.com/PrincetonUniversity/FastTemplatePeriodogram.

Timing comparisons with an existing Python template fitting implementation (gatspy, [17])

shown in Figure 1 demonstrate the improved computational efficiency of the fast template peri-

odogram. In terms of accuracy, Figure 1 also shows that the fast template periodogram, which solves

for the optimal parameters directly, is usually able to find better fits than the gatspy implementation,

which uses non-linear optimization tools to find the optimal parameters.

3

   
 

 
DOI: 10.1051/, 0  (2017) 71521EPJ Web of Conferences epjconf/20152

Wide-Field Variability Surveys: A 21st  Century Perspective
03003002 2



Figure 1. Timing (left) and accuracy (right) comparisons between the gatspy ([17]) template fitting algorithm

and the fast template periodogram. The fast template periodogram improves computational efficiency by a factor

of ∼a few for small test cases and this improvement factor grows linearly in O(Nf ∼ Nobs). Though the fast

template periodogram hasO(Nf log Nf ) asymptotic scaling for a given value of H, the root-finding utilities (which

scale as O(Nf )) dominate the computational time for all test cases shown here. In most cases, the fast template

periodogram finds better template fits than gatspy (points that fall below the dashed line on the right-most

figure).

4 Conclusion

Finding non-sinusoidal signals in irregularly spaced astrophysical data is a challenging problem that

requires balancing model flexibility against the need to use as few model parameters as possible to

minimize the relative noise of the periodogram. Template periodograms, or periodic matched filters,

allow for the detection of periodic signals with fixed, arbitrary non-sinusoidal shapes without the

increase of periodogram noise inherent in the multiharmonic periodogram presented in [7, 15]. How-

ever, template periodogram implementations to date ([5, 17]) have relied on non-linear optimization

at each trial frequency to obtain the optimal amplitude, phase, and offset of the template. Thus, apply-

ing template periodograms to large photometric surveys like Pan-STARRS ([6]) requires prohibitive

amounts of computational resources and scale as O(Nf Nobs ∼ N2
obs

).

However, template periodograms can be made orders of magnitude more computationally effi-

cient. By using the algorithmic shortcuts described here, template periodograms could potentially

prove computationally feasible on large photometric surveys with many (� 102) observations per

lightcurve, like CoRoT ([8]), HATNet ([10]), and others. An open source implementation of the

fast template periodogram is available on GitHub, and improvements to the existing implementation

should continue to improve computational efficiency.
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[4] Vaníček, P., Ap&SS, 12, 10 (1971)

4

   
 

 
DOI: 10.1051/, 0  (2017) 71521EPJ Web of Conferences epjconf/20152

Wide-Field Variability Surveys: A 21st  Century Perspective
03003002 2



[5] Sesar, B., Hernitschek, N., Mitrović, S., et al., AJ, 153, 204 (2017)
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