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Abstract

We present a fast variational deconvolution algorithm that minimizes a quadratic data term subject

to a regularization on the ℓ1-norm of the wavelet coefficients of the solution.

Previously available methods have essentially consisted in alternating between a Landweber iteration

and a wavelet-domain soft-thresholding operation. While having the advantage of simplicity, they are

known to converge slowly.

By expressing the cost functional in a Shannon wavelet basis, we are able to decompose the problem

into a series of subband-dependent minimizations. In particular, this allows for larger (subband-dependent)

step sizes and threshold levels than the previous method. This improves the convergence properties of

the algorithm significantly.

We demonstrate a speed-up of one order of magnitude in practical situations. This makes wavelet-

regularized deconvolution more widely accessible, even for applications with a strong limitation on

computational complexity. We present promising results in 3D deconvolution microscopy, where the size

of typical data sets does not permit more than a few tens of iterations.

I. INTRODUCTION

A. Motivation

During the past decade, biological imaging has been revolutionized by the widespread availability

of novel fluorescence labeling techniques and the development of advanced 3D optical microscopy [33].

As biological research moves towards molecular scale, the constraints in terms of resolution and light

efficiency are becoming more and more stringent. In this context, scientists are increasingly relying on

computational methods to take full advantage of their instrumentation [16], [25], [17], [6].
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The use of deconvolution to enhance micrographs is commonly referred to as deconvolution mi-

croscopy [23], [34]. The results are the most striking in 3D, as demonstrated by the pioneering work of

Agard and Sedat [1], which had a significant impact on the field. The main challenge in 3D resides in the

size of typical data sets, which severely restricts the computational complexity of numerical restoration

methods. With the present state of computer hardware, one cannot afford more than the equivalent of a

few tens of FFTs on a complete 3D stack. This explains why most software packages for deconvolution

microscopy are still based on relatively standard methods, at least when compared to the state-of-the-art

in 2D imaging [3], [27]. For instance, the Tikhonov-Miller and Richardson-Lucy algorithms are widely

used; they require 2 (respectively 4) FFTs per iteration, so that they are usually stopped after 30 to 40

iterations.

Wavelet regularization is a relatively recent technique in the area of deconvolution. Several research

groups have independently proposed a restoration procedure that alternates between wavelet-coefficient

thresholding and a Landweber update. Some of the ideas of the method, which we shall call the

Thresholded Landweber (TL) algorithm, can be traced back to the work of Starck et al. [30], [29].

Figueiredo and Nowak presented the first formal derivation of the TL algorithm using a statistically-based

Penalized Likelihood formulation [14]. The algorithm was then rederived in a deterministic variational

framework and generalized to a more general class of linear operators by Daubechies et al. [11]; note that

these authors also provided a general convergence proof that can be readily transposed to the algorithm

that we present in this paper. Bect et al. considered a similar wavelet-regularized cost function, but with

an additional Total Variation term [4]. Most recently, Chaux et al. extended this type of approach to

frame-based wavelet regularization [9].

The TL algorithm offers attractive features for 3D deconvolution microscopy. First, it belongs to the

class of non-linear wavelet-based methods, which have already proven to be very efficient for image-

restoration applications such as denoising. In a series of 2D deconvolution experiments (see [14]), the

TL algorithm was actually shown to perform best against several other wavelet-based deconvolution

methods. Second, the TL algorithm is simple to implement. Since it is iterative (unlike other wavelet-

based methods, e.g. the ones described in [12], [19], [26]), additional constraints such as positivity can

be easily incorporated. Finally, it requires only two FFTs and two wavelet transforms per iteration. This

represents an intermediate computational complexity compared to the standard algorithms mentioned

before.

The only weak point of the TL algorithm is its slow convergence speed. This is especially true at

high SNR levels, which may require several hundred iterations. The primary purpose of this article is to

propose a variation of the TL algorithm that minimizes the same functional but that is substantially faster

computationally. Our efforts are directed towards making wavelet regularization a tractable alternative

for deconvolving large data sets. In particular, we demonstrate its feasibility on a 3D stack of widefield
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fluorescence micrographs. To our knowledge, this is the first practical implementation of wavelet-based

3D deconvolution microscopy, and the perspectives in this area appear to be quite promising.

B. Image-formation model

In this paper, we are concerned with the recovery of a multidimensional signal from its noisy

observation through a convolutive imaging system.

Fig. 1 shows a model of the image-acquisiton chain that applies, for example, to fluorescence

microscopy. Generally speaking, we are interested in d-dimensional signals. The observed image is

the d-dimensional convolution of an original image (the characteristic function of the object of interest)

with the impulse response (or point spread function, PSF) of the imaging system. In practice, we only

have access to a finite number of samples of the image and these measurements are corrupted by noise.

+

Sampling

PSF

Noise

Original

signal

Measured

signal

Fig. 1. The image-formation and measurement model.

In the sequel, to simplify the presentation, we will adopt a purely discrete description of the image-

formation process. We shall assume that

y = Hxorig + b,

where xorig and y are vectors containing uniform samples of the original and measured signals, respec-

tively; b represents the measurement error. These vectors have N = N1 × N2 × . . . × Nd components,

where Nk stands for the number of samples along dimension k. H is a square, (block-) circulant matrix

that approximates the convolution with the PSF in Fig. 1.

C. Deconvolution as a variational problem

The recovery of xorig from y is an ill-posed problem [5]. To obtain an estimate with reasonable

accuracy and robustness to noise, one must often rely on prior information about the original signal.

The estimation of xorig is then formulated as an optimization problem which incorporates this prior

information. The quality of a given estimate x is typically measured by a cost function of the form

J(x) = Jdata(x) + λJreg(x). (1)

The data term Jdata(x) quantifies the “prediction error” with respect to the measurements. The regular-

ization term Jreg(x) is designed to penalize an estimate that would not exhibit the expected properties.
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The regularization parameter λ balances the contribution of both terms. In practice, the value of λ

needs to be adjusted appropriately; this is either done empirically by trial and error or by using some

data-driven cross-validation method [5], [32]. The problem of deconvolution is then to find an estimate

that minimizes the cost function J(x). This functional can also interpreted as a (negative) log-likelihood

in a Bayesian statistical framework, and deconvolution can then be seen as a maximum a posteriori

(MAP) estimation problem [5], [14].

In this paper, we will consider cost functions that favor wavelet expansions with a small number

of nonzero coefficients. This is typical of objects that are piecewise smooth [22]. The property of

natural images having a sparse wavelet expansion is heavily exploited in compression standards such as

JPEG2000 [10]. Here, we will concentrate on the case of an orthonormal wavelet decomposition, which

will be characterized by an (orthonormal) decomposition matrix W. In our notation, the matrix-vector

product wx = Wx yields the coefficients of x in the wavelet basis, and WT Wx reconstructs the signal

from these coefficients. We implicitely include the (coarsest-scale) scaling functions when referring to

the wavelet basis, unless specified otherwise. The cost function is then defined by

Jdata(x) = ‖y − Hx‖2
2 and Jreg(x) = ‖Wx‖1. (2)

Here the data term measures the residual in the image-domain using the (squared) Euclidian norm ‖ · ‖2.

The regularization term is the sum of the absolute values of the wavelet coefficients, which is denoted

with the ℓ1-norm ‖wx‖1. In contrast with traditional quadratic regularization, the ℓ1-norm leads to a

non-linear deconvolution algorithm. Compared to the ℓ2 norm, it puts less weight on coefficients that

are greater than 1, and more weight on coefficients that are smaller than 1. This tends to favor signals

that are “sparse” solutions with a few large wavelet coefficients.

D. Organization of the paper

The remainder of the paper is organized as follows. In Section II, we present the basic building

blocks of the algorithm and relate them to classical image processing tasks. In Section III, we recall the

formalism of Daubechies et al. leading to the existing thresholded Landweber algorithm. In Section IV,

we derive a faster algorithm that minimizes the same functional in the case of Shannon wavelets. The last

section is devoted to numerical experiments that illustrate the performance of the proposed algorithm,

on both simulated data and real 3D microscopy data.

II. PRELIMINARIES

There are two particular cases of (1) and (2) that provide the basic building blocks of the thresholded

Landweber algorithm.
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A. The non-regularized case

The first one corresponds to λ = 0. The cost function then reduces to

J(x) = ‖y − Hx‖2
2. (3)

A minimizer of this expression is the classical least squares estimator, which is given by x = H†y,

where1

H† = lim
c→0,c>0

(HT H + cI)−1HT

is the pseudoinverse of H. It is the solution with the smallest (Euclidian) norm. In practice, H†y can

be simply computed in the frequency domain (i.e. in the DFT basis), where H† is diagonalized.

However, this direct method is prone to noise amplification because the matrix HT H may have small

but non-zero eigenvalues. In order to delay this amplification process, the minimization of (3) is often

performed iteratively. Starting from an initial estimate x(0), one constructs a sequence (x(n))n∈N that

converges to a minimizer of J(x). A gradient descent on (3) with a fixed step size τ yields the following

update formula:

x(n+1) = x(n) + τHT (y − Hx(n)). (4)

This algorithm is usually named after Landweber [20]. For an in-depth investigation of this very basic

procedure—the grandfather of iterative deconvolution—we refer to [5].

B. The pure denoising case

The second particular case occurs when H = I. The cost function becomes

J(x) = ‖y − x‖2
2 + λ‖Wx‖1. (5)

This corresponds to a pure denoising problem, where we want to recover the original signal from the

non-blurred but noisy measurement y (see [8] for a complete mathematical treatment). When the wavelet

basis is orthonormal—as in our case—the minimization of this expression is straightforward, since the

quadratic term can be written in the wavelet domain (Parseval relation):

J(x) = ‖Wy − Wx‖2
2 + λ‖Wx‖1 =

N∑

n=1

|wy n − wx n|
2 + λ|wx n|, (6)

where wy n and wx n are the wavelet coefficients of y and x, respectively. In this form the cost function is

completely decoupled, which implies that its minimization can be achieved in a coefficient-wise fashion.

The solution involves the soft-thresholding function

Tλ/2(w) = sgn(w) (|w| − λ/2)+ , (7)

1In the case of complex vectors/matrices, T will denote Hermitian transposition.
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where (·)+ is the positive-part function:

(t)+ =







t if t > 0;

0 otherwise.

The minimizer of (5) is simply given by

x = WTTλ/2{Wy},

where Tλ/2{·} denotes a component-wise application of the soft-thresholding function. Note that this

formalism can be adapted to complex wavelet decompositions by replacing sgn(w) by exp(i arg w)

in (7). Interestingly, this algorithm was first proposed empirically for noise reduction in magnetic

resonance imaging [35]. It has become very popular in the field, following the impulsion of Donoho

and Johnstone who justified it on solid statistical grounds [13]. Several authors have also proposed a

Bayesian interpretation of the method, see e.g. [24], [28], [2].

C. General principle of bound optimization algorithms

Except for simplified cases such as those just mentioned, the functional J(x) defined by (2) cannot

be minimized directly by a coefficient-wise rule. This is primarily due to the convolution matrix H,

which makes the wavelet coefficients of x interdependent, hence precluding a simple coefficient-wise

rule. Instead, one can use an iterative minimization technique as proposed in [14], [11], [4]. Interestingly,

this involves a judicious combination of the two aforementioned methods. In the next section, we shall

briefly review the derivation of Daubechies et al.; it is based on a bound optimization approach [18],

[21], which essentially consists in replacing J(x) by a succession of auxiliary functionals that are easy

to minimize.

Using the current estimate x(n), the key-idea is to construct an auxiliary functional J̃n(x) with the

following properties:

• when x = x(n), J̃n(x) coincides with J(x);

• when x 6= x(n), J̃n(x) upper-bounds J(x).

As illustrated in Fig. 2 for N = 1, these properties guarantee that, by minimizing J̃n(x), we will also

decrease J(x). The general update equation is thus

x(n+1) = arg min
x

J̃n(x).

A general discussion of convergence criteria for bound optimization methods would be outside the scope

of this paper; the reader is referred to [21] and the references therein. Moreoever, as mentioned in the

introduction, the paper by Daubechies et al. contains a convergence proof that can be readily extended

to cover both algorithms presented in this paper.
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Fig. 2. The bound-optimization principle: an estimate of the minimizer of the original cost function is constructed by minimizing

an auxiliary functional. The process is repeated iteratively.

III. THE EXISTING THRESHOLDED LANDWEBER ALGORITHM

A. A bound with decoupled wavelet coefficients

Daubechies et al. [11] proposed to use functionals of the form

J̃n(x) = α‖x(n) − x‖2
2 + J(x) − ‖Hx(n) − Hx‖2

2. (8)

Here, the (real and positive) scalar α must be chosen strictly larger than the spectral radius of HT H:

α > ρ(HT H) where ρ(HT H) = max
‖v‖2=1

‖Hv‖2
2.

Equivalently, since H is a convolution matrix, ρ(HT H) is the largest squared modulus of the DFT

coefficients of H.

Let us discuss this choice in more details. First, the constraint on α ensures that J̃n(x) is a proper

bound for J(x).

Property 1: Assume that α > ρ(HT H) holds in Eq. (8). Then J̃n(x) > J(x), except at x = x(n),

where J̃n(x) = J(x).

Proof: The inequality α > ρ(HT H) ensures that αI−HT H is positive-definite. This means that,

when x 6= x(n), we have

α‖x(n) − x‖2
2 − ‖Hx(n) − Hx‖2

2 = (x(n) − x)T (αI − HT H)(x(n) − x) > 0;

whence it follows that J̃n(x) is a strict upper bound of J(x), except at x = x(n) where the equality is

met.

Second, the specific form of (8) makes it easy to minimize J̃n(x), based on the following observation.
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Property 2: Definition (8) is equivalent to

J̃n(x) = α ‖x(n) + α−1HT (y − Hx(n)) − x‖2
2 + λ‖Wx‖1 + c,

where c is a constant that does not depend on x.

Proof:

J̃n(x) =α‖x(n) − x‖2
2 + ‖y − Hx‖2

2 − ‖Hx(n) − Hx‖2
2 + λ‖Wx‖1

=α‖x(n)‖2
2 − 2 α Re

{
xT x(n)

}
+ α‖x‖2

2

+ ‖y‖2
2 − 2 Re

{
xT HT y

}
+ ‖Hx‖2

2

− ‖Hx(n)‖2
2 + 2 Re

{
xT HT Hx(n)

}
− ‖Hx‖2

2 + λ‖Wx‖1

=α‖x‖2
2 − 2 α Re

{

xT
(

x(n) + α−1HT (y − Hx(n))
)}

+ λ‖Wx‖1 + c′,

where c′ = α‖x(n)‖2
2 + ‖y‖2

2 − ‖Hx(n)‖2
2 is a constant that does not depend on x. We complete the

proof by adding the constant α‖x(n) + α−1HT (y − Hx(n))‖2
2 (which does not depend on x) so as to

complete the quadratic term.

The above derivation reveals that the term ‖Hx‖2
2, which hinders the direct minimization of J(x), is

canceled by the negative term in (8). As a result, x is not premultiplied by H anymore in the expression

of Property 2. This means that the wavelet coefficients of x are now completely decoupled and the

minimization of J̃n(x) involves a simple coefficient-wise operation in the wavelet domain.

B. The resulting algorithm

To make this more apparent, we will denote by z(n) the expression x(n) +α−1HT (y−Hx(n)); note

that this is exactly the update formula of the classical Landweber iteration (4), with step size τ = α−1.

Omitting c and dividing by the (positive) constant α, the minimization of J̃n(x) thus reduces to the

minimization of

‖z(n) − x‖2
2 + λτ‖Wx‖1.

Now this is almost exactly the pure denoising functional of (5), with z(n) as the noisy signal and λτ

as the regularization parameter. We have already seen that its minimizer is obtained via a simple soft-

thresholding operation on the wavelet coefficients of z(n). In the present case, the threshold level will

be λτ/2.

To summarize, the resulting “thresholded Landweber” (TL) algorithm alternates between the follow-

ing two steps, starting from an initial estimate x(0):

• compute the Landweber iteration z(n) = x(n) + τHT (y − Hx(n)), with step-size τ ;

• perform the wavelet-domain denoising operation x(n+1) = WTTλτ/2

{
Wz(n)

}
, with threshold level

λτ/2.

December 6, 2007 DRAFT



8

IV. THE FAST THRESHOLDED LANDWEBER ALGORITHM

Using the algorithm described above, Figueiredo and Nowak have reported numerical results that

are competitive with state-of-the-art 2D deconvolution methods [14]. However, the convergence of this

algorithm can be rather slow, especially when one choses a small regularization parameter λ. This is

typically the case for higher signal-to-noise ratios (see the numerical examples in Section V), which still

require regularization, but at a moderate level.

Starting from this section, we will assume that the regularization term of (2) is expressed in the

Shannon wavelet basis (see [22], p. 223 or [31], p. 51). This wavelet family allows for larger (subband-

specific) step sizes and threshold levels, resulting in a significant speed-up.

A. The Shannon wavelet basis

Besides being orthonormal, the main characteristic of Shannnon wavelets is that their spectrum is

ideal and disjoint across subbands. This proves to be especially convenient when dealing with convolution

operators.

Let us denote by
(
Wj

)

j∈S
the different wavelet subspaces2. More precisely, our convention will be

that there are jmax wavelet subspaces, and that j = jmax + 1 corresponds to the coarsest-scale scaling

function subspace. In other words, the indexing set is S = {1, . . . , jmax + 1}. Fig. 3 illustrates the

frequency support of these subspaces in the 1D case, where jmax corresponds to the number of scales of

the decomposition. For higher dimensions, we use a separable extension of the Shannon wavelet basis.

Note that in our finite-dimensional setting, Hermitian symmetry is violated at the mid frequency point,

which implies that our basis elements are complex-valued.

฀฀

฀฀฀฀ ฀฀ ฀฀

฀ormalized
frequency

Fig. 3. Frequency support of the Shannon-wavelet subspaces in the 1D case. The figure corresponds to jmax = 3, which means

that W4 represents the scaling function subspace.

2We use the terms subband and subspace interchangeably.
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We use the (boldface) symbol Wj to denote the decomposition matrix that yields the coefficients

of a signal in subspace Wj . The original signal can be reconstructed from its wavelet coefficients using

the formula

x =
∑

j∈S

WT
j Wj

︸ ︷︷ ︸

Pj

x. (9)

Note that we can use the transpose of Wj because the Shannon wavelet basis is orthonormal. In this

equation, WT
j Wjxj represents the orthogonal projection of x on Wj .

The following result states that, for the Shannon wavelet basis, the projection matrix Pj = WT
j Wj

commutes with any convolution matrix.

Property 3: Let C be a block-circulant matrix. Then, for the Shannon wavelet basis,

CPj = PjC.

Proof: Let v be an arbitrary vector. Applying (9) to CPjv yields

CPjv =
∑

ℓ∈S

PℓCPjv.

Now recall that with the Shannon wavelet basis, the subspaces (Wj)j∈S have disjoint frequency supports.

Because C does not modify the frequency support of a signal (since it is diagonalized in the DFT basis),

it must be that CPjv ∈ Wj . Therefore, PℓCPjv = 0 for ℓ 6= j and

CPjv = PjCPjv = PjC



v −
∑

ℓ∈S\{j}

Pℓv



 .

From this relation, we can reapply the same argument to obtain CPjv = PjCv for every v. This is

equivalent to the commutativity of C and Pj .

B. Derivation of a subband-adapted bound

Our algorithm is based on the idea of cutting the cost function into subband-specific terms, thanks

to the above commutativity property.

Property 4: When using the Shannon wavelet basis,

J(x) =
∑

j∈S

‖Pjy − HPjx‖
2
2 + λ‖Wjx‖1,

where Pj is the projection operator on the jth subband.

Proof: Using (9), we first observe that

y − Hx =
∑

j∈S

Pjy − HPjx.
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Property 3 tells us that we can rewrite the components of this sum as Pj(y − Hx), which shows that

they are mutually orthogonal (since the subspaces (Wj)j∈S are orthogonal). This implies that we can

separate the data term as follows:

‖y − Hx‖2
2 =

∑

j∈S

‖Pjy − HPjx‖
2
2.

Combining this relation with the fact that ‖Wx‖1 =
∑

j∈S ‖Wjx‖1 yields the desired result.

The above result allows us to bound the cost function in a subband-specific manner. The idea is to

apply the bound of Daubechies et al. to the individual terms of the sum in Property 4, leading to the

following type of auxiliary functional:

J̃n(x) = J(x) +
∑

j∈S

αj‖Pjx
(n) − Pjx‖

2
2 − ‖HPjx

(n) − HPjx‖
2
2. (10)

The fundamental difference is that we now have subband-dependent constants (αj)j∈S , which can be

chosen significantly smaller than the constant α of the standard algorithm. More precisely, for the sum

in (10) to be positive, it is sufficient that, for every j,

αj > ρj(H
T H) where ρj(H

T H) = max
‖v‖2=1,v∈Wj

‖Hv‖2
2.

We point out that the definition of ρ(HT H) (a squared matrix norm) is similar to that of ρj(H
T H).

However, in the latter, the maximum is taken over subspace Wj . Therefore, we necessarily have

ρj(H
T H) ≤ ρ(HT H).

Equivalently, since H is a convolution matrix, ρj(H
T H) is the largest squared modulus of the DFT

coefficients of H, over the frequency support of subband Wj . This value can be much smaller than

ρ(HT H) (the largest squared modulus over the whole spectrum). Fig. 4 compares choices for α and

(αj)j∈S in a simplified 1D situation.

฀฀

฀

(a)

฀฀
฀฀
฀฀

฀฀
฀฀

(b)

Fig. 4. Comparison of the constants α and (αj)j∈S for a fictitious 1D low-pass convolution kernel. The dashed curve represents

the squared modulus of its Fourier transform.
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When the previous condition is met, J̃n(x) upper-bounds J(x). Still, J̃n(x) is easy to minimize

(thanks to the commutativity stated in Property 3). This transposition of Properties 1 and 2 to our new

auxiliary functional can be summarized as follows:

Property 5: Assume that αj > ρj(H
T H) holds for every j ∈ S in definition (10). Then J̃n(x) >

J(x), except at x = x(n), where J̃n(x) = J(x). Moreover, (10) is equivalent to

J̃n(x) =
∑

j∈S

αj ‖Pj [x
(n) + α−1

j HT (y − Hx(n))] − Pjx‖
2
2 + λ‖Wjx‖1 + cj ,

where the constants (cj)j∈S do not depend on x.

Proof: The definition of ρj(H
T H) implies that

αj‖Pjx
(n) − Pjx‖

2
2 − ‖HPjx

(n) − HPjx‖
2
2 ≥ 0

for every j ∈ S. When x 6= x(n), there is at least one j for which this inequality is strict. If x = x(n),

the equality is clear. This proves the first part of the property.

Applying Property 2 to every term of the sum in (10) yields

J̃n(x) =
∑

j∈S

αj ‖Pjx
(n) + α−1

j HT (Pjy − HPjx
(n)) − Pjx‖

2
2 + λ‖Wjx‖1 + cj .

Since we are using Shannon wavelets, we can use the commutativity of Pj with the convolution matrices

H and HT to derive the second part of the property.

C. The resulting algorithm

Let us define the constants τj = 1/αj and the intermediate signal

z(n) = x(n) +
∑

j∈S

τjPjH
T (y − Hx(n)).

Since the Shannon wavelet basis is orthonormal, we can replace Pj by Wj in the expression of Property

5. The minimization of J̃n(x) then becomes equivalent to the minimization of

∑

j∈S

αj

(

‖Wjz
(n) − Wjx‖

2
2 + λτj‖Wjx‖1

)

.

Each term of this sum depends on the wavelet coefficients of x in a different subband. As a consequence,

we can minimize them independently. Moreover, the individual terms have the same form as in (6), up to

a (positive) multiplicative constant. Our new auxiliary functionals can thus be minimized using essentially

the same algorithm as before—with the same cost per iteration—but with subband-dependent parameters.

The resulting “fast thresholded Landweber” (FTL) algorithm alternates between the following two

steps:

• Compute the Landweber iteration

z(n) = x(n) +
∑

j∈S

τjPjH
T (y − Hx(n))
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with subband-dependent step sizes τj .

• Perform the wavelet-domain denoising operation

x(n+1) =
∑

j∈S

WT
j Tλτj/2{Wjz

(n)}

with subband-dependent thresholds λτj/2.

V. NUMERICAL EXPERIMENTS

A. Implementation details and computational cost

The FTL algorithm is simple to implement, for it essentially consists in going back and forth between

the frequency domain and the wavelet domain.

In the first step, one must start by computing the Landweber correction term HT (y−Hx(n)). This

is done in the DFT basis, where H is diagonalized. The actual update should a priori be performed in

the wavelet domain, since the step sizes are subband-dependent. However, in the particular case of a

Shannon wavelet basis, it can be carried out in the frequency domain: it is equivalent to multiplying each

frequency component of the correction term by τj , where j refers to the wavelet subband that contains

the considered frequency.

As described above, the second step just requires the application of a wavelet transform to z(n),

followed by a soft-thresholding and an inverse wavelet transform of the result. However, in practice—for

both algorithms presented in this paper—we use the random-shift method described in [14]. The main

motivation is to reduce unpleasent artifacts that are common side-effects of thresholding operations in

non-redundant wavelet bases. Still, we would like to do so without having to resort to a fully shift-

invariant (undecimated) transform. The compromise consists—for every iteration—in applying a random

(circular) shift to the intermediate estimate z(n), before performing its wavelet decomposition. After the

thresholding and the inverse transform, the new estimate is shifted back to the original position. By

doing this, the effect of thresholding is “averaged out” over multiple shifts during the iteration process.

Note that a shift in the image domain corresponds to a simple modulation in the frequency domain. This

means that the random-shift method can be used at no significant additional cost.

The computational cost is therefore essentially the same as for the classical thresholded Landweber

algorithm, which also requires two (one direct and one inverse) wavelet transforms per iteration. We use a

frequency-domain implementation of the wavelet transform [7]. Thus, every iteration essentially amounts

to computing two FFTs, which is no more than the standard algorithms mentioned in the introduction.

One last remark relating to the scaling-function subspace: to simplify the presentation, we have not

distinguished it from the wavelet subspaces so far. However, the scaling-function coefficients are usually

not included in the regularization term, which means that they are not thresholded in practice.
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B. Evaluation protocol

To compare the performance of the thresholded Landweber (TL) and the fast thresholded Landweber

(FTL) algorithms, we performed several experiments on synthetic and real data. The literal way of

assessing the convergence speedup of our algorithm would be to compare the intermediate estimates

to the true minimizer of the cost function. Generally, however, this true minimizer is not available and

its determination would involve an overwhelming amount of computations. Therefore, following the

common practice in the field, we will use the quadratic error between the intermediate estimates and the

original image (gold-standard). This is justified from at least two standpoints.

1) The user standpoint: ultimately, what counts in practice is the difference between the deconvolution

result and the original signal.

2) The theoretical standpoint: the true minimizer can be shown to be “close” to the original signal

in the following sense. When the noise level and the regularization parameter tend to zero, the

minimizer of the cost function tends to the original signal (see the paper by Daubechies et al. [11]

for a rigorous formulation and proof).

For each experiment, we used the same regularization parameter for the TL and FTL algorithms. For the

phantom experiments, this value was optimized to yield the result closest to the original signal after a

large number of FTL iterations (so as to approach the true minimizer reasonably well). In the real data

cases, it was adjusted empirically for best visual appearance.

C. Visual comparison in 2D: results for a limited number of iterations

In the first experiment, we took a 512×512 image of a neuron cell acquired on a confocal microscope

as our (ground-truth) original image. We then simulated an optical defocusing blur produced by a

widefield microscope. We used a standard diffraction-limited PSF model [15], [33], which is represented

in Fig. 5 (b). Gaussian white noise was added to the result; the variance σ2 was set such that the

blurred signal-to-noise ratio (BSNR) was equal to 40 dB. The BSNR is used to quantify the noise level

with respect to the original signal strength, while taking into account the attenuation introduced by the

simulated imaging device. It is defined as

BSNR = 10 log10

(
‖Hxorig‖

2
2 − N mean(Hxorig)

2

Nσ2

)

.

Here, N is the total number of pixels per image and mean(Hxorig) stands for the average gray level of

the blurred original image.

Fig. 5 shows the original image (a) and the simulated measurement (c). Estimates at different stages

of the TL and FTL iterations are displayed in Fig. 6. For both algorithms, we used the same initial

estimate (the measured image y), the same number of decomposition levels (jmax = 5) and the same

regularization parameter. It is seen that the images obtained after 10 or 30 iterations of the TL algorithm
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(a) Original (b) PSF (c) Measured

Fig. 5. (a) The original confocal image (courtesy of Bertrand Vileno, LNNME, EPFL) and (c) the simulated widefield image

of Section V-C. The square root of the PSF is shown in (b), with a 16× zoom factor compared to (a) and (c).

are less sharp than the one obtained with 10 iterations of the FTL algorithm. This is especially true for

the details inside the object which exhibit better contrast than in the latter. It is only after a larger number

of iterations (100) that the output of the TL algorithm gets closer to the FTL result with 10 iterations, at

least from a visual standpoint. We did not include the results of the FTL algorithm with more than 10

iterations, since the differences are not perceptible visually because the algorithm has already essentially

reached convergence.

D. Quantitative comparison in 2D: number of iterations to reach a given level of SER gain

The above results strongly suggest that the FTL algorithm requires fewer iterations than the TL

algorithm to reach a given level of restoration quality. Fig. 7 gives a quantitative insight: it shows the

evolution of the signal-to-error ratio (SER) as a function of the iteration number. For an estimate x, the

SER is defined as

SER(x) = 10 log10

(
‖xorig‖

2
2

‖x − xorig‖2
2

)

.

For each estimate x(n), we compare this figure to the SER of the measured signal, leading to the SER

gain:

SERG(x(n)) = SER(x(n)) − SER(y).

One can observe that the FTL algorithm requires less than 10 iterations to reach an improvement of 8

dB. This is roughly thirty times less than the TL algorithm, which takes about 300 iterations to reach

the same level.

We performed a series of more extensive experiments on 4 standard test-images (Cameraman, MRI,

House, Bird). We convolved these images with a 9 × 9 uniform blur kernel and added white Gaussian
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(a) Original (b) Measured (c) FTL, 10 iterations

(d) TL, 10 iterations (e) TL, 30 iterations (f) TL, 100 iterations

Fig. 6. Deconvolution results for the setup of Fig. 5: comparison on a 128 × 128 region of interest.
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Fig. 7. SER gain as a function of the iteration number for the experiment of Section V-C.
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noise to the results in order to replicate the experimental setup of Figueiredo and Nowak. We considered

different noise levels (BSNR = 10, 20, 30, 40, 50 dB) and we averaged the SER gains over 30 noise

realizations. For each test case, we used the same value of λ and the same initial estimate for both

algorithms. The value of λ was optimized to yield the best possible SER gain after 300 iterations of the

FTL algorithm. The initial estimate was obtained using the same Wiener-type filter as Figueiredo and

Nowak [14]:

x(0) = (HT H + 10−3σ2I)−1HT y.

The results are summarized in Table I. For each image, we indicate the SER gain of the FTL algorithm

after 10 and 30 iterations. We also give the number of iterations of the TL algorithm required to reach

the same SER improvement. The corresponding acceleration factors (number of TL iterations, divided

by number of FTL iterations) are listed in the 5th and 8th column. The acceleration factors vary between

1.5 to 4.7 for low BSNR levels (10-20 dB) and 32.3 to 191.5 for high BSNR levels (40-50 dB).

Note that the accelerated algorithm that has been derived here is specific to Shannon wavelets and

is not directly transposable to other types of basis functions. Nevertheless, the results obtained for the

Cameraman image are comparable to those reported by Figueiredo and Nowak in terms of restoration

quality3 , even though these authors used different wavelets than ours. In fact, they observed that the

performance of their algorithm was only very mildly dependent on the choice of a particular type of

wavelet. Still, the present results suggest that there should be ways of accelerating the convergence with

other types of wavelets as well, which calls for further investigation.

E. Visual comparison in 3D: experiment on fluorescence microscopy data

For the last experiment, we used 3D image-stacks of a biological sample. The sample contained

fibroblast cells stained with a DiO dye from Invitrogen Corporation (Carlsbad, USA). This dye is

predominantly retained in the cell membrane. In addition, fluorescent microbeads were introduced into

the sample medium. The dye and the microbeads were chosen to have approximately the same peak

excitation and emission wavelengths; a 505-530 nm bandpass filter was used to delimit the detection

spectrum.

The sample was observed on a Zeiss LSM 510 confocal microscope with a 63×, 1.4 NA oil-

immersion objective. We first acquired a stack of images with the pinhole completely open. In this

configuration, the confocal effect is not used and the system becomes essentially equivalent to a widefield

microscope. This results in images with out-of-focus blur due to the poor localization of the widefield PSF

along the z-dimension. The second set of images was acquired with the pinhole radius set to 1 Airy unit.

3Table I of [14] indicates a gain of 6.33 dB at 40 dB BSNR, while our experiments yielded 6.03 and 6.61 dB after 10 and

30 iterations of the FTL algorithm respectively.
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BSNR
SERG FTL

10 iter.
Number of
TL iter.

Accel.
factor

SERG FTL
30 iter.

Number of
TL iter.

Accel.
factor

C
am

er
am

an

10 2.90 36 3.6 2.94 61 2.0

20 2.62 39 3.9 2.74 87 2.9

30 4.31 121 12.1 4.43 172 5.7

40 6.03 541 54.1 6.61 972 32.4

50 7.80 1876 187.6 8.38 > 2000 > 66.7

M
R

I

10 3.68 40 4.0 3.87 99 3.3

20 4.53 47 4.7 4.81 91 3.0

30 6.79 167 16.7 6.98 211 7.0

40 7.94 724 72.4 9.55 1344 44.8

50 9.53 1915 191.5 10.70 > 2000 > 66.7

H
o

u
se

10 3.73 22 2.2 3.82 58 1.9

20 3.81 27 2.7 3.99 49 1.6

30 6.25 170 17.0 6.39 199 6.6

40 7.30 559 55.9 9.07 969 32.3

50 7.49 1616 161.6 8.90 > 2000 > 66.7

B
ir

d

10 4.65 20 2.0 4.70 45 1.5

20 3.67 34 3.4 3.81 51 1.7

30 5.76 180 18.0 5.93 216 7.2

40 5.75 555 55.5 8.24 1004 33.5

50 5.40 1562 156.2 7.12 > 2000 > 66.7

TABLE I

NUMBER OF ITERATIONS REQUIRED TO REACH A GIVEN LEVEL OF SER GAIN (SERG).

In this configuration, much of the out-of-focus light is rejected by the system, resulting in significantly

sharper images. We then used the confocal data set as a reference for comparing the performance of the

TL and FTL algorithms on the widefield data set.

Maximum intensity projections (along the z axis) of both data sets are shown in Fig. 8. Below

are the results of 10 iterations of the TL and FTL algorithms on the widefield stack; this corresponds

to roughly 1 minute and 30 seconds of computation time on a 2.66 GHz Intel Xeon workstation. We

used a 3D version of the diffraction-limited model mentioned above (with parameters corresponding

to manufacturer specification: NA = 1.4, ni = 1.518) to generate the PSF and we took the measured

widefield image as the initial estimate.

The TL algorithm cannot produce a visible deconvolution effect within 10 iterations; its output is

very similar to the original widefield data. On the other hand, the FTL algorithm rapidly produces an
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(a) Widefield image (b) Confocal reference

(c) TL, 10 iterations (d) FTL, 10 iterations

Fig. 8. Maximum intensity projections of 384 × 288 × 16 image stacks. (a, b) Widefield and confocal image of the same

object. (c, d) Results of the deconvolution algorithms applied to the widefield image.

estimate that is significantly sharper. In particular, the thickness of the cell membranes is comparable

to the confocal image. Also, the fluorescent microbeads are brighter than in the widefield image. The

results were shown to biologists who were positively impressed.

VI. CONCLUSION

We have presented a fast algorithm for wavelet-regularized variational deconvolution. It is based on

the use of a Shannon wavelet basis, which allows for a subband-adapted minimization strategy. As a

result, the update introduced by each step of the FTL algorithm is much more efficient than with the

standard TL algorithm. For BSNR levels above 30 dB, we have obtained acceleration factors of one order

of magnitude or better. This corresponds to relatively standard acquisition conditions for deconvolution
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microscopy, at least when considering fixed specimens4. Thanks to this substantial speed increase, we have

demonstrated the feasibility of 3D wavelet-based deconvolution microscopy on a widefield fluorescence

image stack.

A direct extension of the proposed algorithm is to consider subband-dependent regularization param-

eters [11] and/or other sparsity-enforcing penalizations (that is, other thresholding functions, see [14]).

The principle of the method could also be applied to other types of operators that are block-diagonal

in the basis that is used for regularization. The possibilities of this type of procedure are numerous

and our current experimentations suggest that there is room for improvement, which calls for further

investigations and more extensive comparative studies.
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