
D.CHEN et al.: TRILATERAL FILTER BASED ASW FOR STEREO MATCHING 1

A Novel Trilateral Filter based Adaptive

Support Weight Method for Stereo Matching

Dongming Chen

http://liris.cnrs.fr/membres?idn=dchen

Mohsen Ardabilian

http://liris.cnrs.fr/membres?idn=mardabil

Liming Chen

http://perso.ec-lyon.fr/liming.chen/index.htm

LIRIS UMR 5205

Ecole Centrale de Lyon

Lyon, France

Abstract

Adaptive support weight (ASW) approach represents the state-of-the-art local stereo

matching method. Recent extensive evaluation studies on ASW approaches show that

the bilateral filter weight function enables outstanding performance on a large data set in

comparison with various weight functions. However, it does not resolve the ambiguity

induced by nearby pixels at different disparities but with similar colors. In this paper,

we propose a novel trilateral filter based ASW method which remedies such ambiguities

by considering disparity discontinuities through color discontinuity boundaries, i.e., the

strength of the boundary between two pixels. The experimental evaluation on the Mid-

dlebury benchmark shows that the proposed algorithm ranks 15th out of 150 submissions

and is the current most accurate local stereo matching algorithm.

1 Introduction

At the heart of computer vision aiming to endow computers with human like depth vision

capabilities, stereo matching remains one of the most active research topics in this flied. As

surveyed by Scharstein and Szeliski in [19], stereo matching algorithms can be broadly cate-

gorized into two classes: local and global methods. Global methods typically seek a disparity

assignment which minimizes a global cost function through a global optimization algorithm,

e.g., graph cut [3], belief propagation [13], etc. Although these global methods tend to pro-

duce more accurate matching results, they are generally computationally expensive due to

the iterative nature of the underlying optimization process, and thereby hardly satisfy the re-

quirement of real-time applications. Local methods consider correlations between intensity

patterns in support windows. The raw matching costs of all pixels within a support window

are aggregated to the center pixel at each disparity; then an optimal disparity that gives a

minimum aggregated cost is selected through an efficient local optimization process.

The performance of local methods highly depends on how the support windows is se-

lected. A variety of cost aggregation strategies (proposed before 2008) were comprehen-

sively analyzed in [7, 22], including the square window approach [19], the shiftable window

approach [2, 6], the adaptive window approach [23], the multiple window approach [9], the
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adaptive support weight approach [25] and so forth. These approaches attempt to seek an op-

timal support window for each pixel (center pixel) by changing the window size [1, 15, 23],

shape [9], center offset [2, 6, 19, 23], etc. The ideal optimal support window should sat-

isfy the following rule that within this window all pixels lie on the same disparity with the

center pixel. For example, in the shiftable window approach [2, 6], an optimal window that

gives the smallest average cost is selected from a set of shifted support windows centered at

different locations, because such a window is more likely to cover a region with the same

disparity.

Because of its outstanding performance, recent years have witnessed a great deal of atten-

tion focused on the Adaptive Support Weight (ASW) based local stereo matching methods

[10, 16, 21, 25], proposed firstly by Yoon and Kweon in [25]. The ASW methods assign an

adaptive weight to each pixel in the support window, depending on how a support pixel is

likely to lie on the same disparity with the center pixel. That is, the more likely a support

pixel is to lie on the same disparity with the center pixel, the higher the weight is attributed.

Essentially, the assignment of an adaptive weight for each support pixel amounts to chang-

ing the support window in terms of size, shape and center offset. In this method, the weight

computation is very important, because it directly decides the support window. In [25], the

adaptive support weight of a pixel is defined as inversely proportional to (1) the color dis-

similarity and, (2) the spatial distance between this current pixel and the center pixel. As

such, the cost aggregation step is equivalent to filter the cost volume with a joint bilateral

filter with edge-preserving property. Following this pioneering work, various methods for

the computation of adaptive support weight were proposed in the literature, including in par-

ticular the segmentation-based adaptive support weight of Tombari et al. [21], the geodesic

support weight of Hosni et al. [10], guided filter based support weight of Rhemann et al. [16]

which employs a different edge-preserving filter [8]. These three adaptive support weight al-

gorithms and the original bilateral filter based algorithm [25] mainly differ in the form of

support weight function. Thus, which weight function is the most accurate one? Recently,

Hosni et al. [11] carried out a comprehensive comparative study which fairly evaluates the

performance of various weight functions using a large set of 35 ground truth disparity pairs

while fixing the preprocessing, matching cost function and post-processing. Their conclu-

sion is that both bilateral filter weight function [25] and guided filter weight function [16]

are the best among ten different weight functions, because bilateral filter weight function

performs better on the average rank while guided filter weight function produces a lower

average error.

In this paper, we revisit the bilateral filter weight function [25] and propose a trilateral

filter weight function which resolves the ambiguity induced by nearby pixels at different

disparities but with similar colors. Indeed, the bilateral filter weight function makes use of

a color similarity term and a spatial proximity term to translate the implicit assumption that,

(1) the support pixels whose color are similar to the center pixel’s are likely to lie on the

same disparity with the center pixel; and (2) the support pixels that are spatially close to the

center pixel are also likely to lie on the same disparity. While these two simple rules can

handle most depth ambiguities within a support window, they unfortunately fail to sort the

disparities in the following situation as illustrated in Fig. 1. Consider two nearby objects

of different disparities but with similar color (e.g. two planks in (b) of Fig. 1). Now given

two pixels of these two objects (pixel p and q in (b)), the weight associated with the pixel

q by the bilateral filter with p as center pixel will be high because their colors are similar

and their spatial positions are close to each other. But obviously the weight associated with

q should be low since pixels p and q are on different disparities. To further highlight this
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Figure 1: (a) is an image from Middlebury benchmark and we focus on the regions within the

red box, zoomed in (b). In (b), there are two nearby planks with similar colors but in different

disparities. An imaginary situation is presented in (c): these two planks are substituted by

one cross-shaped plank in the same disparity. The bilateral filter weight of pixel p and q in

(b) is equal to that in (c), because their color similarity and spatial distance are the same.

But obviously these two weights should not be equal because the two pixels are in the same

disparity in (c) but not in (b). The boundary cue is helpful to remedy this flaw. As shown in

(d), zoomed in (e), there is a boundary between pixel p and q.

erroneous weight attribution by the bilateral filter, we present an imaginary situation in (c)

where the two planks in (b) are substituted by a cross-shaped plank in the same disparity

plane in (c). (Note that in (b) there are two planks in different disparities but in (c) there

is only one cross-shaped plank in the same disparity). The bilateral filter weight of pixel p

and q in (b) is equal to that of pixel p and q in (c), because their color similarity and spatial

distance are the same. Obviously these two weights should not be equal because the two

pixels are in the same disparity in (c) but not in (b). Thus, in this case, the bilateral filter

weight function fails to reflect an accurate likelihood that pixel p lies in the same disparity

with pixel q. We can observe that the depth discontinuity of the pixels p and q in (b) induces

a color discontinuity between these two planks and results in color boundaries nearby, as

shown in (e). Therefore, the boundary cue is helpful to remedy this flaw. As a result, we

propose in this paper a trilateral filter weight function which extends the current bilateral

filter by a third boundary strength term (boundary cue) which measures the strength of the

boundary between two pixels. This boundary cue is also used in [4] to improve the non-

local cost aggregation method proposed in [24], by constructing a more faithful minimum

spanning tree. The experimental evaluation on the Middlebury benchmark demonstrates the

effectiveness of the proposed method.

The rest of this paper is organized as follows: in Section 2, we briefly introduce the

pipeline of our trilateral filter based ASW method; then, the proposed trilateral filter weight

function is described in Section 3 in detail and our disparity refinement strategy is presented

in Section 4. The experimental results and analysis are given in Section 5 and Section 6

concludes the paper.

2 Trilateral Filter based ASW Method

The proposed trilateral filter based ASW method encompasses the following five steps: pre-

processing, matching cost computation, cost aggregation, disparity optimization and dispar-

ity refinement.

(1) Preprocessing we apply a standard median filtering (3×3 window) to preprocess the
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original image, in order to remove isolated pixels. The experiments in [11] show that such a

preprocessing step can enhance the quality of the final disparity map.

(2) Matching Cost Computation we make use of a popular matching cost function,

namely Truncated Absolute Difference of Color and Gradient (TAD C+G) [11, 16, 24]. The

raw matching cost Cd(p) between a pair of matching points (pixel p in left image Il and pixel

p−d in right image Ir) is defined as [16],

Cd(p) =(1−θ)×min(|Il(p)− Ir(p−d)| ,τ1)

+θ ×min(|∇xIl(p)−∇xIr(p−d)| ,τ2),
(1)

where ∇x is the derivative in x direction; θ balances the color and derivative terms; τ1, τ2 are

truncation values in order to reduce the influence of occluded pixels.

(3) Cost Aggregation we employ the state-of-the-art ASW approach. In general, there

are two aggregation approaches to compute the weight mask, symmetric approaches (pro-

posed in [25]) and asymmetric approaches (as Eq.2). According to the comparison in [11],

the asymmetric approach performs better on the matching cost, calculated by the above TAD

C+G cost function. The aggregated cost of pixel p at disparity d, CA
d (p) is defined using

asymmetric approach as [10, 11, 16],

CA
d (p) = ∑

q∈ωp

w(p,q) ·Cd(q), (2)

where ωp denotes the support window centered at pixel p; q is one support pixel in ωp. The

ASW approaches [10, 16, 21, 25] differ mainly in the form of weight function w(p,q), which

directly decides the support window and indirectly influences the quality of final results. The

proposed trilateral filter weight function is presented in Section 3.

(4) Disparity Optimization winner-take-all optimization strategy is commonly used in

local methods, which searches for the optimal disparity D(p) that gives the minimum aggre-

gated cost,

D(p) = argmin
d
(CA

d (p)). (3)

(5) Disparity Refinement in this step, the generated disparity map D(·) is post-processed

to remove mismatches. Our disparity refinement strategy is presented in Section 4.

3 Trilateral Filter Weight Function

The proposed trilateral filter weight function is based on the bilateral filter weight function

[25], but extends the color similarity term and spatial proximity term of bilateral filter by a

new boundary strength term that measures the strength of potential boundary between the

current support pixel and the center pixel. As pointed out in Section 1, the bilateral filter

weight function fails to assign an accurate weight to two nearby pixels at different dispari-

ties but with similar colors, because it only considers color similarity and spatial distance.

We observe that the boundary cue can remedy this flaw, because the discontinuity bound-

ary indicates the possible disparity discontinuity. Thus, we also consider the boundary cue

(boundary strength term) in the proposed weight function. In Section 3.1, we briefly de-

scribe the previous bilateral filter weight function, then our trilateral filter weight function is

proposed in Section 3.2.
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3.1 Previous Bilateral Filter Weight Function

The previous bilateral filter weight function [25] has displayed outstanding performance as

shown in [11]. This weight function wb f (p,q) consists of color similarity term and spatial

proximity term, defined as [25],

wb f (p,q) = e
−

∆cpq
γc e

−
∆gpq

γg , (4)

where q is a pixel within the support window centered at pixel p. The color similarity ∆cpq

represents the Euclidean distance between the color of these two pixels, measured in the

CIELab color space as

∆cpq =

√

∑
j∈(L,a,b)

(I j(p)− I j(q))2 (5)

and the geometric proximity ∆gpq is the Euclidean distance between their coordinates (x,y)
as

∆gpq =
√

(px −qx)2 +(py −qy)2. (6)

The parameter γc and γg are set by user to adjust the color similarity term and geometric

proximity term respectively.

3.2 Proposed Trilateral Filter Weight Function

The proposed trilateral filter weight function wt f (p,q) extends the bilateral filter weight func-

tion by a new boundary strength term, using an empirical formula inspired by the cue com-

bination strategy proposed in [5] as,

wt f (p,q) = e
−

∆cpq
γc e

−
∆gpq

γg

(

e
−

∆Epq
γe + e

−
∆cpq

γc e
−

∆gpq
γg

)

, (7)

where exp(−∆cpq/γc) and exp(−∆gpq/γg) are respectively the color similarity term and

spatial proximity term defined in the bilateral filter weight function; whereas exp(−∆Epq/γe)
is the boundary strength term calculated as follow. The parameter γe is set by user to adjust

the boundary strength term.

The local energy model [14] is employed to detect the boundary position and measure the

boundary strength (local energy). The local energy of an image is formed as a combination of

the oriented energy [18] over all orientations and the oriented energy represents the energy

at a given orientation calculated via orientation selective filters. Given image I, the local

energy at pixel p is defined as [14, 17],

E(p) = ∑
θ

√

(I(p)∗Fθ ,odd)2 +(I(p)∗Fθ ,even)2, (8)

where ∗ denotes the convolution operator; the odd-phase filter Fθ ,odd and the even-phase

filter Fθ ,even are a pair of quadrature filters in orientation θ , which can be calculated by

Gabor function, difference of Gaussian function, difference of offset Gaussian function and

so on. We choose the difference of offset Gaussian functions to calculate these filters at

various scales and orientations as in [12].
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The local energy has a maximum response for boundary of shape, whereas the zero-

crossings of even-phase filter Fθ ,even locate the positions of the boundaries. The phase of

pixel p is defined as

φ(p) =

{

1 , I(p)∗Fθ=θmax,even > 0

−1 , I(p)∗Fθ=θmax,even < 0
(9)

where θmax is the orientation that gives the maximum response as

θmax = max
θ

√

(I(p)∗Fθ ,odd)2 +(I(p)∗Fθ ,even)2. (10)

For two neighboring pixels i and j, the distance of their edge energy, ∆E(i, j) is expressed

as

∆E(i, j) =

{

E(i)+E( j) ,φ(i) 6= φ( j)
0 ,φ(i) = φ( j)

(11)

For arbitrary two pixels p and q, a line l linked them can be found. Suppose that there

exist N pixels on line l between p and q. Then the distance of their edge energy is

∆E(p,q) = max
m∈[1,··· ,N−1]

∆E(m,m+1). (12)

where m and m+1 represent two neighboring pixels.

As discussed before, the difference between the proposed trilateral filter weight function

and the bilateral filter weight function is the boundary strength term exp(−∆Epq/γe). If there

is no boundary between two pixels p and q, then its boundary strength term equals 1, because

∆E(p,q) = 0; The stronger the boundary is, the smaller the boundary strength term is. For

two pixels lying in the different sides of a boundary, their boundary strength term will be

small.

4 Disparity Refinement

In this section, we improve the disparity refinement strategy in [24]. Firstly, taking the left

and right image as reference image respectively to obtain the left and right disparity map,

using the step 1 ∼ 4 described in Section 2. Then, the left-right consistency checking is

applied on these two disparity maps to pick out the unstable pixels from the stable pixels. A

stable pixel should pass this consistency check and a valid pixel should satisfy D(·) > 0. A

new matching cost for each pixel p at each disparity level d is computed as,

Cnew
d (p) =

{ (

1− exp
(

− (d−D(p))2

σ2

))

·Cd(p) , p is stable and D(p)> 0

0 ,else
(13)

where the parameter σ is set by user. Different from the matching cost recalculation function

in [24], our function contains not only the generated disparity map D(·), but also the raw

matching cost Cd(p), because the raw matching cost, calculated by TAD C+G cost function,

contains the raw color similarity information between a pair of matching points.

The cost aggregation step is then performed on this new matching cost Cnew
d (p) to prop-

agate the disparity from stable pixels to unstable pixels, and followed by the disparity opti-

mization step to generate the final disparity map.
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Algorithm Rank tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

Our TF 15 1.65 1.96 5.90 0.14 0.31 1.51 6.25 11.8 15.1 2.49 8.32 7.02 5.21

GF [16] 30 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55

GEO [10] 41 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32 5.80

BFSeg [21] 66 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77 6.44

BF [25] 80 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

Table 1: The quantitative comparison of our trilateral filter based ASW algorithm and four

popular ASW algorithms on the Middlebury benchmark with error threshold 1. Our algo-

rithm outperforms others in most columns, especially in "disc." column.

Test Rank tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

1 97 2.51 3.23 8.28 0.81 1.57 5.88 8.19 15.1 18.2 4.21 11.9 10.7 7.55

2 105 2.58 3.14 8.87 0.95 1.72 6.77 8.92 15.9 19.3 4.88 12.4 11.7 8.10

3 103 2.81 3.67 8.56 1.44 2.50 13.4 8.53 16.0 18.5 3.43 11.6 9.21 8.30

4 15 1.65 1.96 5.90 0.14 0.31 1.51 6.25 11.8 15.1 2.49 8.32 7.02 5.21

5 29 1.91 2.23 6.31 0.17 0.41 1.95 6.82 12.5 15.6 2.39 8.25 6.86 5.45

6 45 1.89 2.33 8.70 0.13 0.40 1.75 6.99 12.7 17.2 2.77 8.77 7.88 5.96

7 23 1.78 2.09 6.72 0.15 0.32 1.63 6.29 11.9 15.1 2.52 8.37 7.07 5.33

8 39 2.11 2.31 7.58 0.23 0.35 1.60 6.19 11.5 15.1 3.00 8.19 8.45 5.55

Table 2: The detail quantitative results of the eight tests on Middlebury benchmark with error

threshold 1.

5 Experimental Results

We implemented the proposed trilateral filter based ASW algorithm in C++ and evaluated it

on the common accepted Middlebury benchmark [20], using four pairs of standard datasets,

namely Tsukuba, Venus, Teddy, and Cones.

The experimental parameter setup is defined as follows: {γc,γg,γe,σ} = {8,11,12,2};

the parameters for matching cost computation ({θ ,τ1,τ2} in Eq.1) are set the same as those

in [24] and the support window size is 35×35, which is the same as that in [25]. Firstly, we

compare the proposed algorithm with four popular ASW algorithms [10, 16, 21, 25] and the

quantitative comparison is presented in Table 1. On the Middlebury benchmark, the errors

are evaluated over three different areas in the reference image, classified as non-occlusion

(nocc.), discontinuous (disc.) and the entire image (all). From Table 1, we can observe that

our proposed method outperforms these four methods, especially in the "disc." column. The

term "disc." represents the regions near depth discontinuities (white areas in Fig. 2), which

mainly contain boundaries. The proposed algorithm obtains a better performance in "disc."

column due to the effective boundary strength term in our weight function, which is further

proved by the following evaluations.

In order to better understand the performance of the proposed algorithm, we conduct

eight tests to evaluate the proposed weight function and disparity refinement method indi-

vidually. All tests share the same preprocessing, matching cost function and disparity opti-

mization as described in Section 2. The only difference is the choice of weight function and

disparity refinement strategy. The quantitative results of these eight configurations on Mid-

dlebury benchmark are presented in Table 2 and the test results are explained and compared

in the following two subsections.
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Test Weight Refinement Rank Avg.Error

1 wt f — 97 7.55

2 wb f — 105 8.10

3 wg f — 103 8.30

4 wt f ours 15 5.21

5 wb f ours 29 5.45

6 wg f ours 45 5.96

Table 3: Overall comparison the proposed weight function (wt f ) with the bilateral filter

weight function (wb f ) and the guided filter weight function (wg f ). The detail comparison

is presented in Table 2. The other steps are set the same and only weight functions are

compared.

Evaluation on weight function the conclusion in [11] shows that both the bilateral fil-

ter weight function [25] and the guided filter weight function [16] are the top-performing

weight functions among ten different functions. Therefore, we only compare the proposed

trilateral filter weight function with these two outstanding functions. For fair comparison,

the preprocessing, matching cost function and disparity optimization are fixed. The disparity

refinement step is not used in test 1 ∼ 3, in order to compare the raw weight functions; while

we employ our disparity refinement method in test 4 ∼ 6.

Firstly, in order to demonstrate the effectiveness of our boundary strength term, we com-

pare our trilateral filter weight function with the bilateral filter weight function, since the

only difference of these two functions is the boundary strength term. Comparing test 1 with

test 2 in Table 2 and Table 3, we observe that our weight function is more accurate than the

bilateral filter weight function in most columns of all four images, especially in the "disc."

column in Table 2. As mentioned before, in "disc." column, the error is only evaluated in

depth discontinuities region (white areas in Fig.2), mainly containing boundaries. The su-

perior performance of our weight function in "disc." column proves the effectiveness of our

boundary strength term. Comparing test 4 with test 5 in Table 2 and Table 3, in which the

disparity maps are post-processed by our disparity refinement method, we also observe that

our weight function outperforms the bilateral filter weight function in terms of average error

and rank.

Moreover, comparing test 1 with test 3 and test 4 with test 6 in Table 2 and Table 3, we

observe that our trilateral filter weight function outperforms the guided filter weight function

too. All previous experiments show that our weight function is better than these two state-

of-the-art weight functions. The visual comparison of the disparity maps generated by these

three weight functions in test 4 ∼ 6 is shown in Fig.3.

Evaluation on disparity refinement in order to highlight the performance of our dispar-

ity refinement strategy, we compare our method with two state-of-the-art methods proposed

in [16, 24]. In this comparison, other four steps (step 1 ∼ 4 in section 2) remain the same

for all related tests so that only disparity refinement methods are compared. Our trilateral

filter weight function is applied to calculate the support weight and conduct four tests (test

1, test 4, test 7 and test 8). The overall comparison is presented in Table 4 and the detail

comparison is shown in Table 2. Test 1 is the reference result for other three tests, which is

obtained without any disparity refinement strategy. As it can be seen, the other three tests

are more accurate than test 1, which justifies the necessary of disparity refinement step; Note

that our disparity refinement method is better than these two disparity refinement methods.
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Test Weight Refinement Rank Avg.Error

1 wt f — 97 7.55

4 wt f ours 15 5.21

7 wt f [24] 23 5.33

8 wt f [16] 39 5.55

Table 4: Overall comparison the proposed disparity refinement strategy with two state-of-

the-art methods, respectively proposed in [16, 24]. The detail comparison is presented in

Table 2. The other steps are set the same and only disparity refinement methods are com-

pared.

Figure 2: The term ’disc.’ in Table 1 and Table 2 means the regions near depth discontinu-

ities (white areas), occluded and border regions (black), and other regions (gray). In ’disc.’

column, errors are only evaluated in the white areas, which mainly contain boundaries.

Figure 3: The visual comparison of the disparity maps generated by the proposed trilateral

filter weight function (test 4), the bilateral filter weight function (test 5) and the guided filter

weight function (test 6).



10 D.CHEN et al.: TRILATERAL FILTER BASED ASW FOR STEREO MATCHING

6 Conclusion

In this paper, we proposed a novel trilateral filter based ASW method which extends the color

similarity and spatial proximity terms of bilateral filter by a new boundary strength term that

measures the strength of the boundary between two pixels. Experimental results demonstrate

that (1) the newly introduced boundary strength term is effective as the proposed trilateral

filter weight function outperforms the bilateral filter weight function, especially in the depth

discontinuity areas; (2) the proposed weight function proves to be the current best adaptive

support weight function as it also outperforms the guided filter weight function. Besides, our

disparity refinement strategy compares favorably with two state-of-the-art methods.
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