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Abstract

An upwind scheme is presented for solving the
three-dimensional Euler equations on unstructured
tetrahedral meshes. Spatial discretization is accom-
plished by a cell-centered finite-volume formulation us-
ing flux-difference splitting. Higher-order differences
are formed by a novel cell reconstruction process which
results in computational times per cell comparable to
those of structured codes. The approach yields highly
resolved solutions in regions of smooth flow while avoid-
ing oscillations across shocks without explicit limiting.
Solutions are advanced in time by a 3-stage Runge-
Kutta time-stepping scheme with convergence acceler-
ated to steady state by local time stepping and implicit
residual smoothing.

Solutions are presented for a range of configura-
tions in the transonic speed regime to demonstrate code
accuracy, speed, and robustness. The results include an
assessment of grid sensitivity and convergence acceler-
ation by mesh sequencing.

Introduction

Solution algorithms for the Euler and Navier-
Stokes equations on unstructured meshes have evolved
rapidly in recent years, e.g. Refs. 1-12. Key mo-
tivations behind these developments include the need
for more geometric flexibility in constructing quality
meshes around complex configurations, a random data
structure to better facilitate adapting the mesh to the
physics of the flow, and a means to more easily ac-
commodate moving meshes. Potential applications are
many: more rapid analysis of full aircraft configura-
tions, airframe component integration, iterative design,
and store separation to name a few,

Most of the unstructured algorithms developed to
date are based on either the finite element method or
central differencing with added dissipation. Only in
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recent years has upwind differencing been investigated
for unstructured grids’~'2. Upwind differencing uti-
lizes the propagation of information within a mesh in
accordance with the theory of characteristics in con-
structing type-dependent differencing for components
of the information traveling in opposite directions in
a separate and stable manner. While this approach is
more computationally intensive than central differenc-
ing, it does offer the advantages of being more robust
and requiring less user interaction.

This paper describes a new upwind scheme which is
analytically equivalent to that described in Ref. 12, but
requires one-half the computational time. The scheme
is a tetrahedral cell-centered, finite-volume upwind for-
mulation using flux-difference splitting. Higher-order
accuracy is achieved by a fast multidimensional linear
reconstruction algorithm. The approach yields highly
resolved solutions in regions of smooth flow while avoid-
ing oscillations across shocks without explicitly apply-
ing a limiter. Solutions are advanced in time by a 3-
stage Runge-Kutta time stepping scheme with conver-
gence accelerated to steady state by local time stepping
and implicit residual smoothing.

Governing Equations

The fluid motion is governed by the time depen-
dent Euler equations for an ideal gas which express
the conservation of mass, momentum, and energy for a
compressible inviscid nonconducting adiabatic fluid in
the absence of external forces. The equations are given
below in integral form for a bounded domain ) with a
boundary 81
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The equations are nondimensionalized with a reference
density poo and a speed of sound a.,. Here iz, fiy, and
fi, are the Cartesian components of the exterior surface
unit normal i on the boundary 9). The Cartesian
velocity components are u,v, and w in the z,y, and z
directions, respectively. The term ¢, is the total energy
per unit volume. With the ideal gas assumption, the
pressure and total enthalpy can be expressed as
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and
v
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where « is the ratio of specific heats and is prescribed
as 1.4 for air.

Equation (1) describes a relationship where the
time rate of change of the state vector Q within the
domain () is balanced by the net flux F across the
boundary surface 3{}. The domain is divided into a
finite number of tetrahedral cells, and Eq.(1) is applied
to each cell. The state variables Q are volume-averaged
values. It can be shown that the difference equations
at each cell volume are satisfied exactly when evaluated
at uniform freestream conditions.

Spatial Discretization
Flux Splitting
Flux quantities are computed using Roe’s!® flux-
difference-splitting. The flux across each cell face x is
computed using Roe’s numerical flux formula

F. = 14[F(QL) +F(Qr)- | A | (Qr - Qu)l

Here Qr and Qg are the state variables to the left and
right of the interface k. The matrix A is computed
from evaluating

A =09F/3Q

with Roe-averaged quantities such as:
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so that
F(Qr) - F(Qr) = A[Qr — Qy]

is satisfied exa.ctly Introducing the diagonalizing ma-
trices T and T‘ , and the diagonal matrix of eigenval-
ues A, then | A | is defined as

|A|=T| 4|1
The term
|A|(Qr-QL)=T|4|T'aQ

in Roe’s flux formula can be reduced to three AF flux
components, each of which is associated with a distinct
eigenvalue:
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where U = iifi, + 5fy + @, and AU = Az Au+ A, Av+
A Aw.

For a first-order scheme, the state of the primitive
variables at each cell face is set to the cell-centered
averages on either side of the face.

Modified Higher-Order Scheme

The challenge in constructing an effective higher-
order scheme is to determine an accurate estimate of
the left and right states at the cell faces for the flux
calculation. Barth and Jespersen proposed a multidi-
mensional linear reconstruction approach? which forms



the basis for the present scheme. In the cell reconstruc-
tion approach, higher-order accuracy is achieved by ex-
panding the cell-centered solution to each cell face with
a Taylor series:

Q(za Y, z) = Q(xca Ye, zc) +Vq.-Ar + O(Arz) (2)

where
— T
q= [P, u, v, w, P]

This formulation requires that the solution gradient be
known at the cell centers.

A new scheme was proposed in Ref. 12 for esti-
mating the solution gradient. The general approach
was to: 1) coalesce surrounding cell information to the
vertices or nodes of the candidate cell, then 2) apply
the mid-point trapezoidal rule to evaluate the surface
integral of the gradient theorem

Vae= —4¢ qnds (3)
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over the faces of each tetrahedral cell. Here, V3 denotes
the volume enclosed by the surface (1.

It is possible to further simplify the method of Ref.
12 such that Eq.(3) need not be evaluated explicitly.
The simplification stems from some useful geometrical
invariant features of triangles and tetrahedra. These
features are illustrated for an arbitrary tetrahedral cell
in Fig. 1. Note that a line extending from a cell-vertex
through the cell-centroid will always intersect the cen-
troid of the opposing face. Furthermore, the distance
from the cell-vertex to the cell-centroid is always three-
fourths of that from the vertex to the opposing face.
(For a triangle, the comparable ratio of distance is two-
thirds). By using these invariants along with the fact
that Ar is the distance between the cell centroid and
the face centroid, the second term in Eq.(2) can be
evaluated as:
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Thus, Eq.(2) can be approximated for tetrahedral cells
by the simple formula:

. [1/3(q,u + Qny +Qn,) — qn.]Ar (4)
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where as illustrated in Fig. 1, the subscripts n;, ng, ns
denote the nodes comprising face f; 23 of cell ¢ and
ng corresponds to the opposite node. This modified
scheme is analytically equivalent to that in Ref. 12 and
results in a factor of two reduction in computational
time of the flow solver.

The nodal quantities q,, are determined in the
manner described in Ref. 12. Accordingly, estimates of
the solution are determined at each node by a weighted
average of the surrounding cell-centered solution quan-
tities. It is assumed in the nodal averaging procedure
that the known values of the solution are concentrated
at the cell centers, and that the contribution to a node
from the surrounding cells is inversely proportional to
the distance from each cell centroid to the node:
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The subscripts n and c,s refer to the node and sur-
rounding cell-centered values, respectively. Note that
the reconstruction process utilizes information from all
of the cells surrounding the candidate cell, thus pro-
ducing a truly multidimensional higher-order expansion
in Eq.(5). For boundary nodes, the surrounding face-
centered boundary conditions and respective distances
are used in Eq.(6).

Upwind schemes generally require the use of lim-
iter functions to obtain smooth higher-order solutions
around flow discontinuities, which has been the experi-
ence with the schemes of Refs. 7-11. While the present
method has yet to be applied in two-dimensions, experi-
ence with its application in three-dimensions has shown
that limiting is not required, and that the method
correctly captures shocks without oscillations. While
this unexpected result is beneficial, it seems unlikely
that a high-order scheme could capture discontinuities
smoothly without some form of artificial dissipation be-
ing added. It is quite possible that the particular av-
eraging procedure employed in the present algorithm
could add dissipation and locally reduce the accuracy
across discontinuities. With respect to limiting over-
shoots in the expansion of Eq.(5), it can be reasoned
that when the averaging procedure of Eq.(6) is applied
at a node, the resulting q,, represents a weighted mean
value of the surrounding solution, i.e. q, is bounded by
the extrema of the surrounding solution. Furthermore,
in three dimensions the summation of Eq.(6) accesses
an average of 20 to 22 cells for each node, which re-
sults in a smoothing of errors introduced from the sur-
rounding solution. Thus, the expansion will have been
smoothed and bounded by the procedure and should
not introduce new extrema into the solution.

The accuracy of the higher-order scheme has not
been formally determined. It is known that the Tay-
lor series expansion and the midpoint-trapezoidal rule,



which was applied explicitly in Ref. 12 and implicitly
in the present algorithm, are both second-order accu-
rate. Thus, the key to accuracy for this method lies in
the quality of the averaged solution at the nodes. Sev-
eral averaging procedures were investigated with known
test functions, both linear and nonlinear, on an arbi-
trary tetrahedral grid. Among the alternate procedures
were those based on cell volumes, and on the inverse dis-
tances from cell-center to node raised to a power. Error
was assessed by an RMS average of the local errors rel-
ative to the exact solution. Volume averaging yielded
the poorest result, while averaging based on the inverse
distance raised to the first power (Eq.(6)) worked best.

Time Integration

A semidiscrete form of the governing equations
reads
Q:

a
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where
Ri= Y F;AS;,
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R; is the residual accrued by summation of the fluxes
through the four faces « of a tetrahedral cell z. These
equations are integrated in time using a fully explicit
m-stage Runge-Kutta time-stepping scheme developed
by Jameson et al.l%;
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where the superscript n denotes the time level, and
the parenthetical superscripts the stage of the Runge-
Kutta time stepping. The weighting factors aj to a,,
are defined as:

1
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k=1,..,m

These values of aj will give m-order accuracy in time
for a linear equation. Preliminary calculations were
made using both a 3-stage and 4-stage scheme. The so-
lution and convergence characteristics were essentially
identical. Thus, a 3-stage scheme was used for the cal-
culations presented in this paper.

In many cases, time accuracy in the integration is
not required. For such cases, the solution convergence
to steady state is accelerated by local time stepping and
implicit residual smoothing.

Local Time Stepping

Local time stepping accelerates convergence by ad-
vancing the solution at each cell in time at a CFL num-
ber near the local stability limit. The expression for the
local time step was derived with the aid of a 2-D sta-
bility analysis presented in Ref. 9:
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where v is the CFL number, V; is the cell volume, a; is
the local speed of sound, and S‘(x), S‘-(y), and S‘.(z) are
the projected areas of cell 7 in the z, y, and z directions.
The local time steps were updated every 50 cycles for
the results presented in this paper.

Implicit Residual Smoothing

The maximum time step can be further increased
by increasing the support of the scheme through im-
plicit averaging of the residuals'® with their neighbors.
The residuals are filtered through a smoothing opera-
tor (which is essentially the Laplacian operator for a
uniform grid):

E =R; + €V2E

where . o
VR;= ) (R;-E)
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The summation uses residuals from the neighboring
cells which share the faces £ with cell ¢. The resulting
set of equations can easily be solved by using Jacobi
iteration

B =Rite L B™Y) /(14 3 1) (9)

i=x(1) F=x(i)
A value for € of about 0.5 is suggested in Ref. 16 to
maintain a strongly diagonally dominant coefficient ma-
trix. In practice, two Jacobi iterations are adequate to
give a good approximation of R; at all cell centers.
Residual smoothing was performed during every stage
of the Runge-Kutta time cycle and resulted in a dou-
bling of the time step.



Boundary Conditions

For the solid boundaries such as the wing and cen-
terplane, the flow tangency condition is imposed by set-
ting the velocities on the boundary faces to their cell-
center values and then subtracting the component nor-
mal to the solid surface. Density and pressure bound-
ary conditions are simply set to the cell-centered value.
A condition of zero mass and energy flux through the
surface is ensured by setting the left and right states of
solid boundary faces equal to the boundary conditions
prior to computing the fluxes with Roe’s approximate
Riemann solver. This technique only permits a flux of
the pressure terms of the momentum equations through
a solid boundary.

Characteristic boundary conditions are applied to
the far-field subsonic boundary using the fixed and ex-
trapolated Riemann invariants corresponding to the in-
coming and outgoing waves. The incoming Riemann
invariant is determined from the freestream flow and
the outgoing invariant is extrapolated from the interior
domain. The invariants are used to determine the lo-
cally normal velocity component and speed of sound.
At an outflow boundary, the two tangential velocity
components and the entropy are extrapolated from the
interior, while at an inflow boundary they are specified
as having far-field values. These five quantities provide
a complete definition of the flow in the far field.

Results

A range of results are presented in this section to
show the speed, accuracy and robustness of the flow
solver. The speed and the accuracy is shown by way of
grid sensitivity and mesh sequencing studies while its
robustness is established by flow solutions on two com-
plex three-dimensional configurations. All the meshes
for this study were generated using an improved ver-
sion of the advancing front grid generation program,
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ONERA M6 Wing

An ONERA M6 wing has been used for the grid
sensitivity and the mesh sequencing studies. This con-
figuration has been widely used as a benchmark to
evaluate performance of newly developed flow solution
methods. The wing has a leading edge sweep of 30
degrees, an aspect ratio of 3.8, a taper ratio of 0.56,
and symmetrical airfoil sections. The wing has a root
chord of 0.67 and a semispan b of 1.0 with a rounded
tip. The computational domain is bounded by a rect-
angular box with boundaries at —6.5 < z < 11.0,
00<y <25, and — 6.5 < z < 6.5.

Grid Sensitivity. Transonic solutions were com-
puted on three grids (Fig. 2) at the same condi-
tions: My, = 0.84, and o = 3.06°, to make an assess-

ment of the grid sensitivity. One of the meshes (Mesh
1) has cells stretched in the spanwise direction where
gradients are small while the other two meshes have no
stretching. Mesh size specifications are listed in Table
1.

Mesh 1 | Mesh 2 | Mesh 3

Total Cells 35008 | 108755 | 231507
Boundary Faces | 4046 9858 16984
Total Nodes 6910 20412 | 42410
Boundary Nodes | 2025 4931 8494

Table 1. Mesh size specifications.

The computations were performed using the 3-
stage Runge-Kutta time stepping scheme with local
time stepping, implicit residual smoothing, and a CFL
number of 4.0. The solutions were started from
freestream initial conditions with the first-order scheme
and run until the Ly-norm (RMS average of all resid-
uals) decreased one order of magnitude, at which time
the solver automatically switched to the higher-order
scheme. The solution history is plotted in Fig. 3
against CRAY-2S CPU time to provide a relative com-
parison of computational effort. Figure 3(a) shows the
L-norm with a decrease of approximately 2.5 orders of
magnitude. The convergence history of the lift coeffi-
cient is shown in Fig. 3(b). Additional details of the so-
lution characteristics are provided in Table 2. For com-
parison, computations presented in Ref. 12 for Meshes

2 and 3 used approximately 3 hours and 8 hours of
CRAY-28 CPU time, respectively.

Dimensioned CRAY-2S Number

Memory, mw | Time, min. Cycles
Mesh 1 2.6 14 800
Mesh 2 8.1 89 1565
Mesh 3 17.1 203 1716

Table 2. Solution characteristics.

A comparison of wing surface pressure contours
for the three meshes is presented in Fig. 4 with con-
tour intervals of A(p/poo) = 0.02. Before plotting, the
computed face-centered boundary quantities were aver-
aged to the boundary nodes using Eq.(6). The contour
results show very little overall sensitivity to mesh size.
As expected, the primary effect of the grid occurs with
the spatial resolution of the shocks.

Figure 5 shows the effect of mesh size on the
streamwise surface C,, distribution at six span stations.
The present results are plotted in comparison to exper-
imental data at a Reynolds number of 11.7 million!8.
The computations on all the three meshes agree well



with experiment and demonstrate the accuracy of the
calculations. The primary effect of mesh size is con-
fined to regions of large gradients such as the leading-
edge suction peak and the shock, where the finer mesh
yields sharper shock definition. Comparisons shown in
Ref. 12 demonstrated that the solutions for Meshes
2 and 3 are comparable to those obtained with struc-
tured codes. Although the deterioration of the solution
for Mesh 1 is greater at the root and tip stations, it
should be noted that its solution was obtained with an
order of magnitude less CPU time and over 6 times less
memory than that for Mesh 3.

The force and moment coefficients listed in Table 3
were computed by integrating the face-centered bound-
ary pressures. The coefficients for lift, drag, pitching
moment, and wing root bending moment are based
on reference quantities of S,y = .5255, ¢ = .67, and
bres = 1.0. The pitching moment is referenced about
the wing apex.

Mesh 1 Mesh 2 Mesh 3
CL .2816 .2904 .2911
Cp .0141 .0132 .0123
Cnm -.1688 -.1724 -.1726
CrBM .1270 .1283 .1285

Table 3. Force and moment coefficients.

Mesh Sequencing. A solution for a given configu-
ration can be converged to steady state more efficiently
by resorting to mesh sequencing. This procedure is a
convergence acceleration technique in which the con-
verged flow solution obtained on a coarse mesh is used
as a starting solution for a finer mesh instead of starting
from the uniform flow. The final steady state solution
can be obtained in less overall computational time com-
pared to one started from freestream initial conditions.
Of course, interpolation of data between two completely
different unstructured three-dimensional grids is not
straight forward. A program which makes use of effi-
cient octree data structures was written to accomplish
this task.

Mesh sequencing was applied to the M6 wing to
quantify the benefits in terms of reduced computational
time. The converged solution from the stretched mesh
(Mesh 1), was interpolated onto the fine mesh (Mesh 3)
as a starting solution. Figure 6 shows the convergence
history of the Lz-norm. To achieve the same level of
residual reduction of approximately 2.5 orders of mag-
nitude, the mesh sequenced solution results in a savings
of 32-percent in CPU time. Even with accounting for
the interpolation time, the net decrease in CPU time is
still 29-percent. The final results are identical with and
without mesh sequencing and, thus, are not shown.

Low-Wing Transport

Another quantitative assessment of the flow solver
is made using a low-wing transport configuration de-
scribed in Ref. 19. The 1/17th-scale configuration con-
tains a supercritical airfoil and a flow-through represen-
tation of an advanced turbofan nacelle with a bypassra-
tio of approximately 6. The experimental pressure mea-
surements were obtained in the NASA Langley 16-Foot
Transonic tunnel?® at transonic Mach numbers with
Reynolds numbers in the range of 2.5 x 10° based on the
mean aerodynamic chord of the wing. The present cal-
culations were made for the condition of M = 0.768
and o = 1.116°.

The computational grid consists of 418,939 cells
and 75,470 total nodes representing the semispan con-
figuration. The surface grid (Fig. 7) contains 21,428
boundary faces and 10,716 boundary nodes, including
the outer boundaries and plane of symmetry. Grid
stretching was not applied for these preliminary cal-
culations. A sufficient definition of the internal flow-
through nacelle geometry was not available, so the grid
was terminated at a plane inside the inlet, and at the
two bypass exit planes. Freestream conditions were pre-
scribed on the exit plane boundaries. A condition of
M = 0.632M_, was imposed on the inlet plane to bal-
ance the mass flux.

Surface pressure contours are presented in Fig. 8.
Good resolution of the wing shock can be observed
along with evidence of an inboard lambda shock.

A comparison of the streamwise C,, distributions
are shown in Fig. 9 for six span stations. The invis-
cid results are compared with experimental data at a
slightly higher angle of attack. In general, the agree-
ment is good and consistent with the expected effects
of viscosity. The shock is more aft, and the effects of
flow separation downstream of the shock and in the
lower-surface cusp region result in a lower experimen-
tal AC, over the aft region. (It should be noted that
the stations within 0.463 < 5 < .70 had only three cells
defining the region between the shock and the trail-
ing edge.) Similar comparisons are presented in Ref.
21 for a typical transport configuration with a super-
critical wing. Comparisons shown between viscous and
inviscid calculations and transonic experimental data
show viscous effects comparable in magnitude to those
observed in the present calculations.

The solution was obtained using mesh sequencing
and required approximately 6 hours of CPU time and
31 megawords of memory. The present grid has a con-
siderable number of cells clustered in directions of small
gradients where they are not needed. The total num-
ber of cells could be greatly reduced with grid stretch-
ing, which would significantly decrease the amount of
memory and CPU time required to obtain a satisfac-



tory solution. Generation of stretched grids for complex
configurations is presently an active area of research.

Space Transportation System (STS)

A computation was made on the Space Trans-
portation System (STS) at M, = 105 and
a = —3.1° to demonstrate the robustness of the flow
solver in obtaining a solution on a complex geome-
try with a complex flow field. The semispan grid,
which includes the orbiter, external tank, and solid
rocket boosters, consists of 108,538 cells and 21,562 to-
tal nodes. The surface grid shown in Fig. 10 is repre-
sented by 13,552 triangular faces and 6,780 nodes, in-
cluding the outer computational boundaries and plane
of symmetry. The computations were made with zero
elevon deflection.

The solution was obtained with 3410 first-order cy-
cles with a CFL number of 0.5, then 1275 additional
cycles at higher-order with a CFL number of 1.0. The
solution required 235 minutes of CPU time on a CRAY-
2S and used 8.2 megawords of memory.

Figure 10 shows a composite picture of the surface
triangulation and the corresponding pressure contours
on the full configuration. The centerplane grid is shown
in Fig. 11 along with the pressure contours in Fig.
12. The basic features of the flow (shocks, expansions
etc.) have been well captured in the solution consid-
ering that only 3-4 layers of fine cells have been used
close to the body. The quality of the present results,
which were computed on a relatively coarse grid with
a relatively small amount of computer time, serves as
a good demonstration of the flow solver capabilities.

Code Efficiency

The preceding solutions were computed on a sin-
gle processor of the NASA Langley Research Center
Voyager CRAY-2S. All coding within the flow solver
portion of the code vectorizes with the standard FOR-

TRAN compiler. The code statistics are summarized
in Table 4.

Dimensioned Memory

CPU Time, First Order
CPU Time, Higher Order

74 words/cell
18 us/cell/cycle
34 ps/cell/cycle

Table 4. Code statistics.

For comparison, the prior higher-order algorithm of
Ref. 12 required 65 us/cell/cycle.

To put these statistics in perspective, structured
Euler codes generally require from 40 to 50 words of
memory per cell, and 25 to 35 microseconds of CRAY-
28 time per cell per cycle for higher-order solutions.
Thus, the new algorithm yields efficiencies which are

comparable to those of structured codes.

To avoid possible confusion, it should be noted
that a 3-D structured mesh of hexahedral elements con-
tains the same number of nodes as cells (asymptoti-
cally), whereas an unstructured mesh of tetrahedral el-
ements generally contains between 5 and 6 times more
cells than nodes. As shown in Ref. 12, comparable
accuracy can be achieved between structured and cell-
centered unstructured codes with the number of cells
being of the same order of magnitude. Thus, it is im-
portant to make comparisons based on the number of
unknowns computed, i.e. the number of cells for a cell-
centered scheme.

Concluding Remarks

An wupwind scheme for solving the three-
dimensional Euler equations on unstructured tetrahe-
dral meshes has been presented. The algorithm con-
sists of a time-explicit cell-centered finite-volume for-
mulation using flux-difference splitting. Higher-order
accuracy is achieved by a fast multidimensional linear
reconstruction algorithm which produces a computa-
tional efficiency comparable to that of structured algo-
rithms. The approach yields highly resolved solutions
in regions of smooth flow while avoiding oscillations
across shocks without explicitly applying a limiter.

Results have been presented for a range of config-
urations at transonic speeds to demonstrate the speed,
accuracy, and robustness of the flow solver. The poten-
tial for computational efficiency and accuracy has been
illustrated by obtaining reasonably good solutions on
the ONERA M6 wing in 14 minutes of CRAY-2S run
time with 2.6 megawords of memory. A quantitative
assessment has been presented for a low-wing trans-
port configuration to demonstrated the robustness of
the flow solver in providing an accurate solution on a
complex geometry. A computation has been made on
the Space Transportation System at a transonic Mach
number to demonstrate the robustness of the flow solver
in obtaining a solution on a very complex geometry
with a complex flow field.
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Figure 3.- Effect of mesh size on convergence history of ONERA M6 wing.
M, =0.84,a = 3.06°.
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Figure 4.- Upper surface pressure contours for ONERA M6 wing.
My =0.84,a = 3.06°, A(p/pec) = 0.02.
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Figure 5.- Effect of mesh size on chordwise C,, distribution for ONERA M6 wing.
My =0.84, o = 3.06°.

11



——  Mesh 3
....... Mesh 1 & 3

240

-6 | ] ] | 0.0 | | | |
0 60 120 180 240 0 60 120 180
CRAY2S Cpu time, min. CRAYZS Cpu time, min.
(a) Ly-norm (b) Lift coefficient

Figure 6.- Effect of mesh sequencing on convergence history of ONERA M6 wing.
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Figure 7.- Surface grid for Low-Wing Transport.
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Figure 8.- Surface pressure contours for Low-Wing Transport.
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Figure 9.- Comparison of experimental data with unstructured inviscid solution.

Low-Wing Transport, M, = 0.768.
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Figure 10.- Surface grid and pressure contours on STS.
My, =1.05,a=-3°,
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Figure 11.- Grid on symmetry plane for STS.

Figure 12.- Pressure contours on symmetry plane for STS.
My, =1.05,a = —3°.
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