
UC Davis
IDAV Publications

Title
A Fast Volume Rendering Algorithm for Time-varying Fields Using a Time-Space Partition 
(TSP) Tree

Permalink
https://escholarship.org/uc/item/4f32f3ms

Authors
Shen, H.
Chiang, L.-J.
Ma, Kwan-Liu

Publication Date
1999
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f32f3ms
https://escholarship.org
http://www.cdlib.org/


Image Graphs - A Novel Approach to Visual Data Exploration

Abstract

For types of data visualization where the cost of producing
images is high, and the relationship between the rendering
parameters and the image produced is less than clear, a vi-
sual representation of the exploration process can make the
process more efficient and effective. Image graphs represent
not only the results but also the process of data visualiza-
tion. Each node in an image graph consists of an image and
the corresponding visualization parameters used to produce
it. Each edge in a graph shows the change in rendering pa-
rameters between the two nodes it connects. Image graphs
are not just static representations: users can interact with a
graph to review a previous visualization session or to perform
new rendering. Operations which cause changes in render-
ing parameters can propagate through the graph. The user
can take advantage of the information in image graphs to
understand how certain rendering parameter changes affect
visualization results. Users can share the image graphs they
create to streamline the process of collaborative visualiza-
tion. We have implemented a volume visualization system
using the image graph interface. While our examples in the
paper come from this implementation, we also discuss the
applicability of image graphs to other problem domains.
Keywords: collaborative visualization, scientific visualiza-
tion, user interface design, volume rendering.

1 Introduction

Effort spent generating and collecting data is wasted unless
there are effective means to organize and understand this
data. This fact poses a problem in some modern visualiza-
tion research. For example, in volume rendering the current
data handling and visualization technology can not handle
the sheer size of emerging datasets. While various efforts
have been made to condense datasets and accelerate ren-
dering calculations, little work has been done to represent
the process and results of this type of visualization coher-
ently. However, this information about the data exploration
is knowledge that should be shared and reused. This paper
describes the image graph which is not only a representa-
tion of this knowledge but also an interface for visual data
exploration.

The basic idea of image graphs was introduced in [8]. Es-
sentially, during a data visualization session, as images are
rendered, the images are added to a graph which displays
the relationship between all of the images the user has pro-
duced. This paper focuses on the advanced features of image
graphs which turn the original static graphs into a dynamic
interface for data exploration. These features include:

• Operations on nodes

• Operations on edges

• Propagation of node properties

• Animation

• Graph pruning

• Summary graphs

The data exploration process can be controlled by an im-
age graph which becomes more detailed during the process.
Operating on the graph is more efficient than manipulating
individual images and visualization parameters because the
graph gives the user context. For example, in volumetric
visualization, a change in a single rendering parameter may
affect different datasets in widely varying ways. A visual
representation of the effects of past parameter changes on a
given dataset can help the user predict the effects of future
changes, and thus streamline the exploration process.

In previous work, various attempts have been made to
organize information into visual representations to improve
perception of the information, but only a few are related to
our work. Worldlets [3] are 3D thumbnails for wayfinding in
virtual environment. Each worldlet landmark represents a
miniature virtual world fragment which provides the users a
memorable destination to return to later. CZWeb [2] helps
users navigate through the Web by using a fish-eye view
technique and a hierarchically organized network (or graph).
As the user navigates using a web browser, new web sites
and pages visited are added to the graph in an organized
fashion. The data-flow model [9] has been adopted by many
commercial visualization systems [9, 10, 1]. These systems
all provide a visual programming environment which allows
the user to construct directed graphs representing the flow of
data through the system. An image graph stores information
about data exploration, and is unique because of its intuitive
edge representations and dynamic features.

We have organized the paper as follows. Section 2 de-
scribes data exploration as both a parameter specification
problem and a search problem. This discussion forms the
motivation for our research effort. In Section 3, we briefly
review the basic principles behind image graphs. Section 4
introduces the advanced features and illustrates them with
several examples. Section 5 addresses the issue of scalabil-
ity in image graphs. We discuss the use of image graphs
for collaborative visualization in Section 6. The final sec-
tion concludes the work and suggests directions for future
research.

2 Data Exploration - A Parameter Specifi-
cation Problem

The goal of visual data exploration is the discovery of vi-
sualization parameters which emphasize the most relevant
features of a dataset. In volume rendering, some impor-
tant rendering parameters include view, color and opacity
transfer functions, and light sources. He, et al. [4] uses
stochastic search techniques in concert with user defined fit-
ness functions to help the user pick good transfer functions.
Kindlmann and Durkin [5] demonstrate a more ambitious
approach which generates transfer functions for volume ren-
dering in an semi-automatic fashion. Under most systems,
the selection of rendering parameters is an iterative process
of trial and error. The user simply tries combinations of ren-
dering parameters until he finds a combination which pro-
duces a useful image.



Figure 1: A graph representation of images produced from
the exploration of a furnace dataset. The graph makes it
clear that first the user was experimenting with a variety of
color maps. Next he produced images by changing the ro-
tation of the desirable node, and then zooming factor. Note
that nodes with similar parameters are close to each other
in the graph even though they were not created in sequence.
The mark on the top right corner of each thumbnail image
indicates the relative age of each node. Lighter marks cor-
respond to the most recently created nodes.

The Design Galleries system [7] is notable because it treats
volume rendering as the process of exploring a multidimen-
sional space. The dimensions of the space are the rendering
parameters. The image the user is looking for exists in this
space, but the user does not know the appropriate combi-
nation of rendering parameters to produce that image. In
a preprocessing phase, the system renders images based on
parameters in different regions of the search space. When
the preprocessing is complete, the user can view a 3D repre-
sentation of the design space and look for the desired image
among the group of rendered images. This is an interest-
ing approach because it recognizes that volume rendering
should be treated as a process of searching a design space
rather than a process of trial and error.

Our approach avoids preprocessing in favor of adding
newly rendered images to an image graph. An image
graph keeps track of the relationships between images of
the dataset to make the search of the design space more ef-
ficient and effective. As shown in Figure 1 and Figure 2,
image graphs provide the user with more information than
just a group of images of the dataset. The SI system [6]
also explores structured visual representations of the image
production process. It extends the spreadsheet paradigm by
incorporating images, data and widgets into spreadsheets.
This extension allows the user to manipulate data according
to formulae in the same way that numbers are manipulated
in a traditional spreadsheet.

It is important to stress that our approach to data visu-

Figure 2: A sequence of the same images produced from
the furnace dataset. The images are listed in the order of
creation from the top left to the bottom right. Note that it
is difficult to discern the relationships between these images
just by looking at the images themselves.

Opacity

Rotaton Zoom

Shading Sampling

Color

Figure 3: Edge representations for different rendering pa-
rameters. An edge represents the change in rendering pa-
rameters between the two nodes it connects.

alization differs from standard flowchart based data analysis
in that most flow chart systems use a graph to control the
processing of data, while our system uses a graph to help the
user understand the results of the parameter search process.

3 Image Graphs

Image graphs offer a way to represent the data exploration
process. They aid in the process of reviewing and recording
the interesting structures found in the dataset. As well, they
make searching for a desirable rendering parameters more
efficient by showing how changes in parameters affect the
visualization output for a given dataset. In an image graph,
each newly rendered image is associated with an n-tuple of
rendering parameters (color, opacity, zoom, rotation, light-
ing, etc.). A notion of equality is defined for each of these
rendering parameters. Two nodes on a graph are considered
to be equal if all of their rendering parameters are equal.
Two nodes are considered to be similar if all but one of their
rendering parameters are equal. After each image is ren-
dered, it is added to the graph. Then the node is attached
to similar nodes in the graph. The similar nodes are con-
nected with an edge that represents how they are related.



Figure 4: The change in rendering parameters is not always
apparent from the images themselves. The three nodes in
this graph vary only in their opacity maps, yet the images
differ greatly in color. The change in opacity maps exposes
different portions of the data, each of which are mapped to
a different set of colors.

3.1 Edge Types

Because similar images can differ in one of several aspects,
there are various types of edges that can exist between nodes.
When a new node is added to the graph, at most one new
edge of each type is drawn to prevent the graph from be-
coming cluttered. Edges on the graph vary in appearance
according to the type of relationship they represent. Figure 3
shows six different types. The reason for this distinction is
to depict the changes made during the data exploration to
get from one image on the graph to another. It is especially
important to know the relationships between the images that
have been rendered in case the types of the changes are not
readily apparent from the images. This can happen when a
color or opacity mapping is not effective for a given dataset.
For example, if a lot of contrasting colors are assigned to
a range of data values which are also assigned low opacity
values, a change in the color map will not necessarily affect
a change in the colors of the resultant image. Figure 4 shows
an example.

3.2 Intermediate Image Nodes

If a user changes the values of two or more rendering pa-
rameters between renderings, a node will be added to the
graph which is not similar to any existing node. In the rare
case that a new node does not have more than one rendering
parameter in common with a preexisting node, the node is
added to the graph without creating any new edges. How-
ever, if there is a node in the graph which has exactly two
rendering parameters in common with an existing node, the
system joins these nodes by creating two nodes which are
similar to each of the nodes to be joined. For example, if
a user rendered one image, and then changed the color and
opacity transfer functions, then rendered a new image, the
system would add two intermediate nodes to the graph. As
shown in Figure 5, one of these nodes would have the color
mapping of the first node on the graph and the opacity map-
ping of the second node on the graph. The other of these
two intermediate nodes would have the opacity mapping of
the first node and the color mapping of the second. These
two automatically added nodes establish the relationship be-

Figure 5: A small graph of some images of the furnace
dataset. The image in the top left corner is the initial im-
age, and the bottom most image shows the result of apply-
ing rotation, different color and opacity maps, rotation, and
zooming.

tween the two previously rendered images. To display these
intermediate nodes on the graph, the system generates a
thumbnail image for each of these nodes.

This process of automatically generating graph nodes with
thumbnail images of intermediate steps in the rendering pro-
cess is especially useful when a series of changes in rendering
parameters results in an image which is not what the user
expected. In this case, the user can look at the intermediate
images and determine which of the changes in rendering pa-
rameters are responsible for the undesirable aspects of the
resultant image.

Note that in Figure 5, the red mark in the corner of the
two intermediate images indicates that they are thumbnails.
The intermediate images are rendered at low resolution to
minimize rendering time. The user can click on a thumbnail
to render a full size image with the rendering parameters of
that graph node. Avoiding the production of full size images
of intermediate nodes saves time, preserving the interactivity
of the user’s session.

4 Graph-Based Rendering

Considering that the user’s task is essentially a search for
desirable images within a space defined by the rendering pa-
rameters, the image graph effectively represents user’s search
pattern. For example, if after rendering an image using some
initial default parameters, the user wants to fine tune the ro-
tation of the dataset to best display a certain small structure
in the data, the user might render a series of images with
differing rotations to search for the best rotation. This pro-
cess would be represented on the graph as a group of images
surrounding the initial image, with each of the surrounding
images connected to the original image with a curved line,
which is always used to represent a change in rotation. Once



2

1

3

Figure 6: A portion of a graph representing the exploration
of a foot dataset. The user combines the color and opacity
maps of node 1 in the top right corner with the zoom and
rotation of node 2 in the bottom left corner to produce node
3 the image in the bottom right corner.

the user had found the correct rotation, he might continue
his exploration by experimenting with different color and
opacity values. Whatever images he rendered after finding
the correct rotation would be attached to the image with the
desired rotation. The graph would allow the user to quickly
locate images of interest by looking at the relationship be-
tween images. The graph allows the user to easily switch
back and forth between different points in the image search
space. A user could explore different rotations to make a
structure visible as described above, and later try using dif-
ferent opacity mappings to make the same structure visible
independent of rotation. The user could switch back and
forth between these approaches, and the graph would keep
the nodes relating to the two approaches separate from each
other.

This graph-based rendering can be much more dynamic.
Once a few images are produced and added to the graph,
the user can start manipulating the graph by editing the
relationships between all of these images in the graph. The
user can edit both nodes and edges in a graph. We describe
the benefits of these features for data exploration in the rest
of this section.

4.1 Editing Nodes

One feature the graph provides is the ability to combine
the attributes of two existing nodes to produce a new node.
During the process of searching for the rendering parame-
ters which produce a useful image, a user may find several
images which have some qualities of the desired image, but
are not perfect. In this case, the user can drag one node
on top of another node on the graph to produce an image
which shares selected rendering parameters of the two par-
ent nodes. Figure 6 presents an example. A dialog box lets
the user specify which rendering parameters of each parent
image will be used for the child image. The new image is
then rendered and added to the graph, showing the relation-
ship between the rendering parameters of the child and its
parents.

The user can also generate some new rendering parame-
ters using set operations such as union, difference and in-

+ =

Figure 7: A desirable visualization result (right most) was
produced using the union of two opacity transfer functions
defined by the red and blue curves respectively. The left-
most image (negative, blue vortices) corresponds to the blue
curve. The middle image (positive, red vortices) corresponds
to the red curve.

tersection. For example, an image may be generated based
on an opacity transfer function which is the union of two
others. Figure 7 presents an example in which the left-most
two images exhibit similar structures which in fact represent
two different value ranges from the dataset. Here, scientists
want to see both structures and their relationship in a single
visualization, as can be produced with our union operation.

4.2 Editing Edges and Properties Propagation

Another method of editing the graph is manipulating edges
to alter the changes in rendering parameters between two
nodes. The user can select an edge on the image graph to
bring up a dialog which allows the user to change the pa-
rameter. Once the value of the parameter has been changed,
the user can select a group of nodes to apply the change to.
The user may apply the change to just one of the nodes di-
rectly connected to the edge, or to all of the nodes on either
side of the given edge. Using this method, a user can cause
changes in rendering parameters to propagate through the
graph. Specific property changes can either propagate for-
ward (i.e. in the direction of the newer node attached to
an edge), or backward according to the user’s wishes. This
helps the user see the effects of a single parameter change
as they exist in concert with many other combinations of
parameters, all while keeping graph clutter to a minimum.

The user can also move edges within the graph, chang-
ing its topology. When the user detaches one end of an
edge from a node and attaches it to another, the parameter
change associated with the edge is propagated through the
new node and its peers. Using this approach, the user can
apply a series of parameter changes to a group of nodes as
a whole. Applying parameter changes in this way helps the
user isolate the effects of various rendering parameters from
each other in the images. This can help the user determine
which types of parameter changes cause which results in an
image, as these effects are not always apparent from the im-
ages themselves. Figure 8 and 9 shows an example of the
propagated effect before and after moving an edge.

4.3 Animation

Image graphs are also useful for making animation se-
quences. The user selects from the graph the series of key-
frame images to use for the production of the animation,
and the system performs interpolation between them in the



2

1

Figure 8: An image graph produced from the foot dataset. A
”color” edge is being detached from node 1, and re-attached
to node 2 in the graph. This action will replace the color
transfer function of node 2 with the color map of node 1 and
trigger a re-rendering at node 2. Furthermore, the effect of
using a new color transfer function at node 2 will propagate
through its peers.

visualization parameter space to produce an animation. We
use linear interpolation from the rendering parameters of
one image to the rendering parameters of the next to pro-
duce the intermediate images. Using this method the user
can produce movies where, for example, the muscle tissue in
a CT scan gradually fades away to reveal only bone as the
dataset is rotated. The main benefits of the image graph
here are that the user can see the relationships between the
images, and that images with similar properties are grouped
together. So, when selecting the keyframes for an animation
the user can quickly find key frames with appropriate tran-
sitions, and have a rough idea of what the animation will
look like before it is produced based on how the parameter
changes affect the images in the graph.

5 Graph Scalability and Display

The graph-based approach can become difficult to use af-
ter a great deal of images have been added to the graph.
To address this issue, we have developed several approaches
to graph scalability. The first is a manual approach. The
user can select nodes on the graph and collapse them. That
is, remove them from the graph and store them elsewhere.
These nodes can be added back to the graph later if the user
wishes. In order to maintain correct graph topology in this
case, the user is only allowed to collapse nodes with less than
three edges active on the graph. However, if a user wishes
to collapse a node with more than two edges, he can do this
by collapsing surrounding nodes until the target node has
the required number of edges, and then collapsing the node.
When the user restores a node to the graph which has been
collapsed, the node might not share an edge with any active
node in the graph. To deal with this issue, the system com-
putes the shortest path which connects the node to be added
with the existing nodes, and adds the nodes and edges which
form this path to the graph.

We have also implemented an automatic graph pruning
approach, which involves using an least-recently-used algo-
rithm to select nodes to remove from the graph when the
number of nodes on the graph reaches a certain number.

2

3

4

5

Figure 9: The resultant image graph after a forward prop-
agation of a new property, in this case, the color transfer
function. Compared to the images in Figure 8, note that
node 2, 3, 4, and 5 have all been updated. Node 1 has been
removed since it has become redundant to node 3.

The user can mark certain nodes on the graph as immune
from pruning, so that they will remain on the graph even if
the user does not view or modify them for a long time. If
a node is automatically pruned, it can be brought back into
the graph just like manually pruned nodes.

Our final approach to graph scalability involves providing
zoom functionality, so that the user can look at a view of the
graph which shows all of the nodes, or a view which displays
a specific region of interest. The images representing the
renderings of the dataset automatically scale in resolution
as the zoom factor increases. This means that the user can
get a very good look at an image on the graph by zooming in
to it, without even having to load it into the main rendering
window of a visualization system.

5.1 Summary Graphs

Another benefit the image graph approach provides for the
user is the ability to view a summary graph which only shows
the relationships between images that the user has marked as
important. This functionality is useful in several scenarios.
First, the user may wish to see the shortest path between
the default rendering parameters and the parameters used
for a desirable image. This functionality can be used to
remove all nodes from the graph except those which lie on
the path between nodes the user has marked as important.
As well, the user may wish to show the relationship between
a group of desirable images. In this case, the system can
automatically remove all nodes from the graph which are
not relevant to this relationship. This ability is especially
important in the context of collaboration. A user who is
unfamiliar with a dataset will find a graph which shows just
the important images to be more useful than a graph which
displays poor images produced during the data exploration
process.

6 Collaborative Visualization

By sharing annotated image graphs, users can share, under-
stand, and build upon each others results. Annotation is
done by drawing on the actual images, or by writing com-
ments about the images. These comments are stored in the



visualization graph along with the nodes to which they cor-
respond. As well, these graphs can be saved for later use.
The annotated graphs can then be exchanged among users
of the system.

The exchange of image graphs among users is more useful
than the exchange of just image data. If a group of images is
used, the user has no clear idea of the relationship between
them. If users want to work together to explore a dataset, it
is important to minimize the amount of a user’s work which
is lost when that work is communicated to another user.
By expressing the data exploration process in terms of an
image graph as opposed to a list of images, the system can
communicate more information to other users. When a user
explores a new dataset, the first step is to locate a reasonable
set of rendering parameters which produce an intelligible
image. Once this starting point is reached, the user can
begin to refine the image. During this process of refinement,
a lot of information about the dataset is discovered which
can not be captured by images alone. The user may learn,
for example, that for a given dataset changes in the color
map do little to change the resultant image compared to
the change caused by changes in the opacity map. In a
collaborative scenario, it would be useful to communicate
this information to other users so they would not have to
rediscover it. The image graph accomplishes this goal.

7 Conclusions

Image graphs help streamline the process of visual data ex-
ploration in two ways. First, the graphs give the user a
representation of the relationship between visualization pa-
rameter changes and the images produced using them. As
we have pointed out in an example using volume rendering,
often these relationships are not obvious just through in-
spection of the rendered images. An understanding of how
specific rendering parameter changes will affect the image
output is important because it reduces the number of im-
ages the user must produce to find parameters which yield a
useful image, and these images can be quite time consuming
to produce.

Second, the dynamic features of the graphs, such as an-
notation and automatic pruning, facilitate collaboration and
animation. They also help speed the search for good ren-
dering parameters by allowing users to perform operations
on using groups of nodes. These operations include simple
modification of rendering parameters, combination of nodes
to form ”child” nodes with their properties, and propagation
of modifications through the graph.

The results of an informal user study we have conducted
using twelve resident staff scientists indicate that image
graphs reduce the average amount of time needed to come up
with desirable images of complex volumetric datasets. We
are presently designing a comprehensive user study to refine
the design of the visualization system and its image graph
interface.

We have implemented a Java based volume visualization
system which includes all of the image graph features de-
scribed in this paper. While the examples in this paper
relate to volume rendering, we think image graphs would be
useful for any type of data exploration problem which pro-
duces images of data as a function of some set of parameters.
Other possible applications include radiosity calculations, 2-
D image filtering, and polygon based rendering. Our future
work includes demonstrating that our approach is indeed
useful for these other problem domains.

References

[1] G. Abram and L. Treinish. An extended data-flow
architecture for data analysis and visualization. In
Proceedings of the IEEE Visualization ’95 Conference,
pages 263–270, October 1995.

[2] G. Collaud, J. Dill, P. Tan, and C. V. Jones. CZWeb:
Fish-eye views for visualizing the world-wide web. In
Proceedings of the HCI International ’97: the 7th Inter-
national Conference on Human-Computer Interaction,
August 1997.

[3] T. T. Elvins, D. R. Nadeau, and D. Kirsh. Worldlets -
3d thumbnails for wayfinding in virtual environments.
In Proceedings of the ACM Symposium on User Inter-
face Software and Technology, pages 21–30, October
1997.

[4] T. He, L. Hong, A. Kaufman, and H. Pfister. Gener-
ation of transfer functions with stochastic search tech-
niques. In Proceedings of Visualization ’96, pages 227–
234, October 1996.

[5] G. Kindlmann and J. W. Durkin. Semi-automatic gen-
eration of transfer functions for direct volume render-
ing. In Proceedings of 1998 Symposium on Volume Vi-
sualization, pages 79–86, October 1998.

[6] M. Levoy. Spreadsheets for images. In Proceedings of
SIGGRAPH ’94, pages 139–146, July 1994.

[7] J. Marks, B. Andalman, P. Beardsley, W. Freeman,
S. Gibson, J. Hodings, T. Kang, B. Mirtich, H. Pfister,
W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design
Galleries: A general approach to setting parameters for
computer graphics and animation. In Proceedings of
SIGGRAPH ’97, pages 389–400, August 1997.

[8] J. Patten and K.-L. Ma. A graph based interface for rep-
resenting volume visualization results. In Proceedings of
Graphics Interface ’98, pages 117–124, June 1998.

[9] C. Upson, T. Faulhaber, D. Kamins, D. Schlegel,
D. Laidlaw, J. Vroom, R. Gurwitz, and A. van Dam.
The application visualization system: A computational
environment for scientific visualization. IEEE Com-
puter Graphics and Applications, 9(4):30–42, 1989.

[10] D. Young, M. Argiro. Cantata: Visual programming
environment for the khoros system. Computer Graph-
ics, 29(2):22–24, May 1995.


