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A fast wavelet algorithm for image deblurring
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(Received 8 October 2004, revised 1 February 2005)

Abstract

We present a nonlinear fully adaptive wavelet algorithm which
can recover a blurred image (n × n) observed in white noise with
O(n2(log n)2) steps. Our method exploits both the natural repre-
sentation of the convolution operator in the Fourier domain and the
typical characterisation of Besov classes in the wavelet domain. A par-
ticular feature of our method includes “cycle-spinning” band-limited
wavelet approximations over all circulant shifts. The speed and the
accuracy of the algorithm is illustrated with numerical examples of
image deblurring. All figures presented in this paper are reproducible
using the WaveD software package.
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1 Introduction

We begin with a function f defined on the unit square T = [0, 1]2 , this
function represents our image. Let g be a blurring kernel also defined on T
and let

b(x) := f ? g(x) =

∫
T

f(x1 − u1, x2 − u2)g(u1, u2) du1 du2 , (1)
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represent our blurred image. Suppose we observe b with some additive noise

Yn(dx) = b(x) dx+ σn−1 W (dx) , x ∈ T = [0, 1]× [0, 1] , (2)

where σ is a positive constant and W (.) is a 2D Wiener process. Here and
in the sequel of the paper n−1 denotes the noise level for an image defined
on a discrete set of equally spaced points Y (i/n, j/n), i, j = 1, . . . , n . This
model is illustrated in Figure 1(b) using the well-known ’Camera’ image,
Figure 1(a). Our goal is to recover the original image f from the noisy blurred
observations (2) using a wavelet thresholding estimator. The model (2) is
an idealised version of the motion blur model for digital images, see [1] for
examples and applications.

In this paper we extend the WaveD paradigm of Johnstone, Kerkyachar-
ian, Picard, and Raimondo [5] to the 2-dimensional setting and propose a
non-linear fully adaptive wavelet estimator of the original image f . We show
that the Translation-Invariant WaveD algorithm of Donoho and Raimondo [3]
extends well to the 2-dimensional setting according to each orientation: ver-
tical, horizontal and diagonal. This allows fast computation to be performed
in the Fourier domain where the convolution operator (1) factorises nicely.
Our paper is organised as follows: in Section 2 we review basic materials on
2-dimensional band-limited wavelet basis and translation invariant wavelet
transforms; in Section 3, we present the 2-dimensional WaveD estimator;
Section 4 is concerned with examples and numerical properties as well as a
comparison with the recent ForWarD algorithm of [9]. A brief description of
the 2-dimensional WaveD algorithm is given in Section 5.

2 Preliminaries
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(a) (b)

(c) (d)

Figure 1: (a) Original image; (b) blurred and noisy image; (c) ForWard;
(d) WaveD.
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2.1 Two-dimensional wavelet bases

Two-dimensional wavelet bases are constructed by tensor products of one-
dimensional wavelet orthogonal systems. We recall the following theorem
taken from [7].

Theorem 1 Let φ be a scaling function and ψ be the corresponding wavelet
generating a wavelet orthonormal basis of L2(R). We define three wavelets:

ψ1(x) = φ(x1)ψ(x2) , ψ2(x) = ψ(x1)φ(x2) , ψ3(x) = ψ(x1)ψ(x2) , (3)

and denote for 1 ≤ m ≤ 3 , k = (k1, k2) , x = (x1, x2) and κ = (j, k)

ψm
κ (x) := ψm

j,k(x) = 2jψm
(
2jx1 − k1, 2

jx2 − k2

)
. (4)

The wavelet family {
ψ1

κ, ψ
2
κ, ψ

3
κ

}
(κ∈Z3)

(5)

is an orthonormal basis of L2(R2).

We illustrate this theorem using the Meyer wavelet [8]. A Meyer wavelet ψ

is a function whose Fourier transform F (ψ) := ψ̂ is smooth, see formula
for the construction of ψ̂ [7, p.247]. In practice, we use a polynomial func-
tion to define the so-called Meyer window [7, p.248]. Note that the Meyer

wavelet is band limited and we have Supp(φ̂(w)) = {w : |w| ∈ [0, 4π/3]} and

Supp(ψ̂(w)) = {w : |w| ∈ [2π/3, 8π/3]}.

Applying Fourier transforms in (3) we construct two-dimensional Meyer
wavelets in the Fourier domain ω = (w1, w2) ,

ψ̂1(ω) = φ̂(w1)ψ̂(w2) , ψ̂2(ω) = ψ̂(w1)φ̂(w2) , ψ̂3(ω) = ψ̂(w1)ψ̂(w2) (6)

and φ̂(ω) = φ̂(w1)φ̂(w2) for the two-dimensional scaling function. This pro-
cess is illustrated in Figure 2.
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Figure 2: (a) |φ̂(ω)| ; (b) |ψ̂1(ω)| ; (c) |ψ̂2(ω)| ; (d) |ψ̂3(ω)| .
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The three wavelets defined in Theorem 1 will reveal image details at dif-
ferent frequencies and orientations: ψ1

κ will extract vertical details; ψ2
κ will

extract horizontal details; and ψ3
κ will extract diagonal details. This ori-

entation property is visible in the Fourier domain, for example |ψ1
κ(ω)| will

be large at low horizontal frequencies and high vertical frequencies, see Fig-
ure 2(b).

2.2 Translation Invariant wavelet transforms

In this section we recall the formal definition of cycle-spinning a generic (two-
dimensional) wavelet thresholding estimator and we define the Translation
Invariant (ti) WaveD estimator. We refer to [2] and references therein for a
more general discussion. A wavelet thresholding estimator is represented as

Space domain Wavelet domain
Y (x) −→wt (βκ)y

η
thresholding

f̃(x) ←−iwt η(βκ)

where wt, iwt denotes a generic wavelet transform and its inverse. For any
space shift h = (h1, h2) , we let Thf(x) = f(x + h) := f(x1 + h1, x2 + h2)
denote the shift operator. For an arbitrary shift h we define one cycle-spin
of the estimator f̃(t) as

Space domain Wavelet domain
Y (x)

shift
y

ThY (x) −→wt (βh
κ)y
η

thresholding

f̃h(t) ←−iwt η(βh
κ)

unshift
y

T−h(f̃h)(x)
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The idea behind cycle-spinning is to correct possible mis-alignments between
features in the image and features in the basis. Of course, if the image is
unknown there is little hope to find the best value of h. A well established
approach to solve this problem is to apply a range of shifts and average over
all results [2]. Let H be a set of shifts, cycle-spinning the WaveD estimator
over H yields a new estimator:

f̃H = Aveh∈H T−h(f̃h) =
1

|H|
∑
h∈H

T−h(f̃h) , (7)

where |H| denotes the cardinality of H. Yet again the problem of choosing
the best H may arise. In fact, it is clear that the bigger H is the better
since we take into account more possible mis-alignments. Assuming that
the observed data y = (y(1,1), . . . , y(i,j), . . . , y(n,n)) are sampled at a discrete
set of equally spaced points y(i,j) = Y (i/n, j/n) , i, j = 1, . . . , n ; we define
H1 = {1/n, 2/n, . . . , n − 1/n, 1} and H2 = H1 ×H1 to be set of all possible
circulant shifts. The Translation Invariant WaveD estimator is defined by

f̃ti = Aveh∈H2 T−h(f̃h) . (8)

We refer to Section 4 of [2] for a discussion of the improvement provided
by the cycle spinning process. This includes for example improvement in
approximation, suppression of Gibbs phenomenon as well as improvement in
de-noising.

2.3 Periodised Meyer wavelets

We start with a 1-dimensional Meyer orthogonal system φ, ψ and let

Ψ(x) =
∑
k∈Z

ψ(x+ k) , Ψj,k(x) = 2j/2Ψ(2jx− k) , (9)

with a similar formula for the periodised scaling function Φ in terms of the
Meyer scaling function φ. It is easy to check that (Φ,Ψ) are periodic and yield
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an orthonormal basis of L2(T ), see [4]. The next step is to apply Theorem 1 to
the periodised pair (Φ,Ψ) which gives a two-dimensional periodised wavelet
basis of L2(T ): {

Ψ0
κ,Ψ

1
κ,Ψ

2
κ,Ψ

3
κ

}
(κ∈Z3)

(10)

where Ψ0
κ := Φκ denotes the scaling function.

3 The two-dimensional WaveD-method

3.1 Fourier transforms

For l = (l1, l2) ∈ Z2 and x = (x1, x2) ∈ T , let l′x = l1.x1 + l2.x2 and
el(x) = exp(2πil′x), l ∈ Z2 denote the Fourier basis of L2(T ). For periodic
functions (images) of L2(T ), the Fourier coefficients

fl := 〈f, el〉 =

∫ 1

0

∫ 1

0

f(x1, x2) el(x1, x2) dx1 dx2 . (11)

For blurred images b = f ? g , we have the nice formula

bl := 〈b, el〉 = 〈f ? g, el〉 = 〈f, el〉.〈g, el〉 = fl.gl , (12)

for noisy images Yn(x) and Wiener process W (x) the Fourier coefficients are

yl = 〈Yn, el〉 :=

∫ 1

0

∫ 1

0

el(x1, x2) dYn(x1, x2) , (13)

zl = 〈W, el〉 :=

∫ 1

0

∫ 1

0

el(x1, x2) dW (x1, x2) . (14)

Applying the two-dimensional Fourier transform to the data (2) gives

yl = bl + σn−1zl , l ∈ Z2 . (15)
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The WaveD paradigm [5] combines Fourier and wavelet transforms. For
periodised wavelets (10), the Fourier coefficients

Ψm,κ
l := 〈Ψm

κ , el〉 =

∫ 1

0

∫ 1

0

Ψm
κ (x1, x2) el(x1, x2) dx1 dx2 , (16)

it is straightforward to check that the latter Fourier coefficients can be com-
puted from the Fourier transform of the original wavelet (evaluated on a
dyadic grid). For example,

Ψm,j,0,0
l = 〈Ψm

j,0,0, el〉 = 2−jψ̂m(l/(2j.2π)) , (17)

using the construction formula for ψ̂ [7, p.247], we compute the Fourier coef-
ficients of Ψm

j,0,0 at any resolution level j. This is illustrated on Figure 3 with
j = 3 and m = 2 .

Remark 1. The Fourier coefficients (17) whose modulus are depicted on
Figure 3(b) play a key role in the WaveD algorithm. Proposition 2 (Section 5)
shows that the knowledge of these coefficients allows a fast computation of
the complete wavelet transform (and its inverse) at resolution level j, see
Figure 4.

3.2 The WaveD paradigm

For periodic images in L2(T ), the wavelet coefficients

βm
κ := 〈f,Ψm

κ 〉 =

∫ 1

0

∫ 1

0

f(x1, x2) Ψm
κ (x1, x2) dx1 dx2 . (18)

For blurred images b = f?g , we compute the wavelet transform via Plancherel’s
formula:

〈b,Ψm
κ 〉 =

∑
l

bl.Ψ̄
m,κ
l , (19)
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Figure 3: (a) The continuous surface depicts ω → |ψ̂2(ω)| and points are
sampling at ωl = l/(2j.2π) , l ∈ Z , with resolution level j = 3 ; (b) Modulus
of Fourier coefficients Ψm,j,0,0

l = ψ̂2(ωl)/8 , with m = 2 and j = 3 , see (17).
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the WaveD paradigm stipulates that we can perform wavelet transform and
deconvolution simultaneously, combining (12) and (19) with Plancherel’s
equality:

WaveD(b, g,Ψm
κ ) :=

∑
l

( bl
gl

)
.Ψ̄m,κ

l =
∑

l

fl.Ψ̄
m,κ
l = βm

κ . (20)

In the case of noisy images, we define the (unbiased) Waved estimator

β̃m
κ = WaveD(Y, g,Ψm

κ ) :=
∑
l∈Cm

j

(yl

gl

)
Ψ̄m,κ

l , (21)

where Cm
j := {l : Ψm,κ

l 6= 0} . In the light of the above WaveD formula, we
see that band-limited wavelets (for example, Meyer) are very attractive since
only a finite number of terms is used in the sum (21).

3.3 The WaveD estimator

After performing deconvolution and wavelet transform, according to (21), we
define the WaveD estimator

f̃ =
∑
κ∈I0

β̃0
κ I{|β̃κ|≥λj0

}Ψ
0
κ +

3∑
m=1

∑
κ∈I1

β̃m
κ I{|β̃m

κ |≥λm
j } Ψm

κ , (22)

where I denotes the indicator function and I0, I1 are set of indices; I0 =
{(j0, k1, k2) : 0 ≤ ki ≤ 2j0 − 1, i = 1, 2} corresponds to a coarse resolution
level j0 and I1 = {(j, k1, k2) : 0 ≤ ki ≤ 2j − 1, i = 1, 2, j0 ≤ j ≤ j1} indexes
details up to a fine resolution level j1 . To specify the thresholds λm

j , we
extend the definition of [5] to the case of an image defined on a discrete set
of equally spaced points f(i/n, j/n), i, j = 1, . . . , n and let

τm
j =

(
|Cm

j |−1
∑
l∈Cm

j

|gl|−2
)1/2

, (23)
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where |Cm
j | denotes the cardinality of Cm

j . The WaveD (level-by-level) thresh-
olds are defined according to each orientation (m = 0, 1, 2, 3) by

λm
j := γ σ τm

j (log n)/n , (24)

where γ is a constant and the finest scale j1 is determined from

2j1 = (n/ log n)1/(1+2ν) . (25)

Here ν is a decay parameter which depends on the Degree of Ill-Posedness
(dip) of the convolution model (2); for example the WaveD asymptotic theory
as prescribed in [5] (extended here to the 2D-setting) includes convolution
kernel g such that (

|Cm
j |−1

∑
l∈Cm

j

|gl|−2
)1/2

� 2jν . (Cν)

The notation aj � bj means that there exist constants c0, c1 such that for
all j, c0 ≤ aj/bj ≤ c1 . Condition (Cν) typically holds for ordinary “smooth”
convolution where |gl| ∼ (|l1|+ |l2|)−ν , and in the 1-dimensional setting it has
been shown to hold for certain oscillatory cases, such as arise with irrational
boxcar blur [6].

4 Examples

4.1 WaveD Software

The WaveD2.0 software package used to prepare all figures and table in this
paper is available at http://www.maths.usyd.edu.au:8000/u/marcr/. The
2D-WaveD algorithm as described in Section 5 is implemented in Matlab
and is based on the repeated application of appropriate discrete Fourier trans-
form at each resolution level (and orientation) as illustrated in Figure 4. For
an n× n image there are at most J = log2(n)− 1 resolution levels and each
2D-Fourier transform takes O(n2 log n) steps. Hence, in total the 2D-WaveD
algorithm requires only O(n2(log n)2) steps for an image with n× n pixels.

http://www.maths.usyd.edu.au:8000/u/marcr/
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Table 1: Monte-Carlo approximations to rmise=
√
E‖f̃ − f‖22 with N =

100 replications.
Method Time (100 repl.) Low noise Medium noise High noise
WaveD 4.5 min 0.1854 0.1886 0.2442

ForWaRD 55.8 min 0.1581 0.1812 0.2953

4.2 Image deblurring using WaveD

We have tested finite sample properties of the WaveD algorithm using a
wide range of images at various Signal-to-Noise-Ratios. We illustrate our
findings using the well-known ’Camera’ image, see [9, e.g.]. The original
image (256× 256) is depicted in Figure 1(a). In Figure 1(b) we illustrate the
white noise model (2) with medium noise level σmed = 0.002 and a smooth
blurring kernel g with dip ν = 1 . In Figure (b) the Blurred-Signal-to-
Noise-Ratio (bsnr) is 40 dB as in the default setting of [9] . In our study
(summarised in Table 1) we also report performances for low noise level
σlow = 0.0006 (bsnr= 50dB) and high noise level σhigh = 0.065 (bsnr=
10dB).

4.3 Results

For each combination of noise level (low, medium and high) we compute
the Monte Carlo approximation to the Root-Mean-Integrated-Square-Error
(rmise) with N = 100 replications. For comparison, we include the results
of the recently developed ForWard algorithm, see [9].

The general pattern seen in Table 1 suggests that for high noise level
WaveD outperforms ForWarD whereas for low noise level ForWarD outper-
forms WaveD. For medium noise level both WaveD and ForWaRD are very
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close. A comparison of Figure 1(c) and 1(d) suggests that the image details
(for example, eyes, mouth) are more visible on the WaveD estimation than
in the ForWarD image which remains a little blurred due to the regularisa-
tion. On the other hand the general appearance of the ForWarD estimates
is slightly smoother than the WaveD image.

4.4 Discussion

These preliminary results are very encouraging given that the ForWarD
method is known to have very good numerical properties and outperforms
classical deblurring methods based on Wiener filtering. A key feature of
the WaveD method is that it is fairly simple and it enjoys fast computation
(nearly as fast as the fast Fourier Transform). Our numerical study seems
to suggest that diagonal coefficients at large resolution level are harder to
recover than horizontal or vertical components. This is confirmed by the
theory since an inspection of the WaveD paradigm (21) shows that for di-
agonal coefficients (m = 3) the support of Ψ̂3 is wider than that of Ψ̂m,
m = 1, 2 (see also Figure 3). This yields larger variances for diagonal coeffi-
cients estimates. This results in a lack of diagonal coefficients for the WaveD
image (Figure 1(d)). There is a similar phenomenon in ForWarD images
(Figure 1(c)) but the regularisation tends to minimise this effect although
this also erases some details in the image. We are confident that the general
aspect of WaveD images could further be improved by using more elaborated
thresholding strategies, see for example the discussion in [5].

5 Algorithm

Our algorithm is based on a mathematical idea introduced in [3] for the 1-
dimensional setting. The idea is that, at a given resolution level, both wavelet
transform and inverse wavelet transform can be expressed as convolutions
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with certain wavelet functions. The WaveD algorithm takes full advantage
of the Fast Fourier Transform to compute those convolutions. Below we
present an extension of the WaveD algorithm to the 2-dimensional setting
where we take care of the 3 possible orientations: horizontal, vertical and
diagonal.

• Averaging shifts can be done level by level according to given orienta-
tion m = 1 , 2 and 3. To simplify the presentation we omit the scaling
term m = 0 . Recalling the multi-resolution structure of a generic
wavelet estimator we have

(T−hf
m
h (x)) =

j1∑
j=j0

∑
k∈Im

j

η(β̃m,h
j,k )T−hΨ

m
j,k(x) :=

j1∑
j=j0

Pm,h
j (x) .

fm
H (x) = Aveh∈H(T−hf

m
h (x)) =

j1∑
j=j0

Aveh∈HP
m,h
j (x) :=

j1∑
j=j0

fm,H
j (x),

(26)
finally we sum the horizontal, vertical and diagonal contributions:

fH(x) =
3∑

m=1

fm
H (x) .

• For the ti-estimator the approximations fm,H
j (m = 1, 2, 3) can be

expressed in terms of convolutions with certain wavelet functions. The
following result is a direct extension of Proposition 1 of [3].

Proposition 2 Let k = (k1, k2) and Ψ̃m
j,k(x) = Ψm

j,k(−x) . For any
resolution level j and shift h = (h1, h2) we have, for m = 1 , 2 and 3,

βm,h
j,k = (f ? Ψ̃m

j,0,0)(∆
h
k) := Am

j (∆h
k) , (27)
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Space Fourier Wavelet
domain domain domain

f −→F f̂y× Ψ̂m,∗
j,0,0

Âm
j −→F−1

Am
jy
ηj

B̂m
j ←−F Bm

jy× Ψ̂m
j,0,0y× 2j/n2

fm,H
j ←−F−1

f̂m,H
j

Figure 4:

where ∆h
k = k/2j + h . Let H be the range of shifts defined by H =

{1/n, 2/n, . . . , (n− 1)/n} × {1/n, 2/n, . . . , (n− 1)/n} , then,

fm,H
j (x) = (2j/n2)× (Bj ∗Ψm

j,0,0)(x) , (28)

where

Bm
j (∆h

k) := ηj(A
m
j (∆h

k)) = Am
j (∆h

k).I(|Am
j (∆h

k)| > λm
j ) , (29)

and f ∗ g denotes the circular convolution product.

The convolutions (27) and (28) are computed in the Fourier domain
while the thresholding process (29) is done in the wavelet domain. This
is illustrated in Figure 4 where F, F−1 denotes the Fourier transform
and its inverse; Ψ̂m

j,0,0 denotes the Fourier coefficients of Ψm
j,0,0 and Ψ̂m,∗

j,0,0

denotes their complex conjugates (Hermitian symmetry is used in (27)).

Acknowledgment: We are grateful to two referees for helpful comments.
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