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Abstract. A binary matrix has the Consecutive Ones Property (C1P)
if its columns can be ordered in such a way that all 1s on each row
are consecutive. Algorithmic issues of the C1P are central in computa-
tional molecular biology, in particular for physical mapping and ances-
tral genome reconstruction. In 1972, Tucker gave a characterization of
matrices that have the C1P by a set of forbidden submatrices, and a
substantial amount of research has been devoted to the problem of ef-
ficiently finding such a minimum size forbidden submatrix. This paper
presents a new O(∆3m2(m∆ + n3)) time algorithm for this particular
task for a m×n binary matrix with at most ∆ 1-entries per row, thereby
improving the O(∆3m2(mn+ n3)) time algorithm of Dom et al. [17].

1 Introduction

A binary matrix has the Consecutive Ones Property (C1P) if its columns
can be ordered in such a way that all 1s on each rows are consecutive.
Both deciding if a given binary matrix has the C1P and finding the cor-
responding columns permutation can be done in linear time [9, 18, 19,
23–25, 28, 31]. The C1P of matrices has a long history and it plays an
important role in combinatorial optimization, including application fields
such as scheduling [6, 21, 22, 36], information retrieval [26], and railway
optimization [29, 30, 33] (see [16] for a recent survey). Furthermore, algo-
rithmic aspects of the C1P turn out to be of particular importance for
physical mapping [2, 13, 27] and ancestral genome reconstruction [1, 12].
(see also [10, 3–5, 14, 32] for other applications in computational molecular
biology). Actually, our main motivation for studying algorithmic aspects
of the C1P comes from minimal conflicting sets in binary matrices in the
context of ancestral genome reconstruction [11]. A minimal conflicting set
of rows in a binary matrix is a set of rows R that does not have the C1P
but such that any proper subset of R has the C1P (a similar definition
applies for columns). The aim of this paper is to lay the foundations for



efficiently computing minimal conflicting sets by presenting a new efficient
algorithm for finding such a minimum size forbidden Tucker submatrix
[8].

Let us turn the C1P into an optimization problem. Recently, Dom et
al. [17] investigated natural problems arising when a matrix M does not
have the C1P property (the C1P is indeed a desirable property than often
leads to efficient algorithms):

– Min-COS-C (“Consecutive Ones Submatrix by Column Deletion”) –
find a minimum-cardinality set of columns to delete such that the
resulting matrix has the C1P.

– Min-COS-R (“Consecutive Ones Submatrix by Row Deletion”) – find
a minimum-cardinality set of rows to delete such that the resulting
matrix has the C1P.

– Min-CO-1E (“Consecutive Ones by Flipping 1-Entries”) – find a minimum-
cardinality set of 1-entries in the matrix that shall be flipped (that is,
replaced by 0-entries) such that the resulting matrix has the C1P.

All these problems are NP-hard even for simple instances [20, 34], and
hence Dom et al. have focussed on approximation and parameterized com-
plexity issues. To this end, they have provided a technical solution based
on efficiently detecting forbidden Tucker submatrices [35]. For the sake of
presentation, let us introduce these forbidden submatrices by graphs.

Let M be a m × n binary matrix. Its corresponding vertex-colored
bipartite graph G(M) = (VM , EM ) is defined as follows: for every row
(resp. column) of M there is a black (resp. white) vertex in VM , and
there is an edge between a black vertex vi and a white vertex vj , i.e.,
an edge between the vertices that correspond to the ith row and the jth

column of M , if and only of M [i, j] = 1. Equivalently, M is the reduced
adjacency matrix of G(M). See Figure 1 for an illustration. In the sequel,
we shall speak indistinctly about binary matrices and their corresponding
vertex-colored bipartite graphs. Recall now that an asteroidal triple, is an
independent set of three vertices such that each pair is joined by a path
that avoids the neighborhood of the third. Most of the interest in this
definition stems from the following theorem.

Theorem 1 ([35], Theorem 6). A binary matrix has the C1P if and
only if its corresponding vertex-colored bipartite graph does not contain a
white asteroidal triple.

Moreover, Tucker has characterized the binary matrices that have the
C1P by a set of forbidden submatrices.



Fig. 1. A binary matrix and its corresponding vertex-colored bipartite graph.

Theorem 2 ([35], Theorem 9). A binary matrix has the C1P if and
only if it contains none of the matrices MIk

, MIIk
, MIIIk

(k ≥ 1), MIV

and MV depicted Figure 2.

Fig. 2. Forbidden Tucker submatrices represented as vertex-colored bipartite graphs
[35]. Black and white vertices correspond to rows and columns, respectively.

In [17], Dom et al. provided an algorithm for finding a forbidden
Tucker submatrix (i.e., one of T = {MIk

,MIIk
,MIIIk

,MIV ,MV }) in a
given binary matrix. The general algorithm is as follows. For each white
asteroidal triple u, v, w of G(M), compute the sum of the lengths of three
shortest paths connecting two by two u, v and w (each path has to avoid
the closed neighborhood of the third vertex). Select an asteroidal triple
u, v, w of G(M) with minimum sum and return the rows and columns
of M that correspond to the vertices that occur along the three shortest
paths. The authors proved that the returned submatrix does contain a



forbidden Tucker submatrix of T but which is not necessarily of minimum
size (for MIIIk

, MIV and MV ). Indeed, since the three shortest paths may
share some vertices, the sum of the lengths of the three paths is not nec-
essarily the number of vertices in the union of the three paths. However,
Dom et al. showed that the returned submatrix contains at most three
extra columns (resp. five extra rows) compared with a forbidden Tucker
submatrix with minimum number of columns (resp. rows). To overcome
this problem, they provided another algorithm devoted to MIIIk

, MIV

and MV submatrices. More precisely, they used the similarity between
MIIIk

and MIk
to reduce the problem to a minimum-size hole search.

For MIV and MV , they provided an exhaustive search. On the whole,
Dom et al. provided an algorithm for finding a forbidden Tucker sub-
matrix in a given matrix M (assuming M does not have the C1P) in
O(∆3m2n(m+ n2)) time, where m is the number of rows of M , n is the
number of columns of n, and ∆ is the maximum number of 1-entries in
a row. More precisely, the authors provided a O(∆mn2 + n3) time algo-
rithm for finding a MIk

or MIIk
submatrix, a O(∆3m3n+∆2m2n2) time

algorithm for finding a MIIIk
submatrix, a O(∆3m2n3) time algorithm

for finding a MIV submatrix, and a O(∆4m2n) time algorithm for finding
a MV submatrix.

Dom et al.
MIk

and MIIk
O(∆mn2 + n3)

MIIIk
O(∆3m3n+∆2m2n2)

MIV O(∆3m2n3)
MV O(∆4m2n)

Total O(∆3m2n(m+ n2))

The main contribution of this paper is a simple O(∆3m2 (m∆+ n3))
time algorithm for finding a minimum size forbidden Tucker submatrix.
Our algorithm is based on shortest paths and two graph pruning tech-
niques: clean and anticlean (to be defined in the next section). Graph
pruning techniques were introduced by Conforti et al. [15]. One has to
note that graph pruning technique not always succeed in the detection
of induced configurations. Indeed, in [7], Bienstock gave negative results
among which one can find an NP-completeness proof for the problem of
deciding whether a graph contains an odd hole containing a given vertex.
This negative result, which in attacking the perfect graph conjecture was
useful in posing limits in what could have been a reasonable approach,
also demonstrates that not everything can be done with the detection of
induced configurations.



Algorithm 1 Find G(MIk
) in G(M)

Proof. 1: guess({x, y, z, A,B}) and add them to S
2: clean(x,A,B)
3: find a shortest path p in the pruned graph between y and z after having removed
A and B

4: if p exists then
5: Add the vertices of p to S
6: return the induced subgraph G(M)[S]
7: end if

2 Fast detection of minimum size forbidden Tucker
submatrices

Let us introduce the clean and anticlean cleaning operations. Let M
be a binary matrix and G(M) = (VM , EM ) be the corresponding vertex-
colored bipartite graph. For any node v of G(M), clean(v) results in the
graph where any neighbor of v has been deleted, i.e., G(M)[VM \N(v)].
For any node v of G(M), anticlean(v) results in the graph where any
node that does not belong to the same partition nor the neighborhood
of v has been deleted, i.e., G(M)[VM \ {u : u 6∈ N(v) and color(u) 6=
color(v)}].

We now focus on the bipartite graphs that represent Tucker configu-
rations (see Figure 2). Define the guess(V ⊆ {x, y, z, A,B}) operation as
follows: given a Tucker configuration T ∈ T , identifies by a brute-force al-
gorithm all the vertices of V among the vertices of G(M). In other words,
the guess operation tries all possible matching between vertices labeled
by x, y, z, A or B in T and vertices of G(M). Of particular importance,
guessed vertices will never be affected (i.e., deleted) by the clean and
anticlean operations.

Lemma 1. Let M be m× n binary matrix with at most ∆ 1-entries per
row. One can find the smallest submatrix G(MIk

) in G(M) in O(m2∆3(n+
∆m)) time (if such a submatrix exists).

We apply Algorithm 1 to G(M). Let us first prove that if G(MIk
)

occurs in G(M), then Algorithm 1 finds it. Suppose G′ = G(MIk
) occurs

in G(M). Then among all the guessed 5-uplets x, y, z, A,B (Line 1), there
should be at least one guess such that x, y, z, A,B are part of the vertices
of G′. By definition, G′ is a hole, and hence does not have a chord. There-
fore, clean(x,A,B) preserves G′ since, in G′, (1) x is only connected to
vertices A and B, (2) A is only connected to vertices x and y, and (3) B
is only connected to x and z. Moreover, looking for a shortest path p in



Algorithm 2 Find G(MIIk
) in G(M)

Proof. 1: guess({x, y, z, A,B}) and add them to S
2: anticlean(A,B)
3: clean(x)
4: find a shortest path p in the pruned graph between y and z after having removed
A and B

5: if p exists then
6: Add the vertices of p to S
7: return the induced subgraph G(M)[S]
8: end if

the pruned graph between y and z after having removed A and B ensures
the minimality of the returned graph which is indeed an hole.

The guessing can be done in O(m2∆3) time. Indeed, once A has been
identified, one can select x and y among the at most ∆ neighbors of
A and then identify B and one of its at most ∆ neighbors as z such
that x ∈ N(B) and z /∈ {x, y}. For each such guessing, the cleaning of
x,A,B can be done in O(∆ + m) time. Finally, one can find a shortest
path between y and z by a breadth-first search in the pruned graph after
having removed A and B which has at most m+n vertices and ∆m edges
in O(n + ∆m) time. On the whole, Algorithm 1 is O(m2∆3(n + ∆m))
time. ut

Lemma 2. Let M be a m×n binary matrix with at most ∆ 1-entries per
row. One can find the smallest submatrix G(MIIk

) in G(M) in O(m2∆3(n+
∆m)) time (if such a submatrix exists).

We apply Algorithm 2 to G(M). Let us first prove that if G(MIIk
)

occurs in G(M), then Algorithm 2 finds it. Suppose G′ = G(MIIk
) occurs

in G(M). Then among all the guessed 5-uplets x, y, z, A,B in Line 1,
there must be at least one guess such that x, y, z, A,B are indeed part of
the vertices of G′. By definition, in G′, any unguessed white node is in
the neighborhood of both A and B. Thus, anticlean(A,B) preserves G′

since, in G′, (1) y which is the only white node not in the neighborhood
of B has been guessed and (2) z which is the only white node not in
the neighborhood of A has been guessed. Moreover, in G′, x should be
only connected to A and B. Thus, clean(x) preserves G′. Finally, looking
for a shortest path p in the pruned graph between y and z after having
removed A and B ensures the minimality of the returned graph which is
indeed G(MIIk

).
The guessing can be done in O(m2∆3) time. For each such guessing,

the cleaning/anticleaning of x,A,B can be done in O(n+m) time. Finally,



Algorithm 3 Find G(MIIIk
) in G(M)

Proof. 1: guess({x, y, z, A}) and add them to S
2: anticlean(A)
3: clean(x)
4: find a shortest path p in the pruned graph between y and z after having removed
A

5: if p exists then
6: Add all the nodes of p to S
7: return the induced subgraph G(M)[S]
8: end if

one can find a shortest path between y and z by a breadth-first search in
the pruned graph after having removed A and B which has at most ∆+n
vertices and ∆m edges in O(n + ∆m) time. On the whole, Algorithm 2
is O(m2∆3(n+∆m)) time. ut

If we compare Algorithm 1 and Algorithm 2, in both cases we are
looking for a y−z shortest path in the pruned graph after having removed
A and B. Moreover, if we refer to Figure 2, the final structural topology
of the y− z path is similar in the MIk

and MIIk
matrices. Therefore, one

may reasonably think that the total number of path vertices should be
equal in both cases. This is not true due to different pruning techniques:
cleaning in Algorithm 1 versus cleaning/anticleaning in Algorithm 2.

Lemma 3. Let M be a m×n binary matrix with at most ∆ 1-entries in
each row. One can find the smallest G(MIIIk

) in G(M) in O(m∆n2(n+
∆m)) time (if such a submatrix exists).

We apply Algorithm 3 to G(M). Let us first prove that if G(MIIIk
)

occurs in G(M), then Algorithm 3 finds it. Suppose G′ = G(MIIIk
) occurs

in G(M). Then among all the guessed 4-uplets x, y, z, A in Line 1, there
must be at least one guess such that x, y, z, A are indeed part of the
vertices of G′. By definition, in G′, any unguessed white node is in the
neighborhood of A. Thus, anticlean(A) preserves G′ since, in G′, y and
z which are the only white nodes not in the neighborhood of A have
been guessed. Moreover, in G′, x is only connected to A. Thus, clean(x)
preserves G′. Finally, looking for a shortest path p in the pruned graph
between y and z after having removed A ensures the minimality of the
returned graph which is indeed G(MIIIk

).
The guessing can be done in O(m∆n2) time. Indeed, once A has been

identified, one can select x among the at most ∆ neighbors of A and
then identify y and z among the n white nodes such that x 6= y 6= z.



Dom et al. Our contribution

MIk and MIIk O(∆mn2 + n3) O(m2∆3(n+∆m))

MIIIk O(∆3m3n+∆2m2n2) O(m∆n2(n+∆m))

MIV O(∆3m2n3)

MV O(∆4m2n)

Overall O(∆3m2(mn+ n3)) O(∆3m2(m∆+ n3))

Table 1. Comparing our results with Dom et al. [17].

For each such guessing, the cleaning/anticleaning of x,A can be done in
O(n+m) time. Finally, one can find a shortest path between y and z by
a breadth-first search in the pruned graph after having removed A which
has at most ∆ + n vertices and ∆m edges in O(n + ∆m) time. On the
whole, Algorithm 3 is O(m∆n2(n+∆m)) time. ut

Considering G(MIV ) and G(MV ), a simple brute-force search yield
the following

Lemma 4 ([17], Proposition 5.3). Let M be a m × n binary matrix
with at most ∆ 1-entries per row. One can find the smallest G(MIV ) (resp.
G(MV )) in G(M) in O(∆3m2n3) (resp. O(∆4m2n) time) if it exists.

We are now ready to state the main result of this paper (Table 1
compares our results with Dom et al. [17].).

Theorem 3. Let M be a m× n binary matrix with at most ∆ 1-entries
per row that does not have the C1P. A minimum size forbidden Tucker
submatrix that occurs in M can be found in O(∆3m2(m∆+ n3)) time.

3 Matrices with unbounded ∆

As mentioned in [17], a natural question would be to investigate the com-
plexity of the problem when the number of 1s per row is unbounded.
One can thus distinguish two subcases: the maximum number of 1s per
column is bounded (say by C) or not. Due to space constraint, the two
following results are given without proof.

Theorem 4. Let M be a m× n binary matrix with at most C 1-entries
per column. A minimum size forbidden Tucker submatrix that occurs in
M can be found in O(C2n3(m+ C2n)) time.

Theorem 5. Let M be m×n binary matrix. A minimum size forbidden
Tucker submatrix that occurs in M can be found in O(n4m4) time.
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12. C. Chauve and É. Tannier. A methodological framework for the reconstruction of
contiguous regions of ancestral genomes and its application to mammalian genome.
PLoS Comput. Biol., 4:paper e1000234, 2008.
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