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A Faster Circular Binary Segmentation
Algorithm for the Analysis of Array CGH

Data

E S. Venkatraman and Adam Olshen

Abstract

Motivation: Array CGH technologies enable the simultaneous measurement of
DNA copy number for thousands of sites on a genome. We developed the circular
binary segmentation (CBS) algorithm to divide the genome into regions of equal
copy number (Olshen {\it et∼al}, 2004). The algorithm tests for change-points
using a maximal $t$-statistic with a permutation reference distribution to obtain
the corresponding $p$-value. The number of computations required for the max-
imal test statistic is $O(N̂2),$ where $N$ is the number of markers. This makes
the full permutation approach computationally prohibitive for the newer arrays
that contain tens of thousands markers and highlights the need for a faster. algo-
rithm.

Results: We present a hybrid approach to obtain the $p$-value of the test statistic
in linear time. We also introduce a rule for stopping early when there is strong
evidence for the presence of a change. We show through simulations that the hy-
brid approach provides a substantial gain in speed with only a negligible loss in
accuracy and that the stopping rule further increases speed. We also present the
analysis of array CGH data from a breast cancer cell line to show the impact of
the new approaches on the analysis of real data.

Availability: An R (R Development Core Team, 2006) version of the CBS al-
gorithm has been implemented in the “DNAcopy” package of the Bioconductor
project (Gentleman {\it et∼al}, 2004). The proposed hybrid method for the $p$-
value is available in version 1.2.1 or higher and the stopping rule for declaring a
change early is available in version 1.5.1 or higher.



1 Introduction

The DNA copy number at a location in a genome is the number of copies of DNA. The normal

copy number is two for the autosomal chromosomes in humans. Chromosomal aberrations

in the form of copy number gains or losses are common in cancer and studying them is a way

of identifying and validating important cancer genes. For example, Whang-Peng et al. [1982]

identified deletion in chromosome 3p(14-23) in small cell lung cancer cell lines. Comparative

genomic hybridization (CGH) [Kallioniemi et al., 1992, du Manoir et al., 1993] was the first

method developed to measure the DNA copy number variation of entire genomes at a 10-

20M resolution. Higher throughput techniques based on microarray technology (hence array

CGH) have been developed to simultaneously measure DNA copy number at thousands of

locations on a genome. Pinkel and Albertson [2005] present a review of the array CGH

technologies.

The purpose of these technologies is to study variations in DNA copy number and to

identify chromosomal regions that have been gained or lost. We developed the circular

binary segmentation (CBS) algorithm [Olshen et al., 2004] to divide the genome into regions

of equal DNA copy number. Several alternate algorithms have also been proposed for the

analysis of array copy number data. Willenbrock and Fridlyand [2005] in a comparison of

algorithms for array CGH data concluded that “DNAcopy” (our software implementing the

CBS algorithm) “has the best operational characteristics in terms of its sensitivity and FDR

for breakpoint detection.” Lai et al. [2005] conducted a comparison of methods for analyzing

array CGH data that included CBS and ten other approaches. They concluded that CBS is

one of the two methods that “appear to perform consistently well.” Unfortunately, they also

found the CBS algorithm to be one of “the slowest.” In light of the proven ability of the

CBS algorithm to identify the locations of copy number changes it is desirable to improve

its speed.

In this manuscript we present two speed enhancements to the original CBS algorithm.

The first one is a hybrid approach for the computation of the p-value of the maximal t-

statistic using a tail probability approximation for the maxima of a Gaussian random field.

The second one is a sequential testing approach for deriving a stopping rule that reduces the

number of permutations when there is strong evidence for the existence of a change-point.

The enhanced algorithms use the same test statistic as the original to detect change-points

but modifies the procedure used to determine whether the change-points are statistically

significant. We compare the performance of the new methods to the original permutation
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approach both in terms of speed and accuracy on simulated data as well as real data from

breast cancer cell lines.

2 Methods

The CBS procedure formulates the analysis of array CGH data as a problem of detecting

change-points, where the change-points are the genomic locations of copy number transitions.

The algorithm starts with the whole chromosome and segments it recursively by testing for

change-points; it stops when none can be found in any of the segments. The test statistic was

chosen to enable us to detect a narrow changed segment in the middle of a large segment.

Let X1, . . . , Xm be the data corresponding to the m markers for the segment under

consideration. The test statistic is the maximal t-statistic given by T = max1≤i<j≤m |Tij|,
where Tij is the two sample t-statistic to compare the mean of the observations with index

from i + 1 to j, to the mean of the rest of the observations. That is

Tij =
Ȳij − Z̄ij

sij{(j − i)−1 + (m− j + i)−1}1/2
,

where Ȳij = (Xi+1 + · · ·+ Xj)/(j − i), Z̄ij = (X1 + · · ·+ Xi + Xj+1 + · · ·+ Xm)/(m− j + i),

and s2
ij is the corresponding mean squared error. Note that if we view the segment being

tested as indexed by a circle by connecting its two endpoints then the method tests whether

there are two complementary arcs that have unequal means. We declare a change to be

statistically significant if the p-value is smaller than a threshold level α (typically 0.01) and

estimate the locations of the change-points as the i and j (if j < m) that maximize the test

statistic.

In the original implementation of the CBS algorithm, we compute the p-value using a

permutation reference distribution due it being a robust nonparametric method. However,

this resulted in the computation time growing quadratically with the number of markers

on the array (this was also noticed by Lai et al. 2005). This is due to the test-statistic

T being the maximum of m(m − 1)/2 different statistics for every segment considered and

m increases with the number of markers on the array. This is computationally burdensome

when analyzing high resolution array CGH data because although computing it once is quick

it has to be repeated thousands of times to construct the permutation reference distribution.

Another source of computational burden is that the procedure computes the entire set of

permuted statistics in order to declare that a change-point exists even if part way through

the process there is overwhelming evidence for its existence. We will now present a hybrid
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method to compute the p-value and derive a stopping rule to declare a change early, both of

which will speed up the CBS algorithm substantially.

2.1 Hybrid p-value

The set {i, j : 1 ≤ i < j ≤ m} of all splits considered for the test statistic T can be written

for any k (≤ m/2) as A1 ∪ A2, where

A1 = {i, j : j − i ≤ k or > m− k},

and A2 = {i, j : k + 1 ≤ j − i ≤ m− k}.

The set A1 corresponds to all splits in which the minor arc, which is the smaller of the two

arcs made by the two point intersection of a circle, contains at most k observations and

the set A2 corresponds to all splits such that both the arcs have more than k observations.

Note that T = max{T1, T2}, where Tl = max
Al

|Tij|, l = 1, 2. For an observed test statistic

value of b, the p-value P (T > b) is bounded below by P (T2 > b) and, because of the

Bonferroni inequality, bounded above by P (T1 > b) + P (T2 > b). We compute P (T1 > b)

using a permutation approach since T1 is the maximum of several correlated t-statistics and

an approximation to its distribution is unavailable even for normally distributed Xs. Since

T1 requires only mk statistics to be computed, the computational burden is nearly linear in

the number of markers with a suitable choice of k.

We approximate P (T2 > b) as follows. Heuristically, since Tij is the standardized differ-

ence of means, it has a limiting normal distribution under suitable regularity conditions. So

for m and k are large enough the distribution of the statistic Tij, under the null hypothesis

of no change, is approximately standard normal. Observe that T2 = max{T2+, T2−} where

T2+ = max
A2

Tij and T2− = max
A2

{−Tij}. So under the null hypothesis of no change, the dis-

tribution of the statistic T2+ is the same as the one if the Xis are independent standard

normal. Siegmund [1988] and Yao [1989] independently derived approximations for the tail

probabilities of the statistic T2+ (this statistic is the same as Z3 in Yao 1993), which is given

by

P (T2+ > b) ≈ 1

4
b3φ(b)

∫ 1−δ

1/2

ν2(b/[mt(1− t)]1/2)

t2(1− t)2
dt,

where δ = k/m, φ is the standard normal density, and ν is defined as

ν(x) = 2x−2 exp

{
−2

∞∑
l=1

l−1Φ
(
−1

2
xl1/2

)}
.
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Since by symmetry P (T2+ > b) = P (T2− > b) and the probability of both T2+ and T2−

exceeding b is small, P (T2 > b) ≈ 2P (T2+ > b). This approximation is asymptotic, i.e. the

ratio of the true probability and the approximate formula converges to 1 as m → ∞, b →
∞, b/

√
m a constant greater than 0 and 0 < δ < 1/2 fixed. In the next section we show that

it is robust and recommend a choice of k as a function of m.

The CBS algorithm is modified in the following manner. Let b be the value of the test

statistic T on the observed X1, . . . , Xm. Since the approximation is asymptotic we compute

the full permutation p-value if there are fewer than m0 markers m. Otherwise, we first

compute P (T2 > b) from the approximation above. If it exceeds α we can declare that

there is no change; otherwise we compute P (T1 > b) and the p-value is the sum of the

two and a change is declared if the sum is less than α. The only difference between the

hybrid and the permutation approaches is the p-value. The choice of p-value method thus

affects whether a change-point is detected but not its estimated location. Since the hybrid

p-value is an approximation for an upper bound it can result in fewer change-points detected.

We will study empirically, the impact of this on the procedure’s ability to detect the true

change-points.

2.2 Stopping rule to declare a change

In the CBS algorithm the magnitude of the p-value is relevant only to decide if it exceeds α.

The permutation p-value is given by the proportion of times the permuted statistic exceeds

the original statistic. Thus the permutations can be stopped and the null of no change

accepted as soon as the permuted statistic exceeds the original more than αB times, where

B is the number of permutations. However, at least (1 − α)B permuted statistics must be

computed to declare that a change exists even if there is overwhelming evidence earlier for

it. For example, when B = 10000 and α = 0.01 the procedure cannot stop and declare

that a change is present even if none of the first 1000 permuted statistics exceed the original

statistic. We use concepts from sequential testing to derive a stopping rule that declares a

change before all the permutations are completed. Such a stopping rule will also benefit the

hybrid method since it has a permutation component.

Let E1, . . . , EB be the binary random variables indicating whether the permuted statistic

exceeds the original and let R(i) = E1 + · · ·+Ei be their partial sums. Let r be the smallest

integer greater than αB, (α − P{T2 > b} instead of α for the hybrid) that is, r/B is the

smallest p-value for which the null hypothesis of no change is not rejected. The stopping
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rule is a sequence of integers b1 < · · · < br such that the permutations are stopped after the

bith permutation, where i is the smallest j for which R(bj) < j. That is, the permutations

are stopped the first time there are fewer than i permuted statistics exceeding the original

statistic among the first bi permutations. The bs are chosen to satisfy

P{R(bi) < i for any 1 ≤ i ≤ r|R(B) = r} ≤ η

for a pre-specified (Type I) error rate η. Since there are a large number of boundaries that

satisfy the condition we choose the one given by repeated significance testing theory; that

is, each bi is the smallest integer for which P{R(bi) < i|R(B) = r} is less than an η? that

is chosen such that the overall error rate is η. This stopping rule increases the type I error

rate of the algorithm by∑
r≤l≤B

P{R(bi) < i for any 1 ≤ i ≤ r|R(B) = l} × P (R(B) = l),

but the increase is negligible since the summand above decreases very rapidly in l. A heuristic

proof of this claim will be given later in this section. As with the hybrid p-value, the stopping

rule only affects whether a change-point is detected but not its estimated location. We will

now show the derivation of η? and the corresponding boundary.

Observe that conditioned on R(B) = r, the Es are a sequence of B− r zeroes and r ones

all of which are equally likely. For notational simplicity, we will omit the conditioning in

the following. Note that the set {R(j) < i} corresponds to all sequences (Es) with at most

i− 1 ones among E1, . . . , Ej; its probability is
i−1∑
l=0

(
j

l

)(
B − j

r − l

)
/

(
B

r

)
. Since P{R(j) < i} is

decreasing in j and is zero for j = B, for any threshold η?, bi is the smallest j for which

the probability gets below η?. The probability of interest P{R(bi) < i for any 1 ≤ i ≤ r},
for any boundary {b1, . . . , br}, can be obtained as follows. The locations of the r ones

are a random sample drawn without replacement from 1, . . . , B. Let L1 < · · · < Lr be

the ordered locations. Since R(bi) < i if an only if Li > bi, the probability of interest is

P{Li > bi for any 1 ≤ i ≤ r} which can be written as
r∑

i=1

P{Lj ≤ bj∀ 0 < j < i, and Li > bi}, (1)

since A1∪ . . .∪Ak = A1∪ (AC
1 ∩A2)∪ . . .∪ (Ac

1∩ ...∩Ac
k−1∩Ak) and the sets on the right are

mutually exclusive. This can be calculated exactly using the following recursive equation:

P{Lj ≤ bj∀ 0 < j < i, and Li = li}

=
bi−1∑

li−1=i−1

P{Lj ≤ bj∀ 0 < j < i− 1, and Li−1 = li−1}
×P{Li = li|Li−1 = li−1}
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and P{Li = li|Li−1 = li−1} =
(

B−li
r−i

)
/
(

B−li−1

r−i+1

)
. Since this can be computationally daunting,

we approximate the sum in (1) by

r∑
i=1

P{Lj ≤ bj for max(i− d, 1) ≤ j ≤ i− 1, and Li > bi}, (2)

where d is the number of prior points for which the boundary is not crossed. This follows

by observing that the sets in the summands of (2) contain those in (1). This is simi-

lar in vein to the improved Bonferroni inequalities in Worsley [1982]. Since P{R(bi) <

i for any 1 ≤ i ≤ r|R(B) = r} increases as η? increases, the boundary is obtained using an

iterative procedure until the desired error bound η is reached.

We will now give a heuristic proof for the claim that this stopping rule results in a

minial increase in the type I error. Under the null hypothesis of no change R(B) has a

uniform distribution on {0, . . . , B}. Using the Bonferroni inequality we can bound P{R(bi) <

i for any 1 ≤ i ≤ r|R(B) = l} by
r∑

i=1

P{R(bi) < i|R(B) = l}. This conditional distribution

of R(bi) is hypergeometric with mean µl = l × bi/B and variance σ2
l = l(B − l) × bi(B −

bi)/B
3. Recall that i is the η? quantile of R(bi) when l = r. Thus (i− µl)/σl is smaller than√

l/r (Q− µr)/σr, where Q is the η? quantile of R(bi). Appealing to normal approximation

of the hypergeometric distribution we see that P{R(bi) < i|R(B) = l} decreases rapidly as

l increases. Emprically when l = 2r, P{R(bi) < i|R(B) = l} is approximately (η?)2 when

i = 1 and becomes much smaller as i increases resulting in an excess type I error smaller

than αη.

2.3 Simulation experiments

We conducted simulation experiments to evaluate the performance gain that the improved

CBS algorithm provides and the cost in terms of its ability to detect change-points. We

first show that the approximation for P (T2 > b) works well for large m and suitably chosen

k and hence could be used to obtain the p-value for the statistic T. We then segment the

same simulated data with and without change-points, using the original permutation p-value

and the new hybrid by itself and with early stopping. For all these simulations the marker

data are generated from standard normal, uniform or beta(0.5, 1.0) distributions. Since

the approximation was obtained for the maximum of a Gaussian random field, the normal

data is where it is expected to perform the best. The other two were chosen to provide

different degrees of non-normality with the uniform having a flat density and the beta a

very skewed J-shaped one. The computing times for the procedures give us a measure of the
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performance gain and the proportion of times change-points are detected give us the impact

on the ability to detect change-points (false positive or missed ones). All computations were

done on a 3.2GHz Intel Xeon PC running the Debian Linux operating system with gcc and

g77 compilers and R statistical software.

3 Results

3.1 Evaluating the approximation

We generated 100, 000 data sets with m markers, where m is one of 100, 200, 500 or 1000

from each of the three distributions. We calculated the statistic T2 for each of the data sets

with k = 25. This choice of k was used so that the differences in means in Tij are based on

sufficiently large number of observations for a normal approximation to be reasonable. We

computed the tail probability P (T2 > b) empirically as well as by using the approximation for

a range of bs for each m. The results are shown in Figure 1. Observe that the approximation

substantially underestimates the tail probability when m is only 100. For larger values of

m the approximation is close for all three marker distributions. Hence we recommend a

minimum of 200 markers (the recommended value of m0 in Section 2.1) when using the

hybrid approach. Since the full permutation approach for this number of markers can be

accomplished with modest computing effort, this requirement is not a serious burden.

The tail probability approximation is an asymptotic result with k/m a constant. Thus

one concern is the use of a fixed k for all values of m. In order to assess this we chose

0.
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Figure 1: The empirical tail probability distribution of the statistic T2 when the data are

normal (red), uniform (green) or beta(0.5, 1.0) (blue) for m = 100, 200, 500, or 1000 and

k = 25. The black line is the approximation.

8

Hosted by The Berkeley Electronic Press



4.4 4.6 4.8 5.0 5.2 5.4 5.6

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10 k=25

T
ai

l p
ro

ba
bi

lit
y

4.4 4.6 4.8 5.0 5.2 5.4 5.6

k=50

Statistic T2

Figure 2: The empirical distribution of the statistic T2 when the data are normal (red),

uniform (green) or beta(0.5, 1.0) (blue) for 5000 markers and k = 25 or 50.

m to be 5000 and evaluated the tail probability empirically when k is 25 or 50. This is

shown in Figure 2, along with the approximation. Observe that there is a larger difference

between the empirical values and the approximation when k is 25 while the degree to which

the approximation agrees with the empirical values when k is 50 is similar to that found in

the m = 1000 panel of Figure 1. These simulations show that with a properly chosen k the

approximation for P (T2 > b) works well for larger m and could be used to obtain the p-value

for the segmentation procedure as described in the previous section. This also suggests that

it would be prudent to choose a larger k when m increases. We recommend that k be set at

25 for m smaller than 1000 and be increased in increments of 5 as the number of markers

doubles.

3.2 Performance of the segmentation procedure

In the previous section we showed that the approximation to P (T2 > b) works well. We

will now evaluate the operating characteristics of the CBS algorithm when the p-value is

approximated by P (T1 > b) + P (T2 > b) as well as when the stopping rule to declare a

change early is included. Specifically, we wish to assess the reduction in computing time

achieved by these modifications and their cost in terms of false positive or missed change-

points. We compare the CBS algorithms with the hybrid p-value alone, as well as when

combined with the stopping rule to declare a change early, to the original that uses the full

permutation p-value.
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Table 1: The results of segmentation when there is no change in the data. The size column

gives the percent of data sets when change-points were detected (false positives) and the

time column gives the user cpu time in minutes to segment the 5000 data sets. The top and

bottom halves correspond to α = 0.01 and 0.05 respectively. The N, U and B in the first

column indicate the marker distribution. Permutation used the original full permutation

p-value, Hybrid used the approximation and Hybrid + ES used the approximation and early

stopping.

m = 250 m = 500 m = 1000

size time∗ size time∗ size time∗

Permutation 1.04 36.6 0.92 124.6 1.08 500.1

N Hybrid 1.08 11.2 0.88 18.7 1.00 35.3

Hybrid + ES 1.08 10.2 0.84 17.2 1.08 32.3

Permutation 1.12 36.6 1.00 132.5 1.22 492.1

U Hybrid 1.16 11.4 0.90 19.1 1.00 34.5

Hybrid + ES 1.18 10.3 0.94 17.2 1.08 31.8

Permutation 0.86 35.4 0.86 128.6 1.14 498.0

B Hybrid 1.04 11.1 0.92 19.4 1.08 39.5

Hybrid + ES 1.04 10.5 0.92 17.8 1.06 36.1

Permutation 5.44 121.1 4.56 441.7 4.72 1749.7

N Hybrid 5.22 22.4 4.20 36.5 4.44 68.6

Hybrid + ES 5.20 16.9 4.24 27.6 4.46 50.9

Permutation 5.24 120.7 5.08 451.2 4.60 1710.4

U Hybrid 4.82 19.9 4.44 32.8 3.64 49.8

Hybrid + ES 4.92 14.9 4.50 23.4 3.64 39.5

Permutation 5.04 119.5 5.12 451.6 4.96 1765.7

B Hybrid 4.94 21.8 4.80 35.6 4.64 68.7

Hybrid + ES 5.02 16.7 4.80 27.2 4.54 49.3
∗ elapsed times on a 3.2GHz Pentium 4 computer.

We simulated the case of no change-points by generating 5000 data sets each for each of

250, 500 or 1000 markers and for each of the three distributions. The segmentations were

performed using a p-value threshold (α) of 0.01 or 0.05. Table 1 shows the percent of times

the procedure segments the data (size) and the CPU time used. The size values are very

similar for the three algorithms and are consistent with the nominal α level. The size of the
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Table 2: Segmentation results when there is a change. The power column gives the percent

of data sets when change-points were detected (100 - power is the percent of missed change-

points). The description of the other elements of the table is the same as the one for Table 1.

The times are the total time to segment the 1000 data sets of each type.

m = 250 m = 500 m = 1000

power time∗ power time∗ power time∗

Permutation 79.8 102.9 80.1 380.6 78.2 1509.0

N Hybrid 80.3 26.0 80.0 47.0 78.0 91.5

Hybrid + ES 80.4 8.6 79.9 13.0 78.3 26.4

Permutation 80.0 102.8 78.6 379.9 75.7 1485.3

U Hybrid 80.5 25.8 78.4 45.6 74.8 86.3

Hybrid + ES 80.6 7.9 78.3 12.0 74.7 22.3

Permutation 76.7 99.5 76.8 378.6 72.7 1450.9

B Hybrid 77.1 24.8 76.8 46.3 73.0 86.6

Hybrid + ES 77.0 8.3 77.0 14.2 72.7 26.7

Permutation 92.1 121.2 87.8 441.8 89.1 1830.8

N Hybrid 91.7 36.8 87.7 54.7 88.4 110.2

Hybrid + ES 91.6 13.6 87.5 13.6 88.7 28.5

Permutation 91.5 119.7 89.1 445.3 88.4 1824.0

U Hybrid 91.1 36.0 88.0 54.2 86.8 107.6

Hybrid + ES 91.2 13.1 88.1 12.8 86.8 25.6

Permutation 90.1 119.5 90.3 452.3 87.3 1823.9

B Hybrid 89.8 35.9 90.0 56.3 86.9 108.5

Hybrid + ES 90.0 13.6 90.0 14.3 87.2 28.2
∗ elapsed times in minutes on a 3.2GHz Pentium 4 computer.

new algorithms are lower that of the original, which is consistent with the hybrid p-value

being an approximate upper bound. Also, the addition of the stopping rule results in only

a negligible increase in the significance level of the test as the achieved size barely increases.

However the newer algorithms show an enormous gain in computing speed. For example,

the normal data with 1000 markers and α = 0.05 took 29 hours using the original algorithm

but only a bit over an hour with the hybrid algorithms. Since the stopping rule only enables

us to declare a change early, we do not expect it to affect the time taken when there is no

change and the results confirm it. Notice also that the computing times for the original
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algorithm quadruples when the number of markers doubles, whereas it grows linearly for the

hybrid algorithms.

For the alternative of there being change-points, we generated 1000 data sets each and

added µ to 10 contiguous markers in the middle of each set, where µ is chosen (empirically)

to give approximately 80% power of detecting the change when α = 0.01. These results are

in Table 2, with power being the percent of times the change was detected. The power of all

three procedures are comparable with the original only minimally more powerful than the

hybrid algorithms. Thus the fact that the size of the hybrid procedure could be moderately

conservative has minimal impact on the power of the procedure. As seen in the no change

case the hybrid algorithms show enormous speed gains over the original. The addition of

the stopping rule makes the procedure 3 to 4 times faster than the hybrid alone.

A final set of simulations were done to represent the case of multiple change-points in a

choromosome. We reproduce a subset of the cases considered in the second set of simulations

in Olshen et al. [2004]. There are 497 markers in the chromosome with 6 change-points and

the mean log-ratios (µ) for the markers given by:

Marker 1- 138- 225- 242- 299- 308- 332-

i 137 225 241 298 307 331 497

µi -0.18 0.08 1.07 -0.53 0.16 -0.69 -0.16

One thousand observed logratio data sets were generated as c ∗ µ + Z where Z is standard

normal and the scale factor c is 10 or 5 to represent low and high noise scenarios. The

data were segmented using the permutation, the hybrid and the hybrid with early stopping

procedures using α = 0.01 and 0.05. The number of change-points detected by the three

procedures are reported in Table 3 and show that the three are nearly identical. These

numbers are consistent with the results in Olshen et al. [2004]. The number of data sets for

which all three procedures identified the same set of change-points are

α, c (0.01, 10) (0.01, 5) (0.05, 10) (0.05, 5)

identical 985 975 977 963

The differences between the three procedures are minimal and could be partly explained by

the differences in the stream of random numbers in their permutation component.

These simulation results clearly demonstrate that the new CBS algorithm with the hybrid

p-value and stopping rule for delaring change early provide speed gains that make CBS a

more practical approach for analyzing high resolutions arrays.
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Table 3: The number of change-points detected by the three methods. The times are the

total time to segment the 1000 data sets of each type.

c α # 6 7 8 9 10 11+ time∗

P 918 45 36 1 0 0 667.5

10 0.01 H 914 46 39 1 0 0 123.5

H+ES 915 48 36 1 0 0 20.5

P 712 67 167 24 23 7 684.2

10 0.05 H 719 66 161 24 23 7 139.7

H+ES 709 69 167 24 24 7 23.3

P 859 103 35 3 0 0 669.2

5 0.01 H 859 103 34 3 1 0 125.9

H+ES 859 99 38 4 0 0 31.1

P 572 190 168 41 21 8 685.4

5 0.05 H 574 184 169 42 24 7 142.1

H+ES 571 190 170 40 21 8 33.7
∗ elapsed times in minutes on a 3.2GHz Pentium 4 computer.

4 Example

In this section we present two analyses of data from cell lines in order to evaluate how the

improved algorithms perform on real data. The first is the analysis of the data from the

ROMA [Lucito et al., 2003] array example shown in Figure 4 of Olshen et al. [2004]. There

are 9820 markers in this array with the maximum of 824 on chromosome 2. The data were

segmented with all 3 procedure at an α level of 0.01. We used the hybrid p-value when the

segment being tested had more than 200 markers and used k = 25. All 3 algorithms found

the same 48 segments in the genome as can be seen in Figure 3. The original CBS algorithm

segmented the data in 347 seconds, which was reduced to 44 seconds with the hybrid p-value

and further reduced to 13 seconds with the inclusion of the stopping rule to declare a change

early.

The second example is the analysis of data from 3 breast cancer cell lines (MCF7, SKBR3,

and ZR75) evaluated using the Affymetrix 100k SNP platform. These data are available on

the SNPscan website (http://pevsnerlab.kennedykrieger.org/snpscan.htm; Ting et al.

[2006]). These 100k SNP array data have a total of 115571 markers over 23 chromosomes

(none from Y) with chromosome 2 having the maximum number (10352). The data were

13
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Figure 3: The ROMA array on a breast cancer cell line shown in Olshen et al. [2004]. The

segments by the original full permutation p-value (black), the new hybrid p-value (red) and

the hybrid p-value along with the early stopping to declare change (green).

segmented using all three procedures. The numbers of change-points detected, the number

identical and the total computing time per procedure are in the following table.

Cell line Time in

MCF7 SKBR3 ZR75 minutes

P 220 242 270 7085.8

H 217 242 271 100.2

H+ES 216 243 269 25.0

Identical 213 242 263

Detailed breakdown of the number of change-points by cell line and chromosome are provided

in Table 4. This example demonstrates the speed gain (total computing time for the 3 cell

lines is nearly 5 days for the original versus 100 minutes for hybrid alone and 25 minutes for

the hybrid with early stopping) the new procedures accomplish without sacrificing efficacy.
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5 Discussion

We developed the CBS algorithm as a robust non-parametric method for segmenting array

CGH data in order to facilitate the identification of chromosomal regions of gain or loss.

This method has been successfully applied in several studies to characterize the copy number

variation in different types of cancer [Aguirre et al., 2004, Brennan et al., 2004, Chen et al.,

2006, Zhao et al., 2005]. In their comparative study Lai et al. [2005] found that the CBS

algorithm performed consistently well but was slow. In this manuscript we presented the

hybrid approach to compute the p-value for the maximal statistic, and added a stopping rule

to declare a change early, in order to increase speed. The simulation study we conducted

shows that the improved methods perform as well as the full permutation approach and

results in the desired speed gains. The similarity of the results among the methods was

demonstrated on real data from breast cancer cell lines. We conclude that the CBS algorithm

is a natural choice for the analysis of high resolution array CGH data.
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