
 Open access Proceedings Article DOI:10.1109/TIME.2013.13

A Faster Execution Algorithm for Dynamically Controllable STNUs — Source link

Luke Hunsberger

Institutions: Vassar College

Published on: 26 Sep 2013 - International Symposium on Temporal Representation and Reasoning

Related papers:

 A structural characterization of temporal dynamic controllability

 Dynamic control of plans with temporal uncertainty

 Temporal constraint networks

 Temporal dynamic controllability revisited

 A Fast Incremental Algorithm for Managing the Execution of Dynamically Controllable Temporal Networks

Share this paper:

View more about this paper here: https://typeset.io/papers/a-faster-execution-algorithm-for-dynamically-controllable-
4729efo9ui

https://typeset.io/
https://www.doi.org/10.1109/TIME.2013.13
https://typeset.io/papers/a-faster-execution-algorithm-for-dynamically-controllable-4729efo9ui
https://typeset.io/authors/luke-hunsberger-1yquwhftnu
https://typeset.io/institutions/vassar-college-1sli3qb3
https://typeset.io/conferences/international-symposium-on-temporal-representation-and-2mxry04v
https://typeset.io/papers/a-structural-characterization-of-temporal-dynamic-5bwil10u0d
https://typeset.io/papers/dynamic-control-of-plans-with-temporal-uncertainty-15u6idhwiz
https://typeset.io/papers/temporal-constraint-networks-flw1rx29lh
https://typeset.io/papers/temporal-dynamic-controllability-revisited-1if2hp13hd
https://typeset.io/papers/a-fast-incremental-algorithm-for-managing-the-execution-of-13z3cdswko
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-faster-execution-algorithm-for-dynamically-controllable-4729efo9ui
https://twitter.com/intent/tweet?text=A%20Faster%20Execution%20Algorithm%20for%20Dynamically%20Controllable%20STNUs&url=https://typeset.io/papers/a-faster-execution-algorithm-for-dynamically-controllable-4729efo9ui
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-faster-execution-algorithm-for-dynamically-controllable-4729efo9ui
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-faster-execution-algorithm-for-dynamically-controllable-4729efo9ui
https://typeset.io/papers/a-faster-execution-algorithm-for-dynamically-controllable-4729efo9ui

A Faster Execution Algorithm

for Dynamically Controllable STNUs

Luke Hunsberger

Department of Computer Science

Vassar College

Poughkeepsie, NY 12604 USA

Email: hunsberg@cs.vassar.edu

Abstract—A Simple Temporal Network with Uncertainty
(STNU) is a data structure for representing and reasoning about
temporal constraints where the durations of certain temporal
intervals—the contingent links—are only discovered during exe-
cution. The most important property of an STNU is whether it
is dynamically controllable (DC)—that is, whether there exists
a strategy for executing time-points that will guarantee that all
constraints will be satisfied no matter how the durations of the
contingent links turn out. The fastest DC-checking algorithm
reported so far is the O(N4)-time algorithm due to Morris (2006).
Hunsberger (2010) presented an O(N4)-time execution algorithm
for dynamically controllable STNUs, the fastest reported so far.
This paper improves upon that algorithm, presenting an O(N3)-
time execution algorithm for DC STNUs. The increase in speed
is due to more efficient management of the so-called “wait”
constraints, which must be removed from the network whenever
the corresponding contingent link completes.

I. BACKGROUND

Simple Temporal Networks with Uncertainty provide a

compact way of representing temporal constraints among

activities, where the duration of some of the activities may

be uncontrollable—but within known bounds. This section

summarizes relevant prior work on temporal networks and the

important property of dynamic controllability.

A. Simple Temporal Networks

A Simple Temporal Network (STN) is a pair, (T , C), where

T is a set of time-point variables—or time-points (TPs)—

and C is a set of binary constraints, each having the form,

Y −X ≤ δxy , for some X,Y ∈ T and δxy ∈ R [1]. A pair of

constraints, Y −X ≤ b and X−Y ≤ −a, are often abbreviated

as Y −X ∈ [a, b]. Typically, one of the time-points in T , called

Z, has its value fixed at 0. Binary constraints involving Z are

equivalent to unary constraints: X −Z ≤ b and Z −X ≤ −a

are equivalent to X ∈ [a, b]. An STN is consistent if there is a

set of values for its time-points that satisfy all of its constraints.

Such a set of values is called a solution for the STN.

Each STN, (T , C), has a corresponding graph, (N , E),
where the nodes in N correspond to the time-points in T ,

and the directed edges in E correspond to the constraints in C.

In particular, each constraint, Y −X ≤ b in C, corresponds to

an edge, X
b

Y in E . The all-pairs, shortest-path matrix for

the graph of an STN is called a distance matrix, often denoted

by D. For any time-points, X and Y , if D(X,Y) = δ, then

the constraint, Y −X ≤ δ, must be satisfied in any solution.

The Fundamental Theorem of STNs states that the fol-

lowing are equivalent: (1) an STN S has a solution; (2) its

graph G has no negative loops; and (3) its distance matrix D
has zeroes down its main diagonal [2].

The time-points other than Z are called executable. To

execute a time-point, X , at some time t, means to assign the

value t to X . This is represented by inserting the constraints,

X−Z ≤ t and Z−X ≤ −t into the network. These constraints

are equivalent to X ∈ [t, t] (i.e., X = t). The executable time-

points in an STN are presumed to be under the control of

some agent operating in real time.1 At any time t, the agent

is presumed to be free to execute any previously unexecuted

TP. Once executed, a time-point’s value is permanently fixed.

B. Collapsing Rigid Components

In a consistent STN, two time-points, X and Y , are said to

be rigidly connected if D(X,Y) + D(Y,X) = 0. In such a

case, although there may be many choices for the values of X

and Y , they are not independent; instead, the value, Y −X , is

restricted to a constant. For example, suppose D(X,Y) = 3
and D(Y,X) = −3. In this case, X and Y must satisfy both

Y −X ≤ 3 and X−Y ≤ −3; equivalently, Y −X = 3. Thus,

although X may take on any value, Y must equal X + 3.

More generally, any set, R, of rigidly connected time-points

is called a rigid component.2 Many researchers [3], [4], [5]

have noted that since the time-points in a rigid component are

fixed with respect to one another, the entire rigid component,

R, can be effectively represented by a single time-point, as

follows. First, let X be any time-point in R; X will be the

single representative for the rigid component. Next, the edges

in the network that interact with time-points in R must be

re-oriented toward X , as follows. Any edge, Y
δ

W ,

where W ∈ R, is replaced by the edge, Y
δ+w

X ,

where w = D(W,X). Similarly, any edge, W
γ

Y , where

W ∈ R, is replaced by the edge, X
γ−w

Y , again, where

w = D(W,X) = −D(X,W). Fig. 1 illustrates the collapsing

of a rigid component containing time-points, X,W1, and W2.

1Agents are not part of the semantics of temporal networks; they are used
here for expository convenience.

2Being rigidly connected is an equivalence relation; so, the notion of a rigid
component is well defined.

X

W1 W2

3

Y1

8

17

Y2
5

4

−7 W2 = X + 4

W1 = X − 3

X Y1

Y2

11

21

9

Fig. 1. An STN before (left) and after (right) collapsing a rigid component

C. STNs with Uncertainty

An STN with Uncertainty (STNU) is an STN together with

a set of contingent links, each of which represents a temporal

interval whose duration is beyond the control of the planning

agent [6]. An STNU is a set (T , C,L), where (T , C) is an

STN, and L is a set of contingent links, each having the form,

(A, x, y, C), where A,C ∈ T , and 0 < x < y < ∞. For a con-

tingent link, (A, x, y, C), A is called the activation time-point,

and C is called its contingent time-point. Contingent links

cannot share contingent time-points; thus, if (A1, x1, y1, C1)
and (A2, x2, y2, C2) are two contingent links, then C1 and

C2 must be distinct time-points. However, A1 and A2 need

not be distinct. Furthermore, the contingent time-point from

one contingent link can serve as an activation time-point for

another. Thus, contingent links can form chains or trees, but

not cycles.3 In this paper, N denotes the number of time-points

in an STNU, and K the number of contingent time-points.

D. Dynamic Controllability

The time-points in an STNU are partitioned into three sets:

Tc , the contingent time-points; {Z}, the zero time-point; and

Tex , the executable time-points. The agent is presumed to

directly control the execution of the executable time-points

in an STNU; however, the execution of the contingent time-

points is presumed to be beyond the agent’s direct control.

For example, if (A, x, y, C) is a contingent link for which A

is an executable time-point, the agent directly controls only

the execution of A. Once A has been executed (i.e., once the

contingent link has been activated), the execution of C is out

of the agent’s control. Although C is guaranteed to be executed

such that C−A ∈ [x, y], the agent does not get to choose the

particular time, but only observes the execution of C when it

happens. Similar remarks apply to a tree of contingent links

with an executable time-point at its root.

An STNU is called dynamically controllable (DC) if there

exists a dynamic strategy for executing the executable time-

points that guarantees the consistency of the network, no mat-

ter how the durations of the contingent links turn out—within

their specified bounds. Crucially, the decisions constituting a

dynamic execution stratgey cannot depend on advance knowl-

edge of the durations of contingent links. Morris, Muscettola

and Vidal—hereinafter MMV—presented a concise semantics

for dynamic controllability [6]. Hunsberger fixed a technical

flaw in their semantics to properly capture the prohibition

against decisions based on advance knowledge, and to enable

a characterization of dynamic execution strategies in terms of

real-time execution decisions (RTEDs) [7].

3A cycle of contingent links would be inherently inconsistent.

Since RTEDs play a significant role in this paper, they are

described in more detail below. RTEDs have two forms: WAIT

and (t, χ), where t ∈ R, and χ ⊆ Tex .

• A WAIT decision can be glossed as “Wait for some

contingent time-point to execute”.

• A (t, χ) decision can be glossed as: “If nothing happens

before time t (i.e., if no contingent time-points happen

to execute before time t), then execute the (executable)

time-points in χ at time t.

The outcome of an RTED specifies the time-points that execute

during the next execution event. Since it frequently depends

on the uncertain execution of contingent time-points, the agent

typically does not know which outcome will actually happen.

A WAIT decision is only applicable if there are some contin-

gent links that are currently activated, but not yet completed.

The outcome of a WAIT decision specifies the contingent time-

point(s) that execute next. In contrast, for a (t, χ) decision,

there are several possibilities. First, if there are no activated

contingent links, then the outcome is completely determined:

at time t, the (executable) time-points in χ will be executed.

However, if there are some activated contingent links, it may

be that one or more contingent time-points happen to execute

at some time ρ < t. In that case, the outcome involves only

the execution of those contingent time-points, not the time-

points in χ. A third case, which is extremely rare in practice,

involves the possibility that one or more contingent time-points

happen to execute exactly at time t. In that case, the outcome

involves the simultaneous execution of those contingent time-

points together with the time-points in χ.

After observing whichever outcome happens to occur, the

agent can then generate a new execution decision. Crucially,

that new decision can depend on the information gleaned

from the just observed outcome. For example, if an agent’s

initial decision is (10, {X}), but some contingent time-point

C happens to execute at time 4, then the agent need not remain

committed to executing X at time 10. Instead, the agent might

decide to execute X at time 7. Furthermore, the agent might

decide to execute another time-point, Y , along with X . Thus,

the agent’s next decision might be (7, {X,Y }).

E. DC-Checking Algorithms

A DC-checking algorithm is an algorithm that determines

whether any given STNU is dynamically controllable. Several

DC-checking algorithms have been presented in the literature.

1) The MMV DC-Checking Algorithm: MMV presented

a pseudo-polynomial DC-checking algorithm based on the

generation and propagation of a new kind of constraint, called

a wait [6]. Each wait has the form, as long as the contingent

time-point, C, is unexecuted, B must wait at least w units

after the execution of C’s activation time-point, A. The MMV

DC-checking algorithm is sound and complete with respect to

the corrected MMV semantics [7].

2) The MM DC-Checking Algorithm: Morris and

Muscettola—hereinafter MM—presented the first truly

polynomial DC-checking algorithm [8]. Given an STNU,

S = (T , C,L), it begins by creating a graph, G, that contains

(No Case) A
x

C
y

D adds: A
x+y

D

(Upper Case) A
B:x

C
y

D adds: A
B:x+y

D

(Lower Case) A
x

C
c:y

D adds: A
x+y

D

(Cross Case) A
B:x

C
c:y

D adds: A
B:x+y

D

(Label Removal) B
b:x

A
B:z

C adds: A
z

C

Fig. 2. The edge-generation rules for the MM DC-checking algorithm

all of the edges from the graph of the related STN, (T , C),
plus two new kinds of labeled edges. In particular, for

each contingent link, (A, x, y, C), G includes the lower-case

edge, A
c:x

C, and the upper-case edge, A
C:−y

C. The

lower-case edge represents the uncontrollable possibility that

the duration of the contingent link might be its minimum

value, x; the upper-case edge represents the uncontrollable

possibility that the duration might be its maximum value,

y. Without their labels, these edges would be mutually

inconsistent; thus, the labels must be carefully maintained

when propagating constraints (equiv., generating new edges).

For contrast purposes, unlabeled edges, like those in any

STN, are called ordinary edges. For each contingent link,

(A, x, y, C), the STNU graph contains not only the labeled

edges described above, but also the following ordinary edges:

A
y

C and A
−x

C. Together, these ordinary edges

represent the known fact that the duration of the contingent

link will belong to the interval [x, y].4

To generate new edges, the MM DC-checking algorithm

uses the rules in Fig. 2, which are equivalent to, but more

uniformly and concisely expressed than those used by the

MMV algorithm.5 Note that none of the rules generate new

lower-case edges. Thus, an STNU with K contingent links

invariably has exactly K lower-case edges. In contrast, the

Upper-Case and Cross-Case rules may generate new upper-

case edges. However, since the target of an upper-case edge

is invariably the activation time-point for the corresponding

contingent link, an STNU with K contingent links and N

time-points can have at most KN upper-case edges. MM

showed that the upper-case edges generated by their algorithm

are equivalent to the waits generated by the MMV algorithm.

After each round of edge generation, the MM algorithm

performs a consistency check on an associated STN, called

the AllMax STN. Given an STNU, S = (T , C,L), the AllMax

STN for S is the STN—not STNU—that results from forcing

all of the contingent links in L to take on their maximum

values. Thus, the AllMax STN includes the constraints in C,

together with constraints of the form, C − A = y, for each

contingent link, (A, x, y, C). The AllMax STN for S is denoted

4These extra ordinary edges have been shown to be irrelevant to the DC-
checking problem [2]. They are retained here for consistency with prior work.

5The rules are shown using MM’s notation. Note that the x’s and y’s here
are not necessarily bounds for contingent links. Also, C is only required to
be contingent in the Lower-Case and Cross-Case rules, where its activation
time-point is D and its lower bound is y. In addition, in the Upper-Case and
Cross-Case rules, B is contingent, with activation time-point A. The Lower
Case rule only applies if x ≤ 0 and A 6= C; the Cross Case rule only applies
when x ≤ 0 and B 6= C; the Label-Removal applies when z ≥ −x.

by Sx; the graph for the AllMax STN is denoted by Gx; and

the corresponding distance matrix is denoted by Dx.

Each new ordinary edge generated by the MM algorithm

is inserted directly into the AllMax graph, Gx. Each new

upper-case edge is, first, stripped of its upper-case label and,

then, inserted—as an ordinary edge—into the AllMax graph.

After each round of edge generation, the MM algorithm

re-computes the AllMax distance matrix, Dx. They proved

that, for dynamically controllable networks, no more than

N2 + NK + K rounds of edge generation are required to

generate all of the derivable edges. They also proved that if Dx

remains consistent after N2+NK+K such rounds, then the

network must be dynamically controllable. Since each round

takes O(N3) time, the MM algorithm runs in O(N5) time.

The MM DC-checking algorithm is sound and complete.

3) Morris’ DC-Checking Algorithm: Morris [9] developed

a faster, O(N4)-time DC-checking algorithm by focusing on

the edges that could be generated from the fixed supply of

lower-case edges in an STNU. In particular, he showed how

to more efficiently search for relevant applications of the

Lower-Case and Cross-Case rules to each lower-case edge.

Morris’ DC-checking algorithm performs only K rounds of

edge generation using these two rules and propagating the

corresponding constraints through the AllMax matrix, Dx. He

proved that if Dx were still consistent at the end of this

process, then the STNU must be dynamically controllable.

The correctness of Morris’ algorithm depends on several

important properties. Since these properties will be needed

later on, they are summarized below.

a) Path transformations: The rules from Fig. 2 can be

viewed as path-transformation rules, as follows. Suppose a

path P contains consecutive edges, e1 and e2, to which one

of the first four edge-generation rules applies, yielding a new

edge, e. The path obtained from P by replacing e1 and e2
by e is called a transformation of P . The Label-Removal rule

can similarly be used to transform (or reduce) a path.

b) Reduced distance: The reduced distance of a path

in an STNU graph is the sum of the edge lengths in the

path, ignoring any labels. Note that the edge-generation/path-

transformation rules from Fig. 2 preserve reduced distance.

c) Semi-reducible paths: A path in an STNU graph is

called semi-reducible if it can be transformed into a path

without any lower-case edges. For any STNU, the all-pairs-

shortest-semi-reducible-paths (APSSRP) matrix is denoted by

D∗. Thus, for any time-points X and Y , D∗(X,Y) equals

the length of the shortest semi-reducible path from X to Y .

Morris proved that an STNU is dynamically controllable if

and only if its graph does not have a semi-reducible negative

loop (i.e., a semi-reducible path that forms a loop whose

reduced distance is negative). Hunsberger [10] proved that for

dynamically controllable STNUs, the AllMax matrix computed

by the MM algorithm is precisely the APSSRP matrix, D∗.

Thus, it follows that an STNU is DC if and only if D∗

has zeroes down its main diagonal. These results collectively

constitute the Fundamental Theorem of STNUs [2].

Based on an in-depth analysis of the graphical structure

of semi-reducible paths, Morris’ DC-checking algorithm per-

forms at most K rounds of edge generation, looking for

potential applications of the Lower-Case or Cross-Case rules.

As in the MM algorithm, any new edges that are generated

are inserted—without their alphabetic labels—into the AllMax

graph. If, after inserting all of the edges generated by K such

rounds, the AllMax matrix, Dx, is still consistent, then the net-

work is necessarily dynamically controllable. Hunsberger [10]

proved that for dynamically controllable SNTUs, the AllMax

matrices computed by the Morris and MM algorithms are both

equal to the APSSRP matrix, D∗. This result is particularly

interesting since Morris’ algorithm, with its focus on the

Lower-Case and Upper-Case rules, does not typically generate

all of the upper-case edges. However, the ones that it does

generate are enough to complete the computation of D∗.

F. DC-Checking vs. Execution

A DC-checking algorithm is only responsible for deter-

mining whether an STNU is dynamically controllable. That

is, it need only ensure the existence of a dynamic execution

strategy (or, equivalently, an RTED-based strategy); it need

not construct such a strategy. However, in successful instances

(i.e., when the network in question turns out to be DC), both

the MMV and MM DC-checking algorithms generate all of

the edges that are derivable from the edge-generation rules.

Thus, both of these DC-checking algorithms also effectively

prepare the network for execution. MMV showed that this

full complement of edges can be used as the basis for a

real-time execution algorithm—henceforth called the MMV-

EX algorithm—that guarantees the consistency of the STNU

no matter how the contingent durations turn out. Unfortunately,

the MM DC-checking algorithm takes O(N5) time to generate

the information used by the MMV-EX algorithm.

In contrast, Morris’ faster, O(N4)-time DC-checking algo-

rithm typically does not generate all of the edges that are

derivable from the edge-generation rules. Instead, it focuses on

“reducing away” the lower-case edges. Thus, for any STNU

that passes Morris’ algorithm, it seemed plausible that extra

work might be required to prepare the network for execution.

Toward that end, Morris briefly sketched an extra O(N4)-time

procedure to generate the rest of the derivable upper-case and

ordinary edges—in advance of execution. The next section

demonstrates that this is not necessary.

II. THE NEW-EX EXECUTION ALGORITHM

Hunsberger [10] presented an execution algorithm, called

NEW-EX, that takes as its starting point an STNU that has

passed Morris’ DC-checking algorithm. The NEW-EX algo-

rithm guarantees the consistency of the network throughout

the execution of all of its time-points, no matter how the

contingent durations turn out—as long as they are within their

specified bounds. The main insight behind the algorithm is that

the AllMax graph, Gx, which does not distinguish ordinary and

upper-case edges, contains all of the information needed to

generate execution decisions. The reason for this is that, prior

to the execution of a contingent time-point C, any upper-case

edge, Y
C:−w

A, labeled by C, is indistinguishable from

the corresponding ordinary edge, Y
−w

A, in terms of its

effect on as-yet-unexecuted time-points. The catch, however,

is that after C executes, the conditional “wait” constraints

represented by upper-case edges labeled by C are no longer

applicable and, thus, must be removed from the STNU graph,

thereby leading to changes in the AllMax graph and its

corresponding distance matrix, Dx.6

The NEW-EX algorithm is iterative. Each iteration involves

the following steps. First, the AllMax matrix, Dx, is used to

generate an execution decision. Second, the execution outcome

is observed: one or more time-points executing at some

time t. Third, the STNU and AllMax graphs are updated. In

particular, for each (contingent or executable) time-point, X ,

that executed at time t, the following constraints are inserted:

• X − Z ≤ t and Z − X ≤ −t (i.e., X = t)—called

execution constraints; and

• for each Y that remains unexecuted, Z − Y ≤ −t

(i.e., Y ≥ t)—called greater-than-now constraints.

In addition, for any contingent time-points, C, that might have

executed at t, all upper-case edges labeled by C are removed

from the STNU graph; and their unlabeled counterparts are

removed from the AllMax graph. Finally, the AllMax matrix,

Dx, is updated in preparation for the next iteration.

Since it costs O(N3) time per iteration, the updating of

the AllMax matrix, Dx, is the driving factor behind the

O(N4)-time complexity of the NEW-EX algorithm. The rest

of this section discusses features of the NEW-EX algorithm,

emphasizing those that will be needed in subsequent sections.

A. Core Edges and Related Graphs and Matrices

Let S = (T , C,L) be an STNU and G its corresponding

graph, which includes all the ordinary edges from C, together

with the lower-case, upper-case and ordinary edges associated

with the contingent links in L. The core edges for S are all

of the ordinary and upper-case edges from G, together with

all of the edges generated by Morris’ DC-checking algorithm.

Note that the core edges do not include any lower-case edges.

In addition, the core edges, stripped of any alphabetic labels,

are precisely the (ordinary) edges that appear in the AllMax

graph, Gx, at the end of Morris’ DC-checking algorithm.

For quick access, the NEW-EX algorithm stores the upper-

case core edges in a K-by-N matrix, called UC. In particular,

if Y
C:−w

A is the strongest core upper-case edge from Y

to A labeled by C, then UC(C, Y) = −w.7

The NEW-EX algorithm also uses an STN graph, Go,

that initially consists of all the ordinary core edges from S .

The corresponding distance matrix is denoted by Do. During

execution, the NEW-EX algorithm adds constraints to both Gx

and Go, and updates the corresponding matrices, Dx and Do.

6As a consequence, during execution, the AllMax graph only forces all
as-yet-unexecuted contingent links to take on their maximum durations.

7C is used as an index into the UC matrix instead of A, since multiple
contingent links could have the same activation time-point, A.

B. Removing Upper-Case Edges during Execution

As already mentioned, whenever any contingent time-point

C happens to execute, the upper-case edges labeled by C are

no longer relevant and, thus, must be removed from the STNU

graph.8 Doing so involves removing or weakening edges in the

graph, Gx, which, in turn, requires updating the matrix, Dx. In

particular, during execution, Dx must be properly updated so

that its entries reflect only that which can be derived from the

core upper-case edges associated with unexecuted contingent

time-points, as well as all core ordinary edges.9

Prior to observing the next execution event, the NEW-EX

algorithm prepares a helper matrix, D′, that will only be

needed should a contingent time-point happen to execute. First,

D′ is initialized to Do, effectively representing the removal

of all upper-case edges from Dx. Second, since unactivated

contingent time-points cannot be part of the next execution

event, the core upper-case edges corresponding to unactivated

contingent time-points are copied from the UC matrix into

D′. Third, the O(N3)-time Floyd-Warshall algorithm [11] is

used to fully propagate these changes to D′. Later on, if the

execution outcome is observed to include the execution of

one or more contingent time-points, the NEW-EX algorithm

continues the updating of D′ to include the core upper-case

edges for all remaining unexecuted contingent time-points, and

sets Dx to D′. Thus, the NEW-EX algorithm deals with the

removal of upper-case edges for executed contingent time-

points by, in effect, removing all upper-case edges and, then,

re-inserting those corresponding to unexecuted contingent

time-points. The FAST-EX algorithm, introduced in the next

section, uses a completely different technique to achieve an

order-of-magnitude speed-up in this process.

III. FAST-EX: A FASTER EXECUTION ALGORITHM

This section presents the FAST-EX algorithm, a faster,

O(N3)-time execution algorithm for dynamically controllable

STNUs. The FAST-EX algorithm achieves its better perfor-

mance by carrying out the updating of the AllMax matrix more

efficiently, taking only O(N2) time per iteration. To do this,

the FAST-EX algorithm uses the following techniques:

• It focuses on Dx entries involving Z, which are the only

entries that are needed to generate execution decisions.

• It collapses down to a single point the rigid component

consisting of Z and all already-executed time-points.

• Similarly to Johnson’s algorithm [11], it uses a poten-

tial function to convert all edge-weights to non-negative

values, thereby enabling Dijkstra’s single-source shortest-

paths (SSSP) algorithm [11] to be used to update the

needed Dx entries.

Each of these techniques is discussed in more detail below.

Let Ux = set of as-yet-unexecuted non-contingent time-points

IF Ux is empty,
THEN RD := WAIT

ELSE RD := (t, χ), where:
t := min{−Dx(X,Z) | X ∈ Ux}
χ := {X ∈ Ux | − Dx(X,Z) = t}

Fig. 3. Pseudo-code for generating the next execution decision

A. Restricting Attention to Dx Entries involving Z

Like the NEW-EX algorithm, the FAST-EX algorithm uses

the method shown in Fig. 3 to generate the next real-time

execution decision [10].10 Clearly, the execution decisions

generated in this way depend only on Dx entries involving

Z. Therefore, it is not necessary for an execution algorithm

to maintain the entire Dx matrix—as is done by NEW-EX.

Instead, it suffices to maintain only the values involving

Z. Thus, for each unexecuted time-point X , the FAST-EX

algorithm only maintains the values Dx(X,Z) and Dx(Z,X).

B. Using Dijkstra’s Algorithm to Update Dx

As will be seen, every edge that the FAST-EX algorithm

adds to or removes from the AllMax graph during execution

necessarily involves Z. This special feature enables a more

efficient way of updating the desired distance-matrix entries.

The technique relies on the following theorem.

Theorem 1: Suppose that X and Z are distinct time-points

in an STN, and that P is a shortest path from X to Z. Then

there exists a shortest path from X to Z that does not include

any edges of the form, Z
δ

Y .

Proof: Suppose X and Z are distinct time-points in an

STN, and that P is a shortest path from X to Z. Suppose

further that P includes an edge, E, of the form, Z
δ

Y . In

that case, the suffix of P whose first edge is E is a loop from

Z to Z. Since any sub-path of a shortest path is necessarily

itself a shortest path [5], it follows that the length of this loop

is 0. Thus, extracting this loop from P yields a new path, P ′,

from X to Z whose length is the same as the length of P .

This process can be repeated until the resulting shortest path

does not contain any edges of the form, Z
δ

Y .

Corollary 1: Suppose X and Z are distinct time-points in

an STN, and that P is a shortest path from Z to X . Then

there exists a shortest path from Z to X that does not include

any edges of the form, Y
δ

Z.

In view of these results, it follows that whenever an edge

of the form, Y
δ

Z, is added to (or removed from) an STN

graph, G, it cannot affect the lengths of shortest paths whose

source time-point is Z. In other words, adding such an edge to

8Non-core upper-case edges are not explicitly represented in the STNU
graph; they only appear implicitly as paths terminating in core upper-case
edges. Thus, only core upper-case edges need be removed during execution.

9Since Morris’ DC-checking algorithm extracts all meaningful constraints
from lower-case edges, the NEW-EX algorithm ignores lower-case edges.

10Because the NEW-EX algorithm uses a technique of splitting the zero
time-point, Z, into two separate time-points, Zin and Zout—a technique which
is not used by the FAST-EX algorithm—the description of the procedure
for generating execution decisions uses expressions such as Dx(Z,X) and
Dx(X,Z), instead of Dx(Zout, X) and Dx(X, Zin). This difference is not
important in the context of generating execution decisions.

INPUTS:

G, an STN graph
D, the distance matrix for G, except that only the entries of the
form, D(Z,X), for all X , are guaranteed to be correct.

OUTPUT:

D, updated so that entries, D(X,Z), for all X , are correct.

(1) For each X , let h(X) = D(Z,X).
(2) Create a new graph, G⋆, whose edges correspond to those in G,

as follows. For each edge, U
w

V , in G, there is an edge,

U
h(U)+w−h(V)

V , in G⋆.

(3) Run Dijkstra’s SSSP Algorithm on G⋆, using Z as the single sink.
(4) For each X , set D(X,Z) = D⋆(X,Z)− h(X).

Fig. 4. Pseudo-code for the SinkDijkstra algorithm

an STN (or removing it from the STN) cannot cause changes

to distance-matrix entries of the form, D(Z,X). Thus, as in

Johnson’s algorithm [11], the values, h(X) = D(Z,X), can

be used as a potential function to re-write the edge-weights

in the graph so that they will all be non-negative. To see this,

note that for any edge, U
w

V , h(V) ≤ h(U) + w, since

the length of the shortest path from Z to V must be less than

or equal to the length of the shortest path from Z to V via

U . But then h(U) + w − h(V) ≥ 0. Thus, a new graph, G⋆,

is created containing edges derived from those in the original

graph, G. In particular, each edge, U
w

V , in G gives rise

to an edge, U
h(U)+w−h(V)

V , in G⋆.

Next, since all edge-weights in G⋆ are non-negative, Dijk-

stra’s single-sink-shortest-paths (SSSP) algorithm can be run

using Z as the single sink/destination. Shortest path informa-

tion in the new graph is easily translated into shortest path

information in the original graph, as follows. For each time-

point X , D(X,Z) = D⋆(X,Z) − h(X), where D⋆ is the

distance matrix for the new graph G⋆. (Of course, Dijkstra’s

algorithm does not compute all of the entries in D⋆; it only

computes those terminating in Z.)

For convenience, the technique just described is called Sink-

Dijkstra, since it computes the lengths of shortest paths whose

sink (or destination) is Z. Pseudo-code for the SinkDijkstra

procedure is given in Fig. 4.

Similarly, whenever an edge of the form, Z
δ

Y , is added

to (or removed from) an STN, it cannot affect the lengths

of the shortest paths whose destination time-point is Z. That

is, it cannot affect any entry of the form, D(X,Z). Thus,

h(X) = D(X,Z) can be used as a potential function to re-

write the edge-weights, to make them all non-negative, and

Dijkstra’s single-source-shortest-paths (SSSP) algorithm can

be run on the new graph to generate all of the updated D(Z,X)
values. This procedure, which is analogous to SinkDijkstra, is

called SourceDijkstra, since it uses Z as its single source.

Since the only kinds of edges that are added to (or removed

from) the AllMax graph, Gx, during the execution of the time-

points in an STNU are edges that involve Z, the FAST-EX

algorithm uses SinkDijkstra and SourceDijkstra, in alternation,

to compute the needed updates to the AllMax matrix, Dx.

Like the NEW-EX algorithm, whenever a time-point, X ,

is executed at some time t, the FAST-EX algorithm adds the

(1) Add the constraint, X−Z ≤ t (i.e., X ≤ t), to the graph Gx. Then
run SourceDijkstra to generate updated entries of the form, Dx(Z,W),
for each time-point W .

(2) Add the constraint, Z − X ≤ −t (i.e., X ≥ t), and, for each
as-yet-unexecuted time-point Y , add the greater-than-now constraint,
Z − Y ≤ −t (i.e., Y ≥ t). Then run SinkDijkstra to generate updated
entries of the form, Dx(W,Z), for each time-point W .

Fig. 5. FAST-EX’s response to the execution of X at time t

execution constraint, X = t, to Gx. In addition, for each as-

yet-unexecuted time-point, Y , it adds the greater-than-now

constraint, Y ≥ t. However, FAST-EX must perform these

constraint insertions in a particular order to ensure that it

can use the SinkDijkstra and SourceDijkstra procedures. The

FAST-EX algorithm takes the steps shown in Fig. 5.

C. Managing the Rigid Component of Executed Time-Points

At any time during execution, let R denote the set consisting

of Z together with all of the already-executed time-points.

Since the execution of each time-point causes it to become

rigid with Z, the set R is a rigid component. Using the

techniques described in Section I, the FAST-EX algorithm

represents the rigid component, R, by a single point. For

convenience, Z is chosen as the representative time-point for

R. As each time-point, X , executes, it joins R and is, thus,

effectively removed from the network. In particular, edges that

formerly pointed to X are re-directed toward Z; and edges that

formerly emanated from X are re-directed to emanate from Z.

The FAST-EX algorithm uses multiple hash tables [11] to

store the edges that belong to the AllMax graph. In particular,

for each time-point X , the hash table, Ins(X), stores all of the

edges in the AllMax graph that point at X (i.e., that have X

as their destination). For example, an edge, Y
δ

X , would

be stored in the hash table Ins(X) with a key of Y , and a

value of δ. Similarly, all of the edges in the AllMax graph that

emanate from X (i.e., that have X as their source) are stored

in a hash table, Outs(X). Although each edge is stored in two

hash tables, this bit of redundancy enables fast access.

Now, when a time-point X is executed at some time t, any

edge whose destination is X must be moved from Ins(X) to

Ins(Z), with its weight appropriately adjusted. Similarly, any

edge whose source is X must be moved from Outs(X) to

Outs(Z). These kinds of changes are also made to the FAST-

EX algorithm’s store of ordinary core edges, as follows.

Prior to execution, the FAST-EX algorithm stores the ordi-

nary core edges resulting from Morris’ DC-checking algorithm

in an N -by-N matrix, called OC. In particular, for any time-

points, X and Y , the entry, OC(X,Y), equals the length

of the strongest ordinary core edge from X to Y result-

ing from Morris’ algorithm.11 (If no such edge exists, then

OC(X,Y) = ∞.) Because the FAST-EX algorithm re-directs

edges in the process of collapsing the rigid component, R, the

entries in the OC matrix are similarly re-directed. For example,

11Because the NEW-EX algorithm carries along an extra distance matrix,
Do, that propagates all ordinary constraints, whether core or those arising
from execution, the NEW-EX algorithm does not need the OC matrix.

suppose that OC(X,Y) = 22 is an initial entry in the OC matrix,

representing a core ordinary edge, X
22

Y . Now suppose

that X is subsequently executed at time 5. Redirecting the

above edge to emanate from Z yields the edge, Z
27

Y .

If the current entry, OC(Z, Y), is greater than 27, representing

a weaker constraint, it must be strengthened: OC(Z, Y) := 27.

If the current entry is less than or equal to 27, representing a

stronger constraint, no change to OC(Z, Y) is made. Similar

remarks apply to re-directing entries of the form, OC(Y,X).
Note that no additional propagation is done during this re-

direction process.

In contrast, the FAST-EX algorithm does not do any re-

directing of entries in the UC matrix. Implications of this minor

point are addressed in the next section.

D. Dealing with the Removal of Upper-Case Edges

The main contribution of the FAST-EX algorithm is its more

efficient processing of the removal (or weakening) of edges

from the AllMax graph, Gx, that occurs whenever a contingent

time-point is executed. Recall that for each contingent link,

(A, x, y, C), the upper-case edges labeled by C (available in

the UC matrix) are stored—without any alphabetic labels—

in the AllMax graph, using the Ins and Outs hash tables.12

(Being an STN graph, the AllMax graph cannot distinguish

ordinary and upper-case edges.) Now, before a contingent

time-point C can execute, its activation time-point, A, must

have already executed. Thus, A must have already joined the

rigid component, R, and all edges in the AllMax graph (i.e.,

in the Ins and Outs hash tables) that involve A must have

already been re-directed to involve Z. Furthermore, since each

upper-case edge labeled by C necessarily points at A (in the

STNU graph), each edge in the AllMax graph that derives from

an upper-case edge labeled by C must have already been re-

directed to point at Z. Thus, removing the core upper-case

edges labeled by C from the STNU graph corresponds to

removing (ordinary) edges from the AllMax graph that point

at Z. This paves the way for the use of the SinkDijkstra

procedure to compute the necessary updates to Dx. However,

before that can be done, the FAST-EX algorithm must deal

with the possibility that the removal of an edge from some

Y to Z in the AllMax graph might effectively uncover some

previously longer edge that, due to the first edge’s removal,

now becomes the shortest edge from Y to Z.

Consider the following example. Suppose that, due to the

contingent time-point C having just executed, an upper-case

edge, Y
C:−9

A, is to be removed from the STNU graph.

Now, because A must have executed previously—say, at

time 8—this edge, stripped of its label, might be in the AllMax

graph as an ordinary edge from Y to Z of length −17. Remov-

ing this edge from the AllMax graph is necessary. But what

should it be replaced by? Well, an entry, OC(Y, Z) = −14, in

the matrix of core ordinary edges would give rise to an edge,

Y
−14

Z, in the AllMax graph. Alternatively, any upper-

12Only the shortest edge between each pair of time-points is stored in the
Ins and Outs hash tables.

(1) For each core upper-case edge, Y
C:−w

A, labeled by C, that

edge is removed from the STNU graph (i.e., from the UC matrix) and
the corresponding edge from Y to Z is removed from the AllMax graph.
Then the strongest replacement edge from Y to Z in the AllMax graph
is obtained from OC(Y, Z) or one of at most K entries in the UC matrix.

(2) The edge, Z −C ≤ −t (i.e., C ≥ t), is added to the AllMax graph
(as is done when a non-contingent time-point executes).

(3) For each as-yet-unexecuted time-point, Y , the greater-than-now

constraint, Z − Y ≤ −t (i.e., Y ≥ t), is added to the AllMax graph
(as is done when a non-contingent a time-point executes).

(4) The Sink Dijkstra procedure is used to compute all updates of the
form, Dx(X,Z), for any X .

(5) The constraint, C − Z ≤ t (i.e., C ≤ t), is added to the network
(as is done when a non-contingent time-point executes).

(6) The SourceDijkstra procedure is used to compute all updates of the
form, Dx(Z,X), for any X .

Fig. 6. FAST-EX’s response to the execution of a contingent time-point, C

case edge of the form, Y
Ci:−wi Ai, for which the activation

time-point Ai has already executed, but the contingent time-

point Ci has not, also gives rise to an ordinary edge from Y to

Z in the AllMax graph. (The length of that edge is −wi − ai,

where ai is the time at which Ai executed.) Whichever of

these edges leads to the shortest edge from Y to Z in the

AllMax graph is the one that needs to be inserted into the Ins

and Outs hash tables as a replacement for the edge that was

removed. The relevant entries are UC(Ci, Y) for each activated-

but-unexecuted contingent time-point Ci, as well as OC(Y, Z).
Since there are at most K entries in the UC matrix that need

to be considered, finding the strongest replacement edge can

be done in linear time.

Once the strongest replacement edge is found, then the Sink-

Dijkstra procedure described earlier can be used to compute

the updates to all of the Dx(X,Z) values. Fig. 6 summarizes

the steps taken by the FAST-EX algorithm when a contingent

time-point, C, happens to execute.

E. Putting it all Together

Given a dynamically controllable STNU, the FAST-EX

algorithm initializes the following structures.

• Hash tables:
Ux : the unexecuted executable time-points

Uc : the unexecuted contingent time-points

R : the rigid component, containing executed

time-points, initially only Z

Ins(X) : for each X , the edges coming into X in Gx

Outs(X): for each X , the edges leaving X in Gx

• The N -by-N AllMax distance matrix, Dx, is that which

exists at the end of Morris’ DC-checking algorithm. Only

the entries involving Z are used by FAST-EX.

• The ordinary core edges generated by Morris’ algorithm

are collected in an N -by-N matrix, called the ordinary

core matrix, OC.

• The upper-case core edges generated by Morris’ algo-

rithm are collected in a K-by-N matrix, called the upper-

case core matrix, UC.

• The variable, NOW, is initialized to 0.

Fig. 7 gives pseudo-code for one iteration of FAST-EX.

IF Ux and Uc are both empty, THEN done, ELSE:

1. Generate the next real-time execution decision, RD.
2. Observe the outcome of RD: (NOW′, NewExec).
3. If no contingent time-points executed, then for each X ∈ NewExec:

a. Process execution constraints, using SourceDijkstra and SinkDijkstra,
as discussed in Section III-B (cf. Fig. 5).

b. Move X from Ux to R and effectively remove X from the network
by re-directing any edges involving X as discussed in Section III-C.

c. Go to Step 6.

4. If only contingent time-points executed, then for each C ∈ NewExec:

a. Process execution constraints and remove/replace edges corresponding
to upper-case edges labeled by C, using SinkDijkstra and SourceDi-

jkstra, as discussed in Section III-D (cf. Fig. 6).
b. Move C from Uc to R and effectively remove C from the network

by re-directing any edges involving C as discussed in Section III-C.
c. Go to Step 6.

5. If both contingent and non-contingent time-points executed simultaneously,
carry out Steps 3a-b for the non-contingent time-points and Steps 4a-b for
the contingent time-points.

6. Go to the next iteration with NOW := NOW
′.

Fig. 7. Pseudo-code for one iteration of the FAST-EX algorithm

F. Analysis of the FAST-EX Algorithm

This section presents results that confirm that the FAST-EX

algorithm successfully executes any dynamically controllable

STNU, and that it operates in O(N3) time overall: N time-

point executions at O(N2)-time per execution.

Theorem 2: Given any dynamically controllable STNU, S ,

and the AllMax distance matrix computed by Morris’ DC-

checking algorithm, the FAST-EX algorithm guarantees the

successful execution of S . In particular, if the contingent

durations fall within their specified bounds, then all constraints

in the network will necessarily be satisfied.

Proof: This result derives from the fact that the FAST-EX

algorithm makes the same execution decisions as the NEW-

EX algorithm, which is proven by induction. Both algorithms

start with the same AllMax distance matrix, Dx, that results

from Morris’ DC-checking algorithm. Thus, both algorithms

generate the same first decision. Given the same execution

outcome, both algorithms also update all entries of the form,

Dx(X,Z) and Dx(Z,X), which are the only entries used

to generate subsequent execution decisions. (The NEW-EX

algorithm also generates the rest of the Dx entries, but they are

not at issue here.) The FAST-EX algorithm computes updates

to the Dx entries by inserting execution constraints into the

AllMax graph and propagating them using the SinkDijkstra and

SourceDijkstra algorithms in alternation. When a contingent

time-point, C, executes, the FAST-EX algorithm removes

edges from the AllMax graph that correspond to upper-case

edges labeled by C, and replaces them by the strongest corre-

sponding edges arising from the corresponding OC matrix entry

or upper-case edges labeled by other contingent time-points.

Again, the SinkDijkstra and SourceDijkstra algorithms are

used. The correctness of the updates depends on Theorem 1,

which relies on the fact that the only constraints that are ever

added to the network (or removed from it) involve Z.

Theorem 3: The worst-case performance of the FAST-EX

algorithm is O(N3) time overall.

Proof: The worst-case performance of the FAST-EX

algorithm is driven by the use of the SinkDijkstra and

SourceDijkstra procedures, both of which run in O(N2) time.

Execution of the STNU involves the execution of N time-

points. When any time-point is executed, the SinkDijkstra

and SourceDijkstra algorithms are run once each. Thus, the

overall complexity is O(N3). Note that the cost of finding the

replacement edge for each upper-case edge removed from the

network is linear. Since at most NK edges are removed, that

total cost over the entire run is also O(N3).

IV. CONCLUSIONS

This paper presented an O(N3)-time incremental execution

algorithm, called FAST-EX, that guarantees the successful

execution of any STNU that has passed Morris’ O(N4)-
time DC-checking algorithm. The FAST-EX algorithm makes

the same execution decisions as the NEW-EX algorithm, but

operates an order of magnitude faster: O(N3) time instead

of O(N4) time. Like the NEW-EX algorithm, the FAST-EX

algorithm’s computations are spread out over the entire time

the network is being executed; for FAST-EX: N iterations at

O(N2) per iteration. Future work will empirically demonstrate

the improved performance of the FAST-EX algorithm on a

suite of randomly generated networks.

REFERENCES

[1] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, pp. 61–95, 1991.

[2] L. Hunsberger, “Magic loops in simple temporal networks with uncer-
tainty,” in Proceedings of the Fifth International Conference on Agents

and Artificial Intelligence (ICAART-2013), 2013.
[3] A. Gerevini, A. Perini, and F. Ricci, “Incremental algorithms for

managing temporal constraints,” IRST, Tech. Rep. IRST-9605-07, 1996.
[4] R. Wetprasit and A. Sattar, “Qualitative and quantitative temporal

reasoning with points and durations (an extended abstract),” in Fifth

International Workshop on Temporal Representation and Reasoning

(TIME-98), 1998, pp. 69–73.
[5] L. Hunsberger, “Group decision making and temporal reasoning,” Ph.D.

dissertation, Harvard University, 2002, available as Harvard Technical
Report TR-05-02.

[6] P. Morris, N. Muscettola, and T. Vidal, “Dynamic control of plans
with temporal uncertainty,” in 17th International Joint Conference on

Artificial Intelligence (IJCAI-01), B. Nebel, Ed. Morgan Kaufmann,
2001, pp. 494–499.

[7] L. Hunsberger, “Fixing the semantics for dynamic controllability and
providing a more practical characterization of dynamic execution strate-
gies,” in Proceedings of the 16th International Symposium on Temporal

Representation and Reasoning (TIME-2009). IEEE Computer Society,
2009, pp. 155–162.

[8] P. H. Morris and N. Muscettola, “Temporal dynamic controllability re-
visited,” in The Twentieth National Conference on Artificial Intelligence

(AAAI-2005), M. M. Veloso and S. Kambhampati, Eds. The MIT Press,
2005, pp. 1193–1198.

[9] P. Morris, “A structural characterization of temporal dynamic control-
lability,” in Principles and Practice of Constraint Programming (CP

2006), ser. Lecture Notes in Computer Science. Springer, 2006, vol.
4204, pp. 375–389.

[10] L. Hunsberger, “A fast incremental algorithm for managing the execution
of dynamically controllable temporal networks,” in Proceedings of

the 17th International Symposium on Temporal Representation and

Reasoning (TIME-2010). Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 121–128.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. MIT Press, 2009.

