A Faster Parameterized Algorithm for Treedepth

Felix Reidl, Peter Rossmanith, **Fernando Sánchez Villaamil** Somnath Sikdar

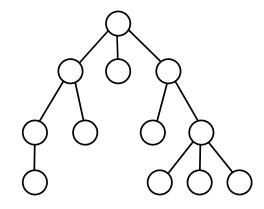
RWTH Aachen University

July 11, 2014

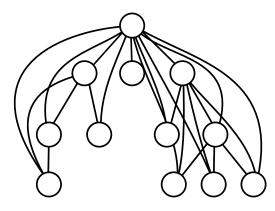
Fernando Sánchez Villaamil (RWTH) Parameterized Algorithm for Treedepth

Treedepth is a width measure.

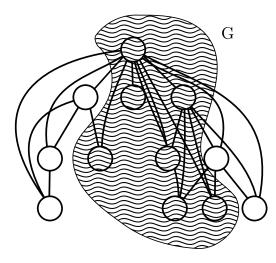
∃ →



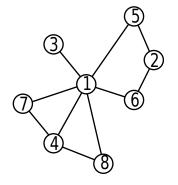
*ロト *檀ト *注ト *注ト



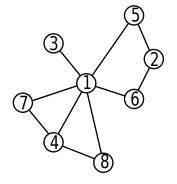
◆□> ◆圖> ◆臣> ◆臣> □臣

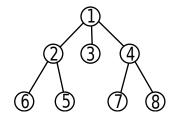


▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A(で)

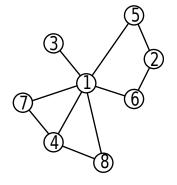


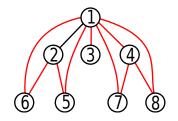
◆□> ◆圖> ◆臣> ◆臣> □臣





<ロ> (日) (日) (日) (日) (日)





<ロ> (日) (日) (日) (日) (日)

Definition (Treedepth decomposition)

A treedepth decomposition of a graph G is a rooted forest F such that $V(G) \subseteq V(F)$ and $E(G) \subseteq E(clos(F))$.

Definition (Treedepth)

The treedepth td(G) of a graph G is the minimum height of any treedepth decomposition of G.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

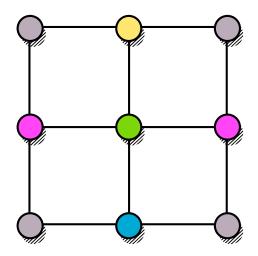
A strange width measure...

```
"So many choices"
—Dr. Dre
```

A graph G has treedepth at most t if

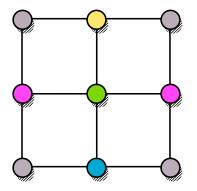
- G is a subgraph the closure of a tree (forest) of height $\leq t$
- G has a centered coloring with t colors
- G has a ranked coloring with t colors
- G is the subgraph of a *trivially perfect graph* with clique size $\leq t$

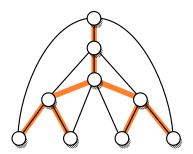
Centered Coloring



<ロ> (日) (日) (日) (日) (日)

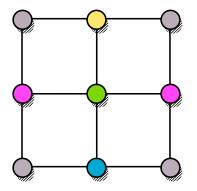
Centered Coloring

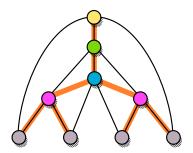




イロト イヨト イヨト イヨト

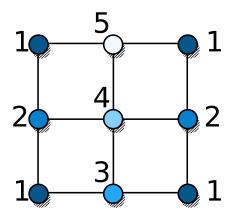
Centered Coloring

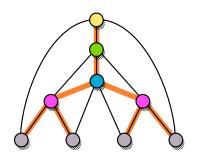




イロト イヨト イヨト イヨト

Ranked Coloring

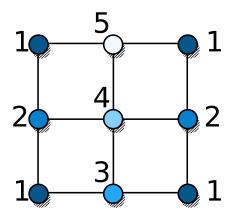


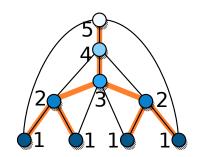


・ロト ・回ト ・ヨト ・

э.

Ranked Coloring





・ロト ・回ト ・ヨト ・

э.

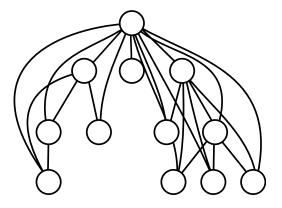
Trivially Perfect Graphs

G is the subgraph of a *trivially perfect graph* with clique size at most t.

- - E

Trivially Perfect Graphs

G is the subgraph of a *trivially perfect graph* with clique size at most t.



Arises again and again

Introduced as...

- minimum elimination tree by Pothen [1988]
- ordered coloring by Katchalski et al. [1995]
- vertex ranking by Bodlaender et al. [1998]
- again as treedepth by Nešetřil and Ossona de Mendez [2008]

Arises again and again

Introduced as...

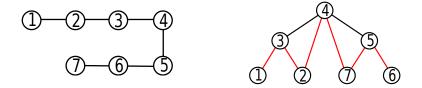
- minimum elimination tree by Pothen [1988]
- ordered coloring by Katchalski et al. [1995]
- vertex ranking by Bodlaender et al. [1998]
- again as treedepth by Nešetřil and Ossona de Mendez [2008] Related to...
 - layouting of VLSI chips
 - star height of regular languages
 - characterizing bounded expansion graph classes
 - counting subgraphs [New results coming]

Arises again and again

Introduced as...

- minimum elimination tree by Pothen [1988]
- ordered coloring by Katchalski et al. [1995]
- vertex ranking by Bodlaender et al. [1998]
- again as treedepth by Nešetřil and Ossona de Mendez [2008] Related to...
 - layouting of VLSI chips
 - star height of regular languages
 - characterizing bounded expansion graph classes
 - counting subgraphs [New results coming]

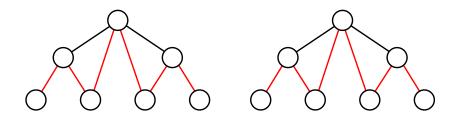
Personal opinion: Treedepth is the most useful definition.



Treedepth $t \rightarrow Maximal$ path length $2^t - 1$.

(日) (同) (三) (三)

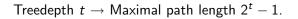
Treedepth $t \rightarrow \text{Maximal path length } 2^t - 1$.

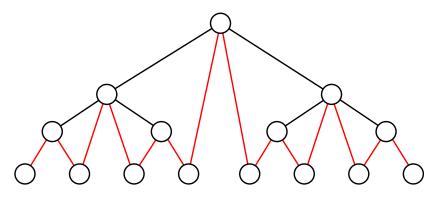


3

< E

Image: A math a math

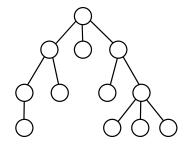




3

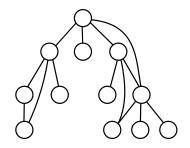
(日) (同) (三) (三)

A DFS is a Treedepth decomposition



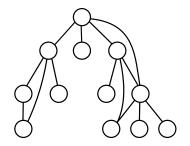
ም.

A DFS is a Treedepth decomposition

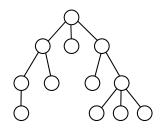


A⊒ ▶ < ∃

A DFS is a Treedepth decomposition

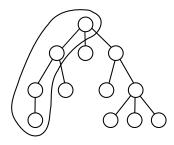


Treedepth $t \Rightarrow$ Maximal path length $2^t - 1 \Rightarrow 2^t$ -approximation



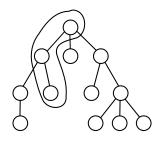
- < ∃ →

▲ 周 → - ▲ 三

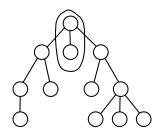


- < ∃ →

▲ 同 ▶ → 三 ▶

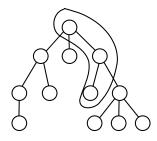


- < ∃ →



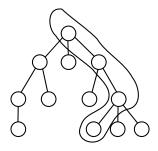
- < ∃ →

▲ 同 ▶ → 三 ▶



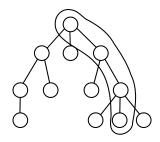
- < ∃ →

▲ @ ▶ < ∃ ▶</p>



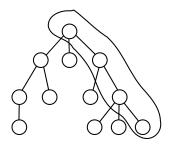
- < ∃ →

▲ 周 → - ▲ 三



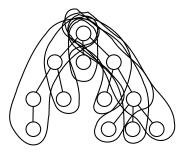
< ∃→

Image: A match a ma



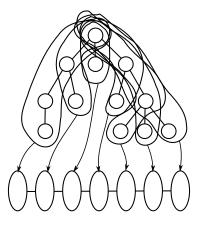
- < ∃ →

▲ @ ▶ < ∃ ▶</p>



- ∢ ≣ →

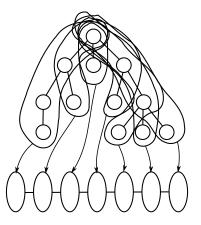
Image: A match a ma



∃ →

Image: A match a ma

Treedepth to pathwidth

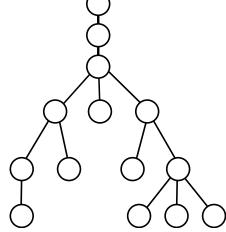


 $\mathsf{tw}(G) \leq \mathsf{pw}(G) \leq \mathsf{td}(G) - 1$

Treedepth $t \Rightarrow$ Path decomposition of width $2^t - 2$

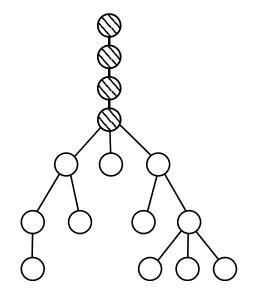
3

Treedepth	Basic results
\cap	
()	
Ĭ	



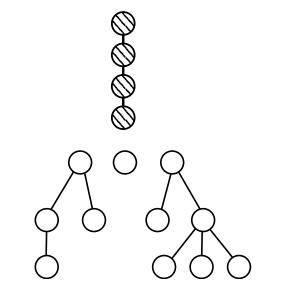
◆□> ◆圖> ◆臣> ◆臣> □臣

Basic results

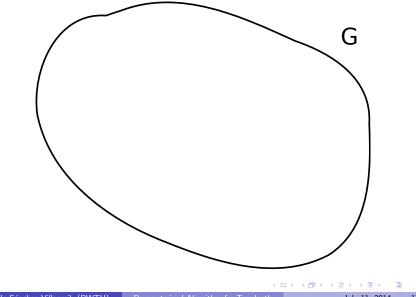


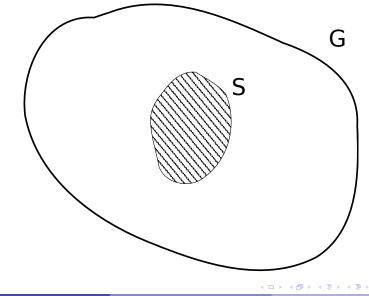
・ロト ・四ト ・ヨト ・ヨト

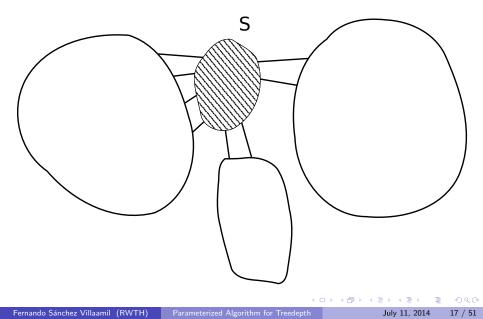
Basic results

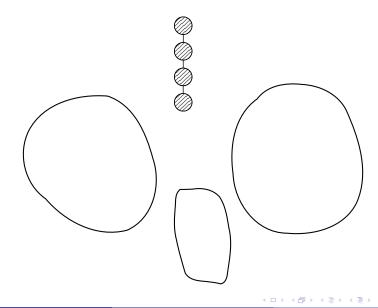


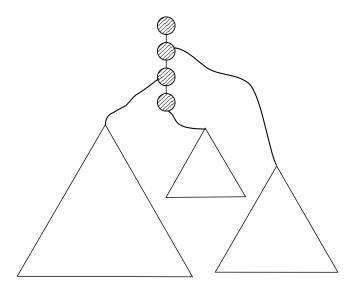
<ロ> (日) (日) (日) (日) (日)











- ∢ ≣ →

Parameterized algorithms

Open problem by Nešetřil and Ossona de Mendez [2012]

Is there a simple linear time algorithm to check $td(G) \le t$ for fixed t?

• • = • • =

Parameterized algorithms

Open problem by Nešetřil and Ossona de Mendez [2012]

Is there a simple linear time algorithm to check $td(G) \leq t$ for fixed t?

- In $f(t) \cdot n^3$ time by Robertson and Seymour.
- $\mathsf{tw}(G) \leq \mathsf{td}(G) 1 \Rightarrow$ By Courcelle's Theorem $2^{2^{2^{-1}}} \cdot n$
- Algorithm by Bodlaender et. al. with running time $2^{O(w^2t)} \cdot n^2$.

Our results:

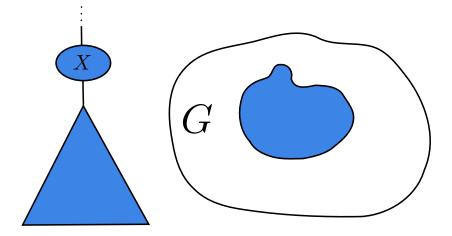
- A (relatively) simple direct algorithm in time $2^{2^{O(t)}} \cdot n$.
- A fast algorithm in time $2^{O(t^2)} \cdot n$.

• • = • • = •

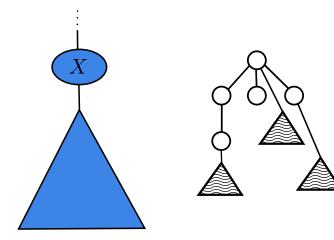
Our results:

- A (relatively) simple direct algorithm in time $2^{2^{O(t)}} \cdot n$.
- A fast algorithm in time $2^{O(t^2)} \cdot n$.

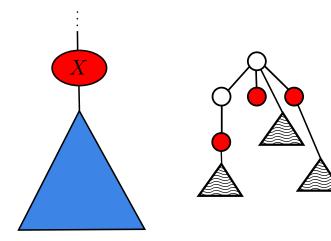
Both results follow from an algorithm on tree decompositions which runs in time $2^{O(wt)} \cdot n$.



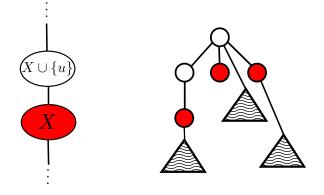
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○



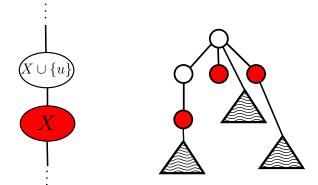
▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二国



▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二国



ヘロト 人間 と 人間 と 人間 と

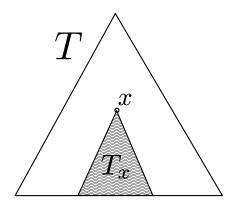


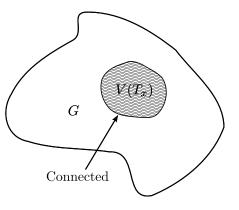
Where could the introduced node u be?

Fernando Sánchez Villaamil (RWTH)

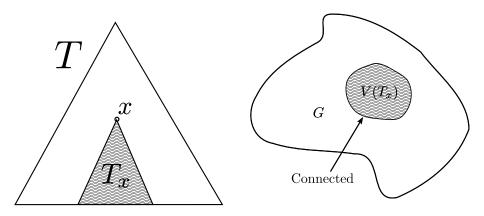
∃ → July 11, 2014 20 / 51

э



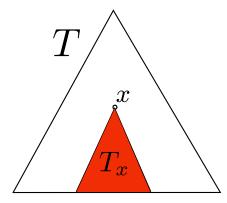


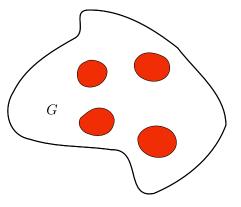
◆□> ◆圖> ◆国> ◆国> 三国・



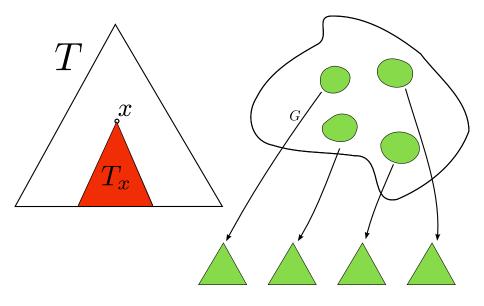
Definition (Nice treedepth decomposition)

We say that T is *nice* if for every vertex $x \in V(T)$, the subgraph of G induced by the vertices in T_x is connected.

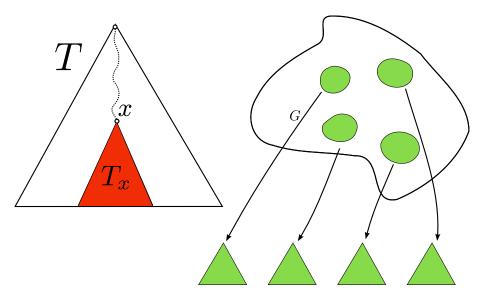




◆□> ◆圖> ◆国> ◆国> 三国・



▲口> ▲圖> ▲屋> ▲屋>

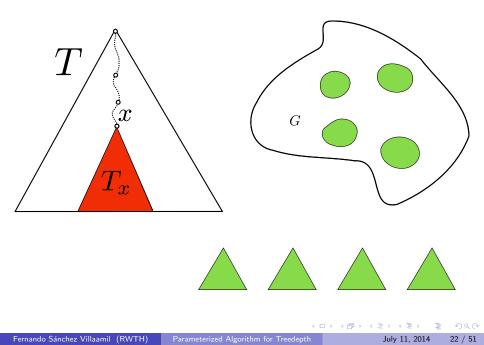


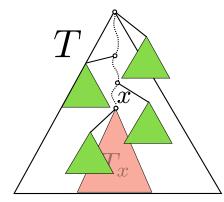
Fernando Sánchez Villaamil (RWTH) Parameterized Algorithm for Treedept

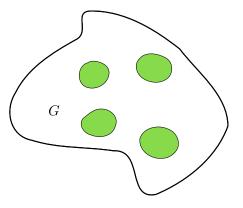
July 11, 2014 22 / 51

臣

▲口> ▲圖> ▲屋> ▲屋>





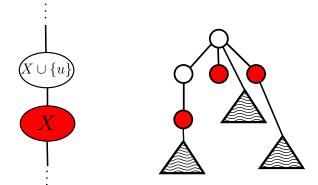


▲口> ▲圖> ▲注> ▲注> 二注:

Lemma

For any graph there exists a treedepth decomposition of minimal depth which is nice.

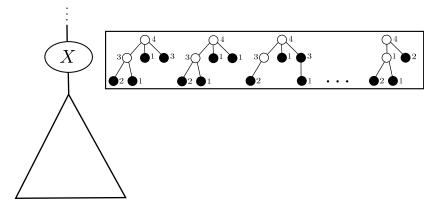
→ Ξ → -



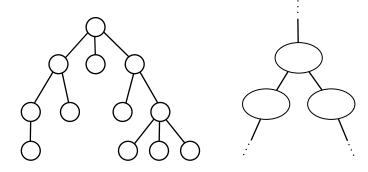
Where could the introduced node *u* be?

∃ →

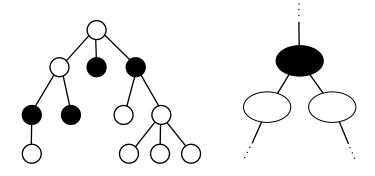
э



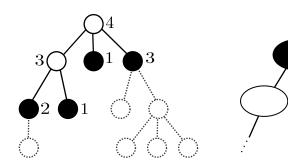
・ロト ・四ト ・ヨト ・ヨト



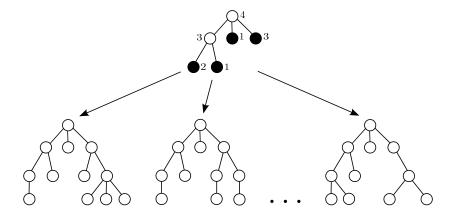
▲口> ▲圖> ▲国> ▲国>



▲口> ▲圖> ▲国> ▲国>



▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶



3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem

Given a graph G with n nodes and a tree decomposition of G of width w the treedepth t of G can be decided in time $2^{O(wt)} \cdot n$.

Simple algorithm

- Opth-first-search to construct treedepth decomposition T.
- **2** If depth greater than $2^t 1$ say NO.
- Solution \mathcal{P} from \mathcal{T} of width 2^t .
- Run algorithm on \mathcal{P} .

Theorem

There is a (simple) algorithm to decide if a graph G with n nodes has treedepth t which runs in time $2^{2^{O(t)}} \cdot n$.

Fast algorithm

- Use single exponential 5-approximation for treewidth¹.
- **2** Remember $\mathbf{tw}(G) \leq \mathbf{pw}(G) \leq \mathbf{td}(G) 1$.
- If width is greater than 5t say NO.
- Ise run algorithm on tree decomposition.

Theorem

There is a algorithm to decide if a graph G with n nodes has treedepth t which runs in time $2^{O(t^2)} \cdot n$.

¹Very useful result by Hans Bodlaender, Pål G. Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov and Michał Pilipczuk

Thank you for listening. Questions?

(日) (同) (三) (三)