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Summary. A FastSLAM approach to the SLAM problem is considered in this paper. An im-

provement to the classical FastSLAM algorithm has been obtained by replacing the Extended

Kalman Filters used in the prediction step and in the feature update with Unscented Kalman

Filters and by introducing an adaptive selective resampling. The simulations confirm the ef-

fectiveness of the proposed modifications.

1 Introduction

The Simultaneous Localization and Map Building (SLAM) problem has recently re-

ceived a large attention (see, e.g., [4, 13]). The SLAM problem consists in a mobile

robot moving in an unknown environment, which attempts to estimate its own po-

sition and to realize a spatial map. The environment is described through a set of

natural landmarks extracted by the robot from the surrounding.

The SLAM can be faced as a state estimation problem, where the state includes

the robot and the landmark coordinates, and can be approached with the well-known

Extended Kalman Filter (EKF) [1]. EKF-based SLAM algorithms have two limita-

tions: they present a high computational complexity and are prone to the data asso-

ciation problem when, like in this paper, the correspondence between measurements

and landmarks is assumed unknown. An Unscented Kalman Filter (UKF) based so-

lution to the SLAM problem [10] has been recently proposed. The UKF has been

introduced in the context of non-linear system filtering by [7, 8]. Even if more per-

formant, the resulting approach is similar to the EKF-SLAM since the conditional

independence among the features position estimates given the robot path (introduced

by the FastSLAM approach) is not exploited. The FastSLAM approach [11, 12] ex-

ploits this independence: it uses a modified particle filter to estimate the robot pose

and each particle is equipped with N EKF to estimate the position of the N land-

marks. The resulting algorithm is an application of the Rao-Blackwellized particle

filter [5]. The FastSLAM has a lower complexity w.r.t. the EKF-SLAM and is more

⋆ This work has been partially supported by MIUR under grant PRIN 2005092439. The

authors would like to thank F. Romanelli and L. Spinello for their valuable initial support.
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robust regarding the data association problem since each particle performs its own

data association. Nevertheless, the robot pose estimated by the classical FastSLAM

is based on the EKF and may incur into divergence due to the approximations intro-

duced by linearization. The idea of replacing EKF with UKF to improve the proposal

distribution of a particle filter has been introduced in [15] in a general framework. In

addition, the use of UKF to cope with nonlinearities associated with a stereo camera

observation model was exploited in [2], where a FastSLAM algorithm was developed

in an experimental context. In our paper, the idea of using the Unscented Transfor-

mation (UT) both in the observation and in the motion model has been combined

with an adaptive selective resampling, based on an adaptive threshold, which signifi-

cantly improves the selective resampling described in [5, 6], where a fixed threshold

was considered. With these modifications, the robot pose error is drastically reduced

(around one order of magnitude in our simulation results) and a more consistent map

is obtained with respect to the classical FastSLAM 2.0 algorithm described in [12].

2 SLAM and FastSLAM Background

The SLAM problem can be correctly described through a Markov chain or, more in

general, through a dynamic Bayesian network. The robot pose st changes according

to a probabilistic law p(st|ut, st−1) referred to as motion model, where ut ∈ R
nu is

the control at time t. Following a common notation, the superscript t denotes a set of

variables from time 1 up to time t, the subscript t indicates the value of the variable at

time t. In planar SLAM st = [xt, yt, αt]
T , where x, y are the coordinates of the robot

and α is its orientation. The environment is represented through N fixed landmarks

ϑn, n = 1, ..., N , described by their coordinates relative to the global coordinate

frame. Proprioceptive data (like encoders) and exteroceptive data (like, e.g., lasers)

are available to the robot which can sense landmarks and know their distance and

bearing, relative to its local coordinate frame. zt denotes a landmark measurement

at time t and for mathematical convenience it is assumed that a single feature at a

time is observed. These landmark measurements are noisy and a measurement model
p(zt|st, ϑnt

, nt) is considered for them, with ϑnt
, nt ∈ 1, ...N being the particular

landmark observed at time t. We assume in our formulation that data association is

unknown. Both the motion and the measurement models are in general governed by

non-linear deterministic functions, respectively h and g, affected by noise [14]:

p(st|ut, st−1) = h(st−1, ut + δt) (1)

p(zt|st, ϑnt
, nt) = g(ϑnt

, st) + εt (2)

The noises δt and εt are assumed normally distributed with zero mean and covariance

given, respectively, by Pt and Rt. With respect to [14], a direct effect of δt on ut has

been assumed. This is the case in several kinematic models and in particular for

the one considered in Section 5. Formally stated, the SLAM problem consists in

the determination of the location of all the landmarks ϑn and of the robot pose st

only using the information of the controls ut = {u1, ..., ut} and the measurements

zt = {z1, ..., zt}. That is, it consists in the determination of the posterior
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p(st, Θ|zt, ut, nt) (3)

where Θ = {ϑ1, . . . , ϑN} is the set of all the landmarks. The FastSLAM approach

heavily relies on the conditional independence present in the SLAM problem which

allows to factorize the posterior over the robot path as follows [14]:

p(st,Θ|zt, ut, nt) = p(st|zt, ut, nt)
∏

n

p(ϑn|s
t, zt, nt) (4)

A particle filter, similar to the Monte Carlo Localization (MCL) algorithm [3], es-

timates the robot path, maintaining a set St of M particles st,[m], m = 1, . . . , M ,

which approximates the posterior p(st|zt, ut, nt). A temporary set of particles is

generated at time t according to St−1, using the measurements zt and the controls

ut. Since the set St−1 corresponds to p(st−1|zt−1, ut−1, nt−1), the new set is dis-

tributed according to p(st|st−1, zt, ut, nt). This distribution is often referred to as

the proposal distribution of the particle filter. The new set is generated by sampling

(with replacement) M particles proportionally to an importance factor w
[m]
t :

w
[m]
t =

target distribution

proposal distribution
=

p(st|zt, ut, nt)

p(st|st−1, zt, ut, nt)
(5)

This step, usually known as resampling process, accounts for the difference between

the target and the proposal distribution. Next, the FastSLAM updates the posterior

p(ϑn|s
t, zt, nt) conditioning it on the robot path. So, the full posterior over the robot

path and the landmark position is approximated through the set:

St = {st,[m], µ
[m]
1,t , Σ

[m]
1,t , ..., µ

[m]
N,t, Σ

[m]
N,t}m=1,...,M (6)

where µ
[m]
n,t and Σ

[m]
n,t denote the mean and the covariance of the normal distribu-

tion representing the estimate provided by the m-th particle about the n-th land-

mark position. The FastSLAM performs the position estimate update of landmark

nt through the EKF while the position estimate of the other landmarks remains un-

changed. Therefore there are N · M low dimensional EKF (one for each landmark

relative to each particle). The FastSLAM samples the pose s
[m]
t from the posterior:

s
[m]
t ∼ p(st|s

t−1,[m], zt, ut, nt) (7)

The posterior in (7) is approximated through the following expression [14], which

allows to perform the sampling procedure:

s
[m]
t ∼p(st|s

t−1,[m], zt, ut, nt)
Bayes,Markov

=

η[m]

∫

[

p(zt|ϑnt
, st, nt)p(ϑnt

|st−1,[m], zt−1, nt−1)
]

dϑnt
p(st|s

[m]
t−1, ut)

(8)

In the remaining of the paper only the modified steps of the FastSLAM 2.0 algorithm

will be discussed. The other steps can be found in [12] and [14].
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3 The proposed unscented based improvements

We focus our attention on the rightmost term in (8) because an accurate approxima-

tion of this term drastically reduces the ambiguity in the data association.

Let Ξt be the set representing the evolution of the particles belonging to the set

St−1 at time t − 1, according to noisy ut. Ξt has the following structure:

Ξt = {〈ξ
[1]
t , Q

[1]
t 〉, ..., 〈ξ

[M ]
t , Q

[M ]
t 〉} (9)

where ξ
[m]
t is the new m-th particle pose and Q

[m]
t is the covariance matrix relative to

the m-th particle. FastSLAM 2.0 computes Ξt by putting each particle s
[m]
t−1 into the

motion model and taking the obtained value as the mean of a Gaussian distribution

approximating the particle pose. That is2:

sξt
[m] = h(s

[m]
t−1, ut),

sQ
[m]
t = Gst−1

Q
[m]
t−1G

T
st−1

+ Gut
PtG

T
ut

(10)

where Gst−1
and Gut

are the Jacobians of h with respect to st−1 and ut. This

linearization-based approach, which neglects the second and higher order terms of

the Taylor expansion of s
[m]
t−1, sometimes produces uncorrect clouds of particles for

the motion-only evolution. We attempt to provide a more accurate set Ξt exploiting

the UT. First, the pose vector is augmented with the control noise vector δt ∈ R
nu

to give an na = 3 + nu dimensional random vector s
a,[m]
t−1 := [s

[m]
t−1; δt] ∈ R

na , with

augmented covariance matrix:

Q
[m]

′

t−1 =

[

Q
[m]
t−1 0
0 Pt

]

(11)

The cross terms in Q
[m]

′

t−1 are 0 since the pose s
[m]
t−1 and the noise δt are indepen-

dent. Then, a set of (sigma points) {X i,[m]}, each X i,[m] ∈ R
na , and corresponding

weights {W i,[m]}, i = 0, 1, . . . , p, are generated according to [7]: the weights W i,[m]

can be positive or negative but, to provide an unbiased estimate, must sum to one. In

addition, to match the mean and the covariance, it must be:

p
∑

i=0

W i,[m]X i,[m] = s̄
a,[m]
t−1 ,

p
∑

i=0

W i,[m](X i,[m]−s̄
a,[m]
t−1 )(X i,[m]−s̄

a,[m]
t−1 )T = Q

[m]
′

t−1

(12)

where s̄
a,[m]
t−1 =

[

s
[m]
t−1

0

]

.

Next, the non-linear motion model is applied, in turn, to each point (i = 0, ..., p)

for the m-th particle to yield a cloud of transformed points Zi,[m] ∈ R
3:

Zi,[m] = h(X
i,[m]
1:3 , ut + X

i,[m]
4:na

) (13)

2 We denote the standard computation of ξ
[m]
t

by sξt

[m], while we denote by uξt

[m] the

computation performed through the unscented approach. A similar notation applies to the

covariance matrix.
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where X
i,[m]
r:j denotes a vector comprising the components from r to j of X i,[m].

Now, according to [7], the predicted particle pose ξ
[m]
t is given by the weighted

average of the transformed points:

uξ
[m]
t =

p
∑

i=0

W i,[m]Zi,[m] (14)

and the covariance is the weighted outer product of the transformed points:

uQt =

p
∑

i=0

W i,[m](Zi,[m] − uξ
[m]
t )(Zi,[m] − uξ

[m]
t )T (15)

After estimating the particles pose, FastSLAM 2.0 carries out the landmark loca-

tion estimation by using a set of EKF. We rather provide an unscented-based feature

update (UKF). The UT enables one to avoid the linearization of the perceptual model

and the common problems that this solution involves. Details are omitted for space

reasons. The update of the landmark location is capital for the correct data associa-

tion and consequently for the estimated pose corrections.

4 The proposed adaptive selective resampling

Resampling is the step that has a major influence on the performance of the particle

filter and it consists in replacing particles with low importance factor w
[m]
t by par-

ticles with a higher weight. This process may erroneously eliminate good particles,

causing the phenomenon known as particles impoverishment or depletion. To over-

come this problem, it is important to determine when and how the resampling must

be performed. Liu [9] introduced the effective number of particles

Neff =
1

∑M

m=1(w
[m])2

(16)

which reflects the particles dispersion and consequently is also a measure of the ap-

proximation quality of the true posterior: it would be equal to the real number M of

particles if the samples were drawn from the true posterior. Our approach extends the

one reported in [5, 6] where the resampling is performed when the effective number

Neff of particles goes below a fixed threshold. A fixed threshold however does not

take into account of the past evolution of Neff , evolution which contains important

information on the quality of the posterior approximation. For example, if the effec-

tive number of particles is not very high but it slightly oscillates in the time around

a constant value, this probably corresponds to a good posterior approximation. In

this case a resampling performed when one of the small oscillations of Neff slightly

goes below the threshold would be undermining. It would be better to decrease the

threshold, avoiding the resampling, at least until this effective number remains above

a minimum acceptable value. Also the average number of effective particles in a time
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interval plays an important role in the characterization of the quality of the approx-

imation over that interval. Therefore, instead of a static threshold, in this paper a

dynamic threshold has been introduced, whose value depends on the past history of

Neff . The idea above can be formally stated as follows. We take into account of the

Fig. 1. Map (dashed black line) and waypoints (red circle). The robot controls are computed

according to the waypoints. The blue solid line simply links the waypoints.

recent past of Neff considering a window of observation comprising k time steps.

First, denote with υτ−1 the value of the threshold in the window τ − 1 and with

Nmin and Nmax, respectively, the minimum and the maximum value that the thresh-

old may assume. Our heuristic is to set Nmin = 0.6M and Nmax = 0.9M . Observe

that Nmax must be taken below M since a threshold too near to M would imply

a too large resampling frequency. The new υτ is taken according to how rapidly

Neff changes and to how many effective particles are present in window τ − 1. If

k denotes the number of time steps in the observation window and Neff (t) is the

effective number of particles at the t-th time step in the window, a measure α of the

mean (normalized) number of particles in window τ − 1 and a measure β of the

(normalized) variation of Neff can be expressed by:

α =
1

Mk

k−1
∑

t=1

Neff (t + 1) + Neff (t)

2
, β =

Neff (k) − Neff (1)

(k − 1)(M − Nmin)
(17)

Then, the following two quantities associated with α and β are computed:
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Nα = α(Nmax − Nmin) + Nmin (18)

Nβ = (Nmax − Nmin)|β|
1

Nmin + Nmin (19)

The new threshold υτ can be obtained as a proper weighted average of Nα and Nβ :

υτ = aNα + bNβ (20)

with a, b > 0, a + b = 1, two suitable parameters. Notice that α near to one denotes

a large average value of Neff and the threshold can be increased. This is in fact ob-

tained, since, when α approaches one, Nα moves linearly to Nmax and the threshold

is increased, according to (20). The non-linear function Nβ takes into account of the

variation of Neff . Now, when β is near to zero, the variation of Neff in the window

is small. A low variation of Neff , even if Neff is not large, means an agreement

among particles with respect to the approximation of the true posterior and the re-

sampling should be avoided. This is in fact obtained since the threshold, according

to (20), with a rate dependent on the exponent of |β| in (19), is decreased. We choose

a function like the one in (19) for its high variability near to zero. On the other hand,

a |β| quite greater than 0 corresponds to a large variation of Neff in the window and

the threshold is increased, making a resampling more likely to occur.

5 Simulation results

The robot considered in the simulations is characterized by a car-like kinematic

model (e.g. [4]) and is equipped with a range-bearing laser with a maximum range

of 20 meters and a 180 degrees frontal field-of-view. The indoor environment and

the waypoints defining its target path are graphically depicted in Fig. 1. The robot

controls (velocity and steering inputs) are generated in order to follow, from the ini-

tial pose s0 = 〈0, 0, 0〉, the blue solid line in Fig. 1. The total traveled distance is

about 700 m. Range and bearing readings, as well as the controls, are perturbed by

Gaussian noises with zero mean and diagonal covariance matrices, respectively, Rt

and Pt. If ut = [ut,v; ut,s] is the control vector, with ut,v and ut,s the velocity and

the steering inputs, and δt = [δt,v; δt,s] the corresponding control noise vector, then

Pt = E[δtδ
T
t ] = [σ2

v , 0; 0, σ2
s ]. In the simulations reported below, σv = 0.01m/s

and σs = 0.017rad. We have assumed, for the noise on the range and the bearing of

each laser reading, a standard deviation respectively of 0.01m and of 0.017rad.

The FastSLAM algorithm, with the modifications proposed in this paper (with

parameters a = 0.7, b = 0.3, k = 150 and p = 2 na + 1 = 11, where a and b
are needed in (20), k is the number of steps in each observation window and p the

number of Sigma points) was tested extensively in various conditions (high and low

noises for the odometry and for the laser measurements, different parameters for the

data association and, also, different environments). Our methods reduce the error

between the real path and the estimated path (at each time step the particle with the

greater weight is considered as the best estimate of the robot pose).

In Fig. 2 a comparison between the FastSLAM with and without modifications

is illustrated for the robot coordinates 〈x, y, α〉 error (Frames (a) and (b)) and for the
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(d) Modified FastSLAM
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Fig. 2. Comparison of the standard FastSLAM and the FastSLAM with our modifications for

the 〈x, y, α〉 error ((a) and (b)) and for the pose error ((c) and (d); (e) and (f) show the ratio ρ

after the selective-only resampling step (e) and the adaptive selective resampling step (f).

absolute robot position error (Frames (c) and (d)). The robot, running the FastSLAM

algorithm with the proposed modifications and with a number of particles M = 60,

incurs in an average mean absolute error (MAE) (average computed over 50 simula-

tion runs, with different noise realizations) of 0.03 m with standard deviation 0.007
m. With the standard FastSLAM (with the same number of particles and simulation

runs) the average mean absolute error obtained is 0.62 m with standard deviation

0.02 m. The Frames (e) and (f) of Fig. 2 show the effectiveness of the adaptive selec-

tive resampling (Frame (f)) w.r.t. the selective resampling (Frame (e)) by reporting
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the ratio ρ between the absolute position error when a resampling occurs and the

absolute position error in the previous time step. That is:

ρ =
etr

etr−1
(21)

where etr is the pose error after the resampling step and etr−1 is the same quan-

tity in the previous time step. With the adaptive selective resampling this ratio is

almost always less than one, i.e. the resampling almost always reduces the pose er-

ror. Fig. 3 shows the maps generated using the FastSLAM modified and the classical

FastSLAM algorithms. In the first case the real path (green) and the estimated path

(black) are almost always overlapping and the robot closes the loop with a position

error of only 0.0414 m; the classical FastSLAM closes the loop with a position error

of 0.2040 m and there are pronounced gaps between the real path and the estimated

path; both the algorithms generate a consistent map, but with the proposed modifi-

cations the quality of the map is so high that it can be magnified up to 3 cm of res-

olution without an observable significant error; on the other hand, with the classical

FastSLAM algorithm, a map reconstruction error can be highlighted with a smaller

magnification level (1 m is enough).
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Fig. 3. Final 2-D map generated with FastSLAM and our modification of the FastSLAM

6 Conclusions

This work provides some modifications to the FastSLAM 2.0 algorithm. Unscented

Transformations replace the EKF (avoiding linearizations) generating more accu-

rate sets of particles St and improving the proposal distribution from which the set

of particles is drawn. The paper has emphasized the importance of providing accu-

rate clouds of particles for motion-only evolution. This allows to generate a more



10 Manuel Cugliari and Francesco Martinelli

consistent proposal and consequently a better set St. In addition an adaptive selec-

tive resampling has been introduced in the resampling step of the particle filter to

significantly reduce w.r.t. the classical FastSLAM the risk of ill-timed resampling

operations. Finally the set of EKF used in the classical FastSLAM approach for the

landmark position estimate has been replaced by a set of UKF. The proposed modifi-

cations substantially improve the performance of the classical FastSLAM algorithm

decreasing of about one order of magnitude the robot pose estimation error, as shown

through an extensive campaign of simulations. The effectiveness of the adaptive se-

lective resampling has been also illustrated in the paper.
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