
A FATOU-JULIA DECOMPOSITION OF TRANSVERSALLY
HOLOMORPHIC FOLIATIONS

TARO ASUKE

Abstract. A Fatou-Julia decomposition of transversally holomorphic fo-
liations of complex codimension one was given by Ghys, Gomez-Mont and
Saludes. In this paper, we propose another decomposition in terms of nor-
mal families. Two decompositions have common properties as well as cer-
tain differences. It will be shown that the Fatou sets in our sense always
contain the Fatou sets in the sense of Ghys, Gomez-Mont and Saludes and
the inclusion is strict in some examples. This property is important when
discussing a version of Duminy’s theorem in relation to secondary charac-
teristic classes. The structure of Fatou sets is studied in detail, and some
properties of Julia sets are discussed. Some similarities and differences be-
tween the Julia sets of foliations and those of mapping iterations will be
shown. An application to the study of the transversal Kobayashi metrics is
also given.

Résumé. Une décomposition de Fatou-Julia de feuilletages transversale-
ment holomorphes de codimension complexe un est donée par Ghys, Gomez-
Mont et Saludes. Dans cet article, nous proposons une autre décomposition
en utilisant des familles normales. Deux décompositions ont des propriétés
communes également différences certaines. Il est montré que l’ensembles de
Fatou à notre sense contiennent toujours ceux au sense de Ghys, Gomez-
Mont et Saludes, et aussi que l’inclusion peut être stricte dans quelques
exemples. Cette propriété est importante en discutant une version du
théorème de Duminy relié aux classes caractéristiques secondaires. Quelques
similitudes et différences entre les ensembles de Julia de feuilletages et ceux
d’itérations d’applications sont présentées. Une application aux études de
la métriques transversale de Kobayashi est aussi donée.

1. Introduction

The Fatou-Julia decomposition is one of the most basic and important no-

tions in complex dynamical systems. It has been expected that there also

exists the Fatou-Julia decomposition of transversally holomorphic foliations.
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Such a decomposition of complex codimension-one foliations was firstly intro-

duced by Ghys, Gomez-Mont and Saludes in [11]. We call the decomposition

the GGS-decomposition for short. The GGS-decomposition is given according

to the existence of certain sections to the complex normal bundles of foliations,

and it enjoys several significant properties. For example, foliations restricted

to the GGS-Fatou sets are transversally Cω-Hermitian, namely, they admit

transversal Hermitian metrics transversally of class Cω and invariant under

holonomies. This implies that foliations have simple dynamics on the GGS-

Fatou sets.

On the other hand, the dynamical properties of the GGS-Julia set is compli-

cated in general, and the Julia sets are expected to play a role of minimal sets

for real codimension-one foliations. Indeed, a weak version of Duminy’s theo-

rem for real codimension-one foliation [9] is known, namely, the non-triviality

of certain characteristic classes implies the non-vacancy of the GGS-Julia sets

[3]. However, there are transversally Cω-Hermitian foliations of which the

GGS-Julia set is the whole manifold. The characteristic classes of these folia-

tions are trivial. From the viewpoint as above, it is preferable if this kind of

Julia sets can be avoided. One way to exclude such foliations is using char-

acteristic classes. On the other hand, it will be also possible by replacing the

Julia sets with smaller ones.

In this paper, we will propose another Fatou-Julia decomposition defined in

a certain analogy to that of complex dynamical systems (Section 2). The foli-

ation restricted to the Fatou set is transversally Hermitian of class Cω. In this

sense, our decomposition has the same property as the GGS-decomposition.

Moreover, there is a description similar to that of the GGS-Fatou sets. The

structure of transversally Hermitian foliations is well-studied by Molino, Hae-

fliger, Salem et. al. [21], [14], [13], [28]. The classification of the Fatou

components will be done by showing that foliations restricted on the Fatou set

are locally given by actions of Lie groups and then repeating well-developed

arguments as above. On the other hand, two decompositions are different in

some examples. In fact, it will be shown that the Fatou sets in our sense always

contain the GGS-Fatou sets. These properties of the Fatou sets are studied in

Sections 3 and 4.

Some properties of the Julia sets are also studied (Section 5). It will be

shown that some basic notions concerning the Julia sets of mapping iterations

work well also in our context. In particular, a version of the Patterson-Sullivan

measure is introduced by using invariant metrics.
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In relationship with characteristic classes, a weak version of Duminy’s the-

orem for complex codimension-one foliation will be shown valid also for our

decomposition (Section 6).

The GGS-decomposition is also related with deformations of foliations. In-

deed, the definition of the GGS-decomposition is directly related with defor-

mations and the GGS-Julia set is largely decomposed into two parts according

to the existence of invariant Beltrami coefficients. On the other hand, it is not

quite clear how the decomposition in this paper is related with deformations.

Certain GGS-Julia sets which admit invariant Beltrami coefficients are con-

tained in the Fatou set in our sense so that the relationship to deformations

of foliations is not necessarily the same.

To say about invariant metrics, our construction is not canonical. Many

canonical invariant metrics and distances are known in complex geometry, and

some of them can be translated in the foliation theory. Among them, the

transversal Kobayashi distance is previously studied by Duchamp and Kalka

[8]. We will discuss the transversal Kobayashi metric and show an analogous

result (Section 7).

Some examples in [11] together with some other ones are examined in the last

section (Section 8). Constructions are done in terms of compactly generated

pseudogroups throughout the paper, however, examples are mostly given by

using foliations.
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2. Definitions

For generalities of pseudogroups we refer readers to [12], [13] and [15].

Throughout this paper, compactly generated pseudogroups of local biholomor-

phic diffeomorphisms of C are studied. Examples in mind are the holonomy

pseudogroups of transversally holomorphic foliations of complex codimension

one. Compactly generated pseudogroups are defined as follows [13].

Definition 2.1. A pseudogroup (Γ, T ) is compactly generated if there is a

relatively compact open set U in T which meets every orbit of Γ , and a finite
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collection of elements {γ1, . . . , γr} of Γ of which the sources and the targets

are contained in U such that

1) {γ1, . . . , γr} generates Γ |U ,

2) each γi is the restriction of an element of Γ defined on a neighborhood

of the closure of the source of γi.

(Γ |U , U) is called a reduction of (Γ, T ). A reduction of (Γ, T ) will always be

denoted by (Γ ′, T ′).

Remark 2.2. It is easy to see that we can choose a reduction in a way such

that T ′ =
∐
i∈I

T ′
i , where I is a finite set and each T ′

i is an open disc in C. We

may furthermore assume that the closures T ′
i of T ′

i are mutually disjoint by

parallel translations. Indeed we will choose reductions always in this way.

Example 2.3. • Let G be a finitely generated group which acts on a

closed manifold M . Then (G,M) is naturally a compactly generated

pseudogroup. Such a pseudogroup is called the pseudogroup generated

by G, and is realizable as the holonomy pseudogroup of a foliation of a

closed manifold by taking suspensions.

• The holonomy pseudogroup of a transversally holomorphic foliation of

a closed manifold is compactly generated.

We adopt the following notation.

Notation 2.4. Let (Γ, T ) be a pseudogroup.

1) For γ ∈ Γ , the source (the domain of definition) of γ is denoted by

dom γ.

2) Let x ∈ T . Then, Γx = {the germ of γ ∈ Γ at x dom γ 3 x}. By abuse

of notation, elements of Γx are considered as elements defined on a

neighborhood of x. For γ ∈ Γx and x ∈ T , γ(x) is also denoted by γx.

3) The Γ -orbit of a subset X of T is by definition Γ (X) =
⋃

x∈X Γxx.

4) Regarding T as a subset of C, we define the derivative of an element γ

of Γ in the natural way and denote it by γ′. The absolute value of γ′ is

denoted by |γ′|, and |γ′(x)| is denoted also by |γ′|x.
5) The Euclidean disc of radius r and centered at x is denoted by Dx(r). In

general, if K is a compact set then DK(r) denotes the r-neighborhood

of K with respect to the Euclidean metric.

The following notion can be found in [14].

Definition 2.5. A subset X of T is called Γ -connected if X satisfies the fol-

lowing condition: let X =
∐
λ∈Λ

Xλ be the decomposition of X into its connected
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components, then for any λ, λ′ ∈ Λ, there exists a sequence λ0 = λ, λ1, . . . , λr =

λ′ such that Γ (Xλi
) ∩Xλi+1 6= ∅ holds for i = 0, . . . , r − 1.

Remark 2.6. T is Γ -connected if and only if Γ\T is connected with the quotient

topology. If X ⊂ T , then Γ\X ⊂ Γ\T is connected if X is Γ -connected.

The converse also holds if X is Γ -invariant, and not always true. Indeed, let

T = T1 t T2, where T1 = T2 = R, and equip T with the natural topology.

Let Γ be the pseudogroup generated by γ : T1 → T2 given by γ(x) = x,

X1 = (−∞, 0] ⊂ T1, X2 = (0,∞) ⊂ T2 and X = X1 ∪ X2. Then X is not

Γ -connected but Γ\X = Γ\T = R.

If (Γ, T ) is the holonomy pseudogroup of a foliation, then Γ -connected com-

ponents of Γ -invariant sets correspond to connected components of saturated

sets.

The Fatou set is defined as a subset of T as follows.

Definition 2.7. Let (Γ, T ) be a compactly generated pseudogroup and let

(Γ ′, T ′) be a reduction.

1) A connected open subset U of T ′ is called a Fatou neighborhood if the

following conditions are satisfied:

(a) The germ of any element of Γ ′
x, x ∈ U , extends to an element of Γ

defined on the whole U .

(b) Let

ΓU =

{
γ ∈ Γ

dom γ = U , and γ is the extension of the

germ of an element of Γ ′ as above

}
.

Then, ΓU is a normal family.

2) The union of Fatou neighborhoods is called the Fatou set of (Γ ′, T ′) and

denoted by F (Γ ′). The complement of the Fatou set is called the Julia

set of (Γ ′, T ′) and denoted by J(Γ ′).
3) The Fatou set of (Γ, T ) is the Γ -orbit of F (Γ ′), namely, F (Γ ) = Γ (F (Γ ′)).

The Julia set of (Γ, T ) is the complement of F (Γ ) and denoted by J(Γ ).

4) Γ -connected components of F (Γ ) and J(Γ ) are called the Fatou com-

ponents and Julia components, respectively.

If x ∈ F (Γ ), then any Fatou neighborhood U ⊂ F (Γ ′) which contains x is

called a Fatou neighborhood of x, where (Γ ′, T ′) is a reduction of (Γ, T ) such

that x ∈ T ′.

Remark 2.8. 1) F (Γ ) is open and Γ -invariant. J(Γ ) is closed and Γ -

invariant.

2) The condition (b) in 1) is always satisfied by virtue of Montel’s theorem

because we choose T ′ as a disjoint union of finite number of discs in C
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(see Remark 2.2). On the other hand, it is necessary to fix a domain

of definition in order to speak of normal families. This leads to the

condition (a) in 1) of Definition 2.7.

3) J(Γ ) = Γ (J(Γ ′)).

We recall the notion of equivalence [14].

Definition 2.9. Let (Γ, T ) and (∆,S) be pseudogroups. A holomorphic étale

morphism Φ: Γ → ∆ is a collection Φ of biholomorphic diffeomorphisms of

open sets of T to open sets of S such that

i) if ϕ ∈ Φ, γ ∈ Γ and δ ∈ ∆, then δ ◦ ϕ ◦ γ ∈ Φ,

ii) the sources of the elements of Φ form a covering of T ,

iii) if ϕ, ϕ′ ∈ Φ, then ϕ′ ◦ ϕ−1 ∈ ∆.

iv) Φ is maximal in the following sense.

1) If ϕ ∈ Φ and U is an open subset of dom ϕ, then ϕ|U ∈ Φ.

2) Suppose that ϕ is a biholomorphic diffeomorphism from an open

set of T to an open set of S. If there is an open covering {Uα} of

dom ϕ such that ϕ|Uα ∈ Φ, then ϕ ∈ Φ.

If Φ−1 = {ϕ−1}ϕ∈Φ is also a holomorphic étale morphism, then Φ is called an

equivalence.

Remark 2.10. 1) Any reduction (Γ ′, T ′) is equivalent to (Γ, T ).

2) If (Γ, T ) and (∆, S) are compactly generated, then Φ is finitely generated

in the following sense. Let (Γ ′, T ′) be a reduction of (Γ, T ) and Φ′ the

restriction of Φ to T ′. Then there is a finite collection {ϕi} ⊂ Φ′ such

that {dom ϕi} is an open covering of T ′ and any ϕ ∈ Φ is locally of the

form δ ◦ ϕi ◦ γ for some γ ∈ Γ and δ ∈ ∆. If ϕ ∈ Φ′, then γ can be

chosen from Γ ′. We call {ϕi} a finite set of generators of Φ.

If Φ is an étale morphism, then we set Φ−1(X) =
⋃

φ∈Φ

φ−1(X) for X ⊂ S.

Lemma 2.11. The Fatou set is well-defined on the equivalence classes of pseu-

dogroups, namely, the decomposition T = F (Γ ) t J(Γ ) is independent of the

choice of the reduction (Γ ′, T ′).

Proof. Let {(Γn, Tn)} be a sequence of pseudogroups such that Tn ⊂ Tn+1,

Γn = Γ |Tn , T = ∪Tn and every (Γn, Tn) is a reduction of (Γ, T ). Note that Tn+1

is naturally a subset of C so that it is equipped with the standard Hermitian

metric. It is clear from the definition that F (Γn+1)∩Tn ⊂ F (Γn). To show the

converse, let Φ̃ be an equivalence from T to Tn and let Φ be the equivalence

from Tn+1 to Tn obtained by restricting Φ̃ to Tn+1. Φ is generated by a finite

collection {ϕi} as above and there is a δ > 0 such that Dx(δ) is contained in at
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least one of dom ϕi, where x ∈ Tn+1. Moreover, there is a δ′ > 0 independent of

i and x such that the image of ϕi as an element of Φ̃ contains Dϕi(x)(δ
′) ⊂ Tn+1.

Let U ⊂ F (Γn) be a Fatou neighborhood, and ΓU be the subset of Γ which

consists of extension of elements of (Γn)x, x ∈ U . Then we may assume

by shrinking U that γ(U) is always contained in a disc of radius δ′/2 for any

γ ∈ ΓU . If x ∈ U and γ ∈ (Γn+1)x, then ϕiγ ∈ (Γn)x for some i. Hence ζ = ϕiγ

is defined on U and ζ(U) ⊂ Dϕiγ(x)(δ
′). Therefore, ϕ−1

i ζ is defined on U and is

an extension of γ as an element of Γ . Let Γ ′
U be the subset of Γ which consists

of extension of elements of (Γn+1)x as above and let {γk} ⊂ Γ ′
U . Then for each

γk there is a ϕi(k) such that (ζk)x ∈ (Γn)x, where x ∈ U and ζk = ϕi(k)γk. The

family {ζk} is a subfamily of ΓU so that we can find a convergent subsequence,

which we denote again by {ζk}. Since Φ = {ϕi} is a finite collection, we can

find a subsequence of {ζ ′l} of {ζk} and ϕi ∈ Φ such that ϕ−1
i ζ ′l is always defined.

The family {ϕ−1
i ζ ′l} is a convergent subsequence of {γk}. Consequently U is a

Fatou neighborhood for Γn+1 so that F (Γn) ⊂ F (Γn+1) ∩ Tn. It follows that

F (Γ ) = ∪F (Γn) = Γ (F (Γn)). If (Γ ′, T ′) is a reduction, then T ′ ⊂ Tn for some

n so that Γ (F (Γ ′)) = Γ (F (Γn)). ¤

Lemma 2.12. The Fatou-Julia decomposition has a naturality in the following

sense.

1) Let Φ: (Γ̂ , T̂ ) → (Γ, T ) be a holomorphic étale morphism. Then F (Γ̂ ) ⊃
Φ−1(F (Γ )).

2) If (Γ̂ , T̂ ) is a Galois covering of (Γ, T ) with finite Galois group [14], then

F (Γ̂ ) = p−1(F (Γ )), where p : T̂ → T is the projection.

3) If (Γ, T ) and (∆,S) are compactly generated pseudogroups and if Φ is

an equivalence from (Γ, T ) to (∆, S), then Φ(F (Γ )) = F (∆).

Proof. First we show 1). Let (Γ̂ ′, T̂ ′) be a reduction and {ϕi} a finite set of

generators of Φ. We may assume that there is a δ1 > 0 such that at least

one ϕj is defined on Dx̂(2δ1) for any x̂ ∈ T̂ ′. Then there is an ε independent

of j and x̂ such that ϕj(Dx̂(δ1)) ⊃ Dϕj(x̂)(2ε). Let x̂ ∈ T̂ ′ and assume that

x = ϕi(x̂) ∈ F (Γ ). Let (Γ ′, T ′) be a reduction of (Γ, T ) such that x ∈ T ′.
Then we may assume that there is a Fatou neighborhood U of x in T ′ such

that γ(U) ⊂ Dγx(ε) for any γ ∈ ΓU . We may also assume that ϕ−1
i is defined on

U by shrinking U if necessary, and set Û = ϕ−1
i (U). Let γ̂′ ∈ Γ̂ŷ, where ŷ ∈ Û ,

and let ϕj be such that ϕj is defined on Dγ̂ŷ(2δ1). Since x ∈ F (Γ ), ϕj ◦ γ̂ ◦ϕ−1
i

is well-defined on U as an element γ of Γ . Note that ϕ−1
j ◦γ ◦ϕi(Û) ⊂ Dγ̂ŷ(δ1)

because γ ◦ ϕi(Û) = γ(U) ⊂ Dγx(ε) ⊂ Dϕj(γ̂ŷ)(2ε). Fix now a finite set

{γ̂1, . . . , γ̂r} of generators of Γ̂ ′ and denote by Γ̂ ′(k) the subset of Γ̂ ′ which

consists of elements obtained by composing at most k generators, then the
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germ of any element of Γ̂ ′ is the germ of an element of Γ̂ ′(k) for some k.

We may assume by decreasing δ1 and shrinking Û that if ŷ ∈ T̂ ′ then all the

generators are defined on Dŷ(δ1) ⊂ T̂ as an element of Γ̂ . Suppose inductively

that if γ̂ ∈ Γ̂ ′
ŷ is the germ of an element of Γ̂ ′(k), then γ̂ is defined on Û as an

element of Γ̂ and γ̂(U) ⊂ Dγ̂ŷ(δ1). This holds certainly for k = 1. If γ̂ ∈ Γ̂ ′
ŷ is

the germ of an element of Γ̂ ′(k + 1), then γ̂ = γ̂i ◦ ζ̂ for some i in the germinal

sense, where ζ̂ ∈ Γ̂ ′(k). By the hypothesis, ζ̂ is well-defined on Û as an element

of Γ̂ and ζ̂(Û) ⊂ Dγ̂ŷ(δ1). Then by the choice of δ1, γ̂i ◦ ζ̂ is well-defined on Û .

Moreover, from what we have shown first, γ̂i ◦ ζ̂(Û) ⊂ Dγ̂ŷ(δ1). Thus Û is a

Fatou neighborhood of x. This completes the proof of 1). 2) can be shown by

slightly modifying the proof of Lemma 2.11 so that omitted. 3) follows from

1) at once. ¤

Lemmas 2.11 and 2.12 justify the following definition. Let F be a complex

codimension-one transversally holomorphic foliation of a closed manifold M

and let (Γ, T ) be the holonomy pseudogroup of F . We may assume that T is

embedded in M .

Definition 2.13. The Fatou set of F is the saturation of F (Γ ) ⊂ T ⊂ M ,

and denoted by F (F). The Julia set is the complement of F (F) and denoted

by J(F). The connceted components of the Fatou set and the Julia set are

called the Fatou components and the Julia components, respectively.

It is clear that J(F) is the saturation of J(Γ ).

The following is an immediate consequence of Lemma 2.12.

Corollary 2.14. Let M and N be closed manifolds and let F be a complex

codimension-one transversally holomorphic foliation of M . Let f : N → M be

a smooth mapping transversal to F and let G = f ∗F be the induced foliation

of N . Then F (G) ⊃ f−1(F (F)). If f is a (regular) finite covering, then

F (G) = f−1(F (F)).

It is easy to see that FGGS(G) ⊃ f−1(FGGS(F)) but the equality for coverings

does not hold in general (Example 4.3).

The existence of reductions is essential for the definition of the Fatou-Julia

decomposition as follows.

Example 2.15. Let D(r) be the disc in C of radius r and let F be the

foliation of M = (−1, 1) × D(1) with leaves (−1, 1) × {z}. If M itself is

regarded as a foliation atlas, then the Fatou set should be the whole M . On

the other hand, let i ∈ Z and define a foliation atlas as follows. For i > 0, let

{V (i)
j }j=1,2,... be an open covering of D(1) by discs of radius 2−i. Let W

(i)
j =



A FATOU-JULIA DECOMPOSITION OF TRANSVERSALLY HOLOMORPHIC FOLIATIONS9

(−1 + 1/2−i+1,−1 + 1/2−i−1) × V
(i)
j and T

(i)
j = {−1 + 1/2−i} × V

(i)
j . Giving

an order to {W (i)
j }, let {W (i)

j } = {W ′
1,W

′
2, . . .} and {T (i)

j } = {T ′
1, T

′
2, . . .}. Set

then U0 = (−1/2, 1/2) × D(1), T0 = {0} × D(1), and Ui = W ′
|i|, Ti = T ′

|i| for

i 6= 0. Simply applying the definition without taking reduction, the Fatou set

should be empty. Note that this construction can be done in a foliation chart.

In what follows, we usually fix a reduction (Γ ′, T ′) and work on it.

We will show some fundamental properties of the Fatou-Julia decomposition.

Lemma 2.16. Suppose that (Γ, T ) is C0-Hermitian, namely, there is a con-

tinuous Hermitian metric on T which is invariant under Γ , then T = F (Γ ).

Proof. The proof is an application of arguments found in [10]. If h is the

invariant metric and if g is the Euclidean metric on T ⊂ C, then there is

a constant C ≥ 1 such that C−1g ≤ h ≤ Cg on T ′ (see Definition 3.6 for

the notation). Let {γ1, . . . , γr} be a set of generators of Γ ′. Then, there is

a positive real number δ > 0 such that any germ of γi at any point x ∈ T ′

extends to an element of Γ defined on Dx(δ). If we denote by Γ ′(k) the subset

of Γ ′ which consists of elements which can be realized by composing at most

k generators, then the germ of any element of Γ ′ is the germ of an element of

Γ ′(k) for some k. Let x ∈ T ′ and let U = Dx

(
δ

2C2

)
, and assume that germs

of elements of Γ ′(k) at u ∈ U extend to elements of Γ defined on U . The

assumption certainly holds if k = 1. If γ is the germ of an element of Γ ′(k +1)

at u ∈ U , then γ = γi ◦ ζ for some ζ ∈ Γ ′(k). By the induction hypothesis,

ζ extends to an element of Γ defined on U . Then, γ(U) ⊂ Dζ(x)(δ). On the

other hand, γi is defined on Dζ(x)(δ) by the choice of δ. Therefore, γ extends

to an element of Γ defined on U . This implies that U is a Fatou neighborhood

of x. ¤

The above lemma can be slightly strengthen. See Remark 7.10.

Definition 2.17. Let x ∈ T ′ and assume that γ(x) = x for some γ ∈ Γx. The

fixed point x is called

1) hyperbolic if |γ′|x 6= 1,

2) parabolic if (γ′x)
k = 1 for some k ∈ Z but γ◦m 6= id for any m ∈ Z, where

γ◦m denotes the m-th iteration of γ (in a germinal sense),

3) irrationally indifferent if |γ′|x = 1 but (γ′x)
k 6= 1 for any k ∈ Z.

Remark 2.18. It is easy to see that none of the above cases is exclusive. For

instance, let Γ be a subgroup of PSL(2;C) generated by g1, g2 and g3, where

g1(z) = 2z, g2(z) = z + 1 and g3(z) = e2π
√−1θz, where θ ∈ R \Q. Then Γ acts

on CP 1 = C∪{∞} and ∞ is hyperbolic, parabolic and irrationally indifferent.
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The Julia set has the following fundamental property as usual.

Lemma 2.19. Let x ∈ T . If there is an element γ ∈ Γx which has x as a

parabolic or hyperbolic fixed point, then x ∈ J(Γ ).

It is difficult to tell if a given point belongs to the Fatou set or the Julia set

in general. However, we have the following lemma which is significant in the

sequel.

Lemma 2.20. Let x ∈ F (Γ ′) and let {γi} be a family of elements of Γ ′

defined on a neighborhood V of x. Assume that {γi(x)} converges to a point

y ∈ T ′ ⊂ T .

1) If {|γ′i|x} admits a subsequence which is bounded away from 0, then y

belongs to F (Γ ). Moreover, {|γ′i|x} is bounded and bounded away from

0.

2) If {|γ′i|x} admits a subsequence which converges to 0, then {|γ′i|x} con-

verges to 0 and y belongs to J(Γ ).

Proof. We may assume that V = Dx(r). Then, {|γ′i|x} is bounded from above

because ΓV is a normal family.

First let {ζj} be a subsequence of {γi} such that {
∣∣ζ ′j

∣∣
x
} is bounded away

from 0. Since ΓV is a normal family, we may assume after slightly shrinking

V that {ζj} uniformly converges to a function γ on V . As {
∣∣ζ ′j

∣∣
x
} is bounded

away from 0, γ is not a constant function so that γ(V ) is an open set. It follows

that ζi(V ) contains y for sufficiently large i. Since V ⊂ F (Γ ′), y belongs to

F (Γ ).

Second, let {ζj} be a subsequence of {γi} such that {
∣∣ζ ′j

∣∣
x
} converges to 0.

As (Γ, T ) is equivalent to (Γ ′, T ′), we may assume that y ∈ T ′. If y ∈ F (Γ ′),
then there is a Fatou neighborhood U of y. We may assume that U is an

open ball centered at y. We may also assume that ζj(x) ∈ U if j ≥ j0. Let

x′ = ζj0(x) and set ηj = ζj ◦ ζ−1
j0

. Then U is a Fatou neighborhood of x′

and {
∣∣η′j

∣∣
x′} converges to 0. By slightly shrinking U , we may assume that

{ηj} uniformly converges to a constant function. Then, the image ηj(U) is

contained in U for sufficiently large j. Hence ηj has a hyperbolic fixed point in

U . This is a contradiction because U ⊂ F (Γ ′). This completes the proof. ¤

Remark 2.21.

1) The more can be said about γi(V ) in the proof of 1), where V = Dx(r).

Namely, if δ is a positive number such that |γ′i|x > δ, then γi(V ) ⊃
Dγi(x)(rδ/4) by the Koebe 1/4-theorem.
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2) It is possible that x ∈ F (Γ ) admits a family {γi} which contains a

subsequence {ζj} with ζ ′i(x) → 0 but {γ′i(x)} does not converge to 0 if

{γi(x)} does not converge to a single point. See Example 3.11.

3. Construction of an invariant metric of class CLip
loc

A metric of the form gdz ⊗ dz̄ is said to be of class CLip
loc if g is locally

Lipschitz continuous. We first show the following.

Proposition 3.1. (Γ |F (Γ ), F (Γ )) is CLip
loc -Hermitian, namely, there is a locally

Lipschitz continuous metric gL on F (Γ ) invariant under Γ |F (Γ ).

Remark 3.2. It is known that invariant metrics of class Cω exist on the GGS-

Fatou sets. We will later show that there are invariant metric of class Cω also

on the Fatou sets (Theorem 4.21). It will be also shown that the metric in

Proposition 3.1 is of class Cω along orbit closures (Corollary 4.16).

Proposition 3.1 will be shown in steps. Note that it suffices to construct a

Γ ′-invariant metric on F (Γ ′). Hence by taking a reduction, we may assume

that T =
∐
i∈I

Ti, where I is a finite set and each Ti is an open disc in C. We

may furthermore assume that the closures Ti of Ti are mutually disjoint. Let

(Γ ′, T ′) be a reduction. Then we may also assume that each component T ′
i of

T ′ is a slightly small open disc such that T ′
i ⊂ Ti.

Let h0 be a metric on T ′ defined as follows. Let TT ′ be the holomorphic

tangent bundle of T ′. Let ηε, 0 < ε < 1, be a smooth non-negative function on

R such that

1) ηε(t) = 1 on (−∞, 1− ε],

2) ηε is strictly decreasing on [1− ε, 1],

3) ηε(t) = 0 on [1, +∞).

Definition 3.3. Let ci ∈ C and ri > 0 be the center and the radius of T ′
i ,

respectively. Set hi(zi) = ηε(|zi − ci| /ri) and define a Hermitian metric h0 on

TT ′ by h0|T ′i = hi(zi)
2dzi⊗ dz̄i, where | · | denotes the absolute value. The set

of functions {hi} is denoted by h and considered as a function on T ′.

In what follows, γ(x) is also denoted by γx, where γ ∈ Γ and x ∈ T .

Definition 3.4. For x ∈ T ′
i , set gi(x) = sup

γ∈Γ ′x
h(γx) |γ′|x. The set of functions

{gi} is denoted by g and considered as a function on T ′.

Remark 3.5. The meaning of g is as follows. Let x ∈ T ′
i and set ‖v‖L

x =

gi(x) ‖v‖x for v ∈ TxT
′, where ‖v‖x denotes the Euclidean norm of v multiplied
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by h(x), then

‖v‖L
x = sup

γ∈Γ ′x
‖γ∗v‖γx .

We recall the notion of equivalence of metrics:

Definition 3.6. Let h1 = {(h1
i )

2dzi ⊗ dz̄i} and h2 = {(h2
i )

2dzi ⊗ dz̄i} be

Hermitian metrics on TT ′. If there exists a constant C > 0 such that h1
i ≤ Ch2

i

for any i, then we write h1 ≤ Ch2. If there exists a constant C ≥ 1 such that
1
C
h1 ≤ h2 ≤ Ch1, then h1 and h2 are said to be equivalent.

The following properties are clear.

Lemma 3.7. 1) gi(x) ≥ hi(x) > 0.

2) If γ ∈ Γ ′
x, then g(γx) |γ′|x = g(x).

3) Let h̃0 = {h̃2
i dzi ⊗ dz̄i} be a Hermitian metric on TT ′. Assume that

1
C
h0 ≤ h̃0 ≤ Ch0 and let g̃ = {g̃i} be the set of functions in Definition 3.4

obtained by replacing h0 with h̃0. Then 1
C
gi ≤ g̃i ≤ Cgi.

Lemma 3.8. g is lower semicontinuous on T ′.

Proof. Let x ∈ T ′. First assume that g(x) is finite, and let γ ∈ Γ ′
x be such that

g(x) − ε < h(γx) |γ′|x. If y ∈ T ′ is sufficiently close to x, then γy is defined

and h(γy) |γ′|y > h(γx) |γ′|x−ε by the continuity of the function z 7→ h(γz)γ′z.
It follows that g(x) − 2ε < h(γy) |γ′|y ≤ g(y). If g(x) = +∞, then there is

an element γ ∈ Γx such that M < h(γx) |γ′|x for any real number M . Then

M − ε < h(γy) |γ′|y so that g(y) is also infinite. ¤

The following lemma is the essential part of Proposition 3.1.

Lemma 3.9. g is locally Lipschitz continuous on F (Γ ′).

Proof. Let x ∈ F (Γ ′), then g(x) is finite by 1) of Lemma 2.20. We may

furthermore assume that Mx = sup
γ∈Γ

|γ′|x is also finite by taking reduction

again. Assume that Dx(2δ) is a Fatou neighborhood of x and that x = 0

after a parallel translation. Recall now the Koebe distortion theorem [1]: if

f : D0(1) → C is a univalent function such that f(0) = 0 and f ′(0) = 1, then
|z|

(1+|z|)2 ≤ |f(z)| ≤ |z|
(1−|z|)2 and 1−|z|

(1+|z|)3 ≤ |f ′(z)| ≤ 1+|z|
(1−|z|)3 . Let ϕ be a univalent

function defined on U = Dx(δ). Applying the Koebe theorem to the function

z 7→ 1
δϕ′x

(ϕ(δz)− ϕ(x)), we have

|ϕ′|x |y|
(1 + 1

δ
|y|)2

≤ |ϕ(y)− ϕ(x)| ≤ |ϕ′|x |y|
(1− 1

δ
|y|)2

, and

1− 1
δ
|y|

(1 + 1
δ
|y|)3

≤ |ϕ′|y
|ϕ′|x

≤ 1 + 1
δ
|y|

(1− 1
δ
|y|)3

,
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where |y| = |y − 0| = |y − x|. It follows from the second inequality that if

γ ∈ Γ ′
y and |y| < δ/2, then |γ′|y ≤ 12Mx. We now show the following

Claim. There are ε1 > 0 and δ2 such that γ ∈ Γ ′
y induces an element of Γ ′

x

defined on Dx(2δ2) if the conditions |y| < δ2 and h(γy) |γ′|y > g(y) − ε1 are

satisfied.

If ε1 is a positive real number less than g(x)
2

, then there is a positive real

number δ3 such that g(y) − ε1 > g(x)
2

for |y| < δ3 by the lower semicontinuity

of g. Assume that h(γy) |γ′|y > g(y) − ε1, then h(γy) ≥ g(x)
24Mx

> 0. It follows

that there is a compact subset K ′ of T ′ such that h(γy) |γ′|y > g(y)− ε1 holds

only if γy ∈ K ′. Let ε2 > 0 be a real number such that DK′(ε2) ⊂ T ′. If

|y| < min
{

δ
2
, ε2

8Mx

}
, then

|γ′|x|y|
(1− 1

δ
|y|)2 ≤ 4Mx |y| < ε2

2
. Set δ2 = 1

2
min{ δ

2
, δ3,

ε2
8Mx

},
then γ ∈ Γ ′

y induces an element of Γ ′
x defined on Dx(2δ2) if |y| < δ2 and

h(γy) |γ′|y > g(y)− ε1. This completes the proof of Claim.

Let ε3 > 0 be any real number less than ε1 and assume that |y| < δ2.

Let γ ∈ Γ ′
y such that h(γy) |γ′|y > g(y) − ε3. The above claim shows that

γ ∈ Γ ′
z if z ∈ Dx(2δ2). It follows that h(γz) |γ′|z ≤ g(z). Hence g(y)− g(z) <

h(γy) |γ′|y−h(γz) |γ′|z + ε3. Moreover, γ is well-defined on Dz(δ) ⊂ Dx(2δ) as

an element of Γ so that the Koebe estimate is valid for γ.

Noticing that each hi is Lipschitz continuous, let Lh be the maximum of the

Lipschitz constants. Then |h(γy)− h(γz)| ≤ Lh |γy − γz| ≤ 12LhMx |y − z|.
By taking δ2 smaller if necessary, we may assume that 4 − 3 |y−z|

δ
+ |y−z|2

δ2 ≤ 4

if y, z ∈ Dx(δ2). We may also assume that δ2 < 1, then it follows from the

Koebe distortion theorem that

|γ′|y
|γ′|z

− 1 ≤ 1 + 1
δ
|y − z|

(1− 1
δ
|y − z|)3

− 1 ≤ 32 |y − z| .

Hence |γ′|y − |γ′|z ≤ 12Mx · 32 |y − z|. Therefore, if y, z ∈ Dx(δ2) then

g(y)− g(z)− ε3 < h(γy)(|γ′|y − |γ′|z) + (h(γy)− h(γz)) |γ′|z
≤ 32 · 12Mx |y − z|+ 12LhMx |y − z| 12Mx

= 48Mx(8 + 3LhMx) |y − z| ,

where the fact that h ≤ 1 is used. Since this estimate is independent of

the choice of γ, ε3 can be arbitrarily small. Hence g(y) − g(z) ≤ 48Mx(8 +

3LhMx) |y − z|.
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Let now γ ∈ Γ ′
z be such that g(z) − ε3 < h(γz) |γ′|z. Then γ ∈ Γ ′

y and

h(γy) |γ′|y ≤ g(y). Hence

g(z)− g(y)− ε3 < h(γz) |γ′|z − h(γy) |γ′|y
= (h(γz)− h(γy)) |γ′|z + h(γy)(|γ′|z − |γ′|y)

≤ 144LhM
2
x |y − z|+ 12Mx

(
1− |γ′|y

|γ′|z

)
.

We may assume that 4+3 |y−z|
δ

+ |y−z|2
δ2 ≤ 8, then again by the Koebe distortion

theorem, 1− |γ′|y
|γ′|z ≤ 32 |y − z|. This estimate is also independent of the choice

of γ. Hence g(z) − g(y) ≤ 48Mx(8 + 3LhMx) |y − z|. This completes the

proof. ¤

The proof of Proposition 3.1 is completed by defining gL by gL|T ′i = g2
i dzi⊗

dz̄i. Indeed, the non-degeneracy and Γ ′-invariance of gL follow from the prop-

erties 1) and 2) in Lemma 3.7. Moreover, 1) implies that gL ≥ h0. The

property 3) in Lemma 3.7 implies that if g̃L is constructed by a metric h̃ such

that 1
C
h0 ≤ h̃ ≤ Ch0, then 1

C
gL ≤ g̃L ≤ CgL.

Remark 3.10. ‖ · ‖L can be either finite or infinite on J . Indeed, it is clear that

‖ · ‖L is infinite at hyperbolic fixed points. On the other hand, let γ be the

automorphism of CP 1 of which the restriction to C is given by γ(z) = z + 1.

If we regard ({γn}n∈Z,CP 1) as a pseudogroup, then ‖ · ‖L is finite at the

parabolic fixed point ∞ ∈ CP 1.

The metric obtained in this way can be of class Cω but in general not of

class C1. For simplicity, we adopt the following function as η in Definition 3.3.

Let

η0(t) =

{
0, t ≤ 0,

e−1/t, t > 0.

Let η1(t) =

∫ t

−∞
η0(s)η0(1− s)ds, η2(t) = η1(t)/η1(2) and η(t) = η2((1− t)/ε).

Example 3.11. Let z be the inhomogeneous coordinates for CP 1 = C∪{∞}.
Let λ, µ and ν are non-zero complex numbers such that |λ| = 1, |µ| = 2 and

1 < |ν| < 2. Assume that log |ν| / log 2 6∈ Q. Define automorphisms fα, where

α is one of λ, µ and ν, of CP 1 by fα(z) = αz.

First let N1 be a closed manifold such that there exists a surjective homo-

morphism ϕ1 from π1(N1) to Z2 = 〈fλ, fµ〉, for example let N1 = T 2. Let

(M1,F1) be the suspension of (CP 1, ϕ1) and let (Γ1, T ) be the pseudogroup

defined as follows. Let T0 = T1 = D0(
√

2) and T = T0 t T1. Let Γ1 be the

pseudogroup generated by ρ0, ρ1, γ0, γ1 and γ10, where ρ : Ti → Ti is given by
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ρi(z) = λz and γi : Ti → Ti is given by γi(z) = z/µ for i = 0, 1, and let γ10 be

the mapping from {z | 1/√2 < |z| < √
2} to {z | 1/√2 < |z| < √

2} defined by

γ10(z) = 1/z. Then, the holonomy pseudogroup of F1 is equivalent to (Γ1, T ).

The Julia set is given by J(Γ1) = J0 ∪ J∞, where J0 = {0} ⊂ T0 and

J∞ = {0} ⊂ T1. In terms of F1, J(F1) = L0 ∪ L∞, where L0 and L∞ are the

leaves which correspond to 0 and ∞, respectively. Let h0 be the metric on T

as in Definition 3.3. Let α be the unique positive real number greater than 1

such that η(α) = 1/α2. Then the metric gL = {g2
i dz ⊗ dz̄} is given by

g0(z) = g1(z) =





2n, 1
2n
√

2
≤ |z| ≤ 1

2nα
,

2n

|2nz|2 η
(

1
|2nz|

)
, 1

2nα
≤ |z| ≤ 1

2n ,

2nη(|2nz|), 1
2n ≤ |z| ≤ α

2n ,
2n

|2nz|2 ,
α
2n ≤ |z| ≤ 1

2n−1
√

2
.

It is locally Lipschitz continuous and piecewise of class Cω, but not of class

C1.

Second, let N2 be a closed manifold such that there exists a surjective ho-

momorphism ϕ2 from π1(N2) to Z3 = 〈fλ, fµ, fν〉, for example let N2 = T 3.

Let (M2,F2) be the suspension of (CP 1, ϕ2), and let (Γ2, T ) be the pseu-

dogroup generated by ρ0, ρ1, γ0, γ1, γ10 and ζi, i = 0, 1, where ζi(z) = z/µ.

The holonomy pseudogroup of (M2,F2) is equivalent to (Γ2, T ) and the met-

ric gL = {g2
i dz ⊗ dz̄} is given by g0(z) = g1(z) = β

|z| , where β = max{b ∈
R | the graphs of η(t) and b/t have an intersection}.

Note that the metric β2

|z|2 dz ⊗ dz̄ is also invariant under Γ1. Moreover, if

g is a positive function which satisfies g(2t) = g(t)/2, then g(|z|)2dz ⊗ dz̄ is

invariant under Γ1. Hence it is quite easy to find an invariant metric of class

Cω.

4. Comparison with the Fatou-Julia decomposition by

Ghys, Gomez-Mont and Saludes,

Structure of Fatou components

The Fatou-Julia decomposition for foliations is firstly introduced and studied

by Ghys, Gomez-Mont and Saludes [11]. The GGS Fatou-Julia decomposition

is originally formulated for foliations but it is also defined for compactly gen-

erated pseudogroups [15].

Definition 4.1 ([11]). Let C(Γ ) be the set of continuous Γ -invariant (1, 0)-

vector fields X on T such that its distributional derivative is locally in L2 and

that ∂̄X is essentially bounded. The Fatou set FGGS(Γ ) in the sense of Ghys,
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Gomez-Mont, Saludes is by definition given by

FGGS(Γ ) = {x ∈ T X(x) 6= 0 for some X ∈ C(Γ )} .

The Fatou set and the Julia set in this sense are called the GGS-Fatou set

and the GGS-Julia set, and denoted by FGGS and JGGS, respectively. The most

of results in [11] remain valid for compactly generated pseudogroups [15]. We

make use of some properties of GGS-Fatou sets without proofs. We refer to

[11] and [15] for the detailed accounts.

These Fatou-Julia decompositions are related as follows.

Proposition 4.2. F (Γ ) ⊃ FGGS(Γ ).

Proof. Let x ∈ FGGS(Γ
′), then there is a vector field X ∈ C(Γ ′) with X(x) 6= 0.

We may assume that X ∈ C(Γ ) and that X is uniquely integrable. By integrat-

ing X, we can find a 1-parameter family ϕ : T ′ ×D → T of homeomorphisms

which is (Γ ′, Γ )-equivariant, where D is a small disc in C. Choosing D small,

we may assume that z 7→ ϕ(γx, z), γ ∈ Γ ′, is a homeomorphism of D into

T which satisfies ϕ(x, D) ⊂ T ′. By repeating an argument by Ghys [10] (cf.

Lemma 2.16), we see that D is a Fatou neighborhood of x. ¤

The inclusions F (Γ ) ⊃ FGGS(Γ ) and J(Γ ) ⊂ JGGS(Γ ) can be strict in gen-

eral. In fact, the naturality as in Lemma 2.12 fails for the GGS-decomposition.

Example 4.3. Consider T 2 = C/Z2 and let F be the foliation of S1 × T 2

with leaves {S1 × {z}}z∈T 2 . Then the GGS-Fatou set is the whole manifold.

Let σ : T 2 → T 2 be an automorphism induced by z 7→ −z. Then S1 × {z} ⊂
S1×σ T 2, z = 0, 1/2,

√−1/2, (1+
√−1)/2 are the GGS-Julia components. On

the other hand, J(F) = ∅.

The Fatou components also admit a classification analogous to that of GGS-

Fatou components. The rest of this section is mostly devoted to it.

A pseudogroup (Γ, T ) is said to be complete if for any x, y ∈ T there are

neighborhoods V of x and W of y such that every germ γ ∈ Γx′ , x′ ∈ V with

γx′ ∈ W extends to an element of Γ defined on V .

Lemma 4.4 ([30, Proposition 1.3.1]). (Γ |F (Γ ), F (Γ )) is complete.

Proof. Let x, y ∈ T and let γ0 and γ1 be elements of Γ such that the both

z = γ0x and w = γ1y belong to T ′. Let δ be a positive real number such

that γ−1
1 is defined on Dw(2δ) and let W be a neighborhood of y such that

W ⊂ γ−1
1 (Dw(δ)). Let U be a Fatou neighborhood of z such that the diameter

of γ(U) is less than δ for any γ ∈ ΓU . Such an U exists because ΓU ′ is a normal

family for any Fatou neighborhood U ′. Finally let V be a neighborhood of x
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such that γ0(V ) ⊂ U . Let x′ ∈ V and let ζ ∈ Γx′ be such that ζ(x′) ∈ W .

Set γ = γ1ζγ−1
0 , then the germ of γ at γ0(x

′) extends to U as an element of

Γ because γ0(x
′) ∈ U . If we denote the extension again by γ, then γ(U) is

contained in Dw(2δ) so that γ−1
1 γγ0 is an extension of ζ as an element of Γ

which is defined on the whole V . ¤

It is clear that (Γ ′|F (Γ ′), F (Γ ′)) is also complete.

Let x ∈ F (Γ ′) and let D be an open disc centered at x such that the closure

D is contained in a Fatou neighborhood of x.

Definition 4.5. Let OD be the space of holomorphic maps defined on D

equipped with the compact open topology. Set Γ ′
D = {γ ∈ Γ ′ γ(D) ∩D 6= ∅} ⊂

OD and let GD be the closure of Γ ′
D,

Note that GD consists of biholomorphic diffeomorphisms by Lemma 2.20.

The local group GD and the closure of Γ ′-orbits are related as follows.

Lemma 4.6. If x ∈ D, then GDx = Γ ′
Dx.

Proof. It is clear that GDx ⊂ Γ ′
Dx. Let y ∈ Γ ′

Dx and let {γn} ⊂ Γ ′
D be such

that {γnx} converges to y. There is a subsequence of {γn} which converges to

an element γ of GD uniformly on D because D ⊂ Vx. It is easy to see that

y = γx. ¤

We recall some basic notions of local groups [22] (see also [19] for properties

of local groups).

Definition 4.7. A topological space G is called a local group if a product

xy is defined as an element in G for some pairs x, y in G and the following

conditions are satisfied:

1) There is a unique element e in G such that ex and xe are defined for

each x in G and ex = xe = x.

2) If x, y are in G and xy exists then there is a neighborhood U of x and

a neighborhood V of y such that if x′ ∈ U , y′ ∈ V then x′y′ exists. The

correspondence (x, y) 7→ xy is continuous wherever defined.

3) The associative law holds whenever it has meaning.

4) If xy = e then yx = e. An element y satisfying this relation is called

an inverse of x and is denoted by x−1. The inverse x−1 is unique if it

exists, and the correspondence x 7→ x−1 is continuous. Moreover, if x−1

exists, then y−1 exists on a neighborhood of x.

We will apply some theorems of Cartan [6]. When actions of local groups

are discussed in [6], a property related to analyticity is assumed in addition
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to the usual compatibility conditions. This condition is always satisfied if

the local group consists of analytic transformations ([6, page 11], where the

term ‘pseudo-conforme’ is used in place of ‘holomorphic’). Hence we have the

following

Lemma 4.8. GD is a local transformation group on D in the sense of Cartan

[6].

Definition 4.9 ([6, p.18]). Let X be a topological space and let D be an

open subset of X. Let G be a local transformation group of a continuous

transformations defined on D. G is quasi continuous of order at most d if

there exist a neighborhood U of the unit element of G, a compact subset K of

Rd and a bijection ϕ : K → U such that the mapping Φ: D×K → X defined

by Φ(x; k) = ϕ(k)(x) is continuous.

Lemma 4.10. GD is quasi continuous of order at most 3. Hence GD is a

quasi-continuous group of analytic transformations (un groupe quasi-continue

de transformations analytique) in the sense of Cartan.

Proof. The GD-action preserves the metric gL in Section 3 which is locally

Lipschitz continuous. Hence elements of GD are uniquely determined by their

1-jets at x. By the continuity of solutions with respect to the initial values,

GD is indeed quasi continuous of order at most 3. ¤

The following result of Cartan is essential. We quote it by adapting termi-

nologies.

Theorem 4.11 ([6, Théorèmes 9 et 10]). A local quasi-continuous group which

consists of local biholomorphic diffeomorphisms is a local Lie transformation

group.

Remark 4.12. By a ‘ local Lie transformation group’ we mean not only the

group is locally a Lie group but the action is also analytic ([6, pages 20–22]).

Corollary 4.13. GD is a local Lie transformation group.

The above arguments can be summarized as follows.

Theorem 4.14. GD is a local Lie transformation group of (real) dimension

at most 3. The dimension of connected components of GD is constant.

Proof. The first claim essentially follows from Lemma 4.10. Indeed, although

the assumption is slightly different, the argument of the proof of Théorème 12

of [6] is still valid so that dimR(GD)0 is at most 3. The last claim follows from

the fact that GD is closed (cf. [19]). ¤
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Remark 4.15. 1) If we denote by Gx the stabilizer of x, then Gx is com-

pact since elements of Gx are determined by their 1-jets. In particular,

(Gx)0\Gx is a finite group, where (Gx)0 is the identity component of Gx.

2) GD is not necessarily connected. For example, let f and g be automor-

phisms of CP 1 given by f([z : w]) = [αz : w] and g([z : w]) = [w : z],

where α = e2π
√−1θ, θ ∈ R \Q. Let Γ be the group generated by f and

g. If we take a suspension of Γ, then GD = Ro (Z/2Z).

The following is immediate.

Corollary 4.16.

1) The closures of Γ -orbits in the Fatou set are Cω-submanifolds of F (Γ ).

2) The metric gL constructed in Section 3 is of class Cω along orbit clo-

sures.

Note that GD depends on the choice of D as in Remark 4.15 but the di-

mension does not. Moreover, the natural homomorphism of local groups from

GD2 to GD1 , where D2 ⊂ D1, is injective by the uniqueness of the solution of

ordinary differential equations.

The Fatou components are named after [11].

Definition 4.17. A Fatou component F is called

1) wandering component if dim GD = 0,

2) semi-wandering component if dim GD = 1,

3) dense component if dim GD ≥ 2,

where D ⊂ F is any open set as above.

These components admit description analogous to that of GGS-Fatou com-

ponents. Let EF be the principal S1-bundle associated to the frame bundle

over F . EF can be considered as the unit tangent bundle over F if there are

invariant Hermitian metrics. Note that Γ |F acts on EF so that GD also locally

acts on EF . We denote Γ |F by ΓF . Let (ΓF , F ) be the pseudogroup generated

by ΓF and GD. Let (Γ̃F , F̃ ) be the universal covering of (ΓF , F ) [14] and let

(Γ̃F , F̃ ) be the lift of (ΓF , F ).

Theorem 4.18. If F is a wandering component, then the orbit space Σ =

ΓF\F is a V -manifold (an orbifold). If we denote by S the singular set of Σ,

then π−1(Σ\S) is a GGS-Fatou component, where π : F → Σ is the projection.

The number of wandering Fatou components of which Σ\S is CP 1 minus one,

two or three points is finite.

Proof. We work on a reduction (Γ ′|F ′ , F ′) but still denote it by (ΓF , F ). First

note that ΓF is complete by Lemma 4.4. Hence ΓF\F is possibly non-Hausdorff
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manifold. Assume that ΓF\F is non-Hausdorff, then there are a sequence

{xi} in F and a sequence {γi} of elements of Γ such that lim
i→∞

xi = x ∈ F ,

lim
i→∞

yi = y ∈ F , where yi = γixi, but there is no element γ of ΓF such

that γx = y. Let D be a Fatou neighborhood of x and let D′ be a Fatou

neighborhood of y as in Theorem 4.14. We may assume that xi ∈ D for all

i and that yj ∈ D′ for all j, then γ1 is defined on D so that zi = γ1xi makes

a sense. Moreover, since {xi} converges to x and y1 = γ1x1 ∈ D′, we may

assume that zi ∈ D′. Let ξi = γiγ
−1
1 . Then ξi is defined on D′ and ξizi = yi.

We may assume that the sequence {ξi} converges to a mapping ξ in GD′ . As

dim(GD′) = 0, we may furthermore assume that ξi = ξ for all i and that

ξ ∈ ΓF . It follows that y = ξγ1(x) and it is a contradiction.

Let F be a Fatou component and let π : F → Σ be the projection. Let S

be the singular set of Σ and set F ′ = π−1(Σ \ S). Then F ′ is contained in a

GGS-Fatou component, say F ′′. Indeed, there is a smooth vector field on Σ\S

which does not vanish at a given point x ∈ Σ \ S but trivial out of a small

neighborhood of x. Such a vector field gives rise to a vector field which belongs

to C(Γ ). If F ′ is a proper subset of F ′′, then F ′′ ∩ ∂F ′ is non-empty. It is

impossible because FGGS(Γ ) ⊂ F (Γ ) and F ′ is Γ -connected. Hence F ′ = F ′′.
The last claim follows from [11, Theorem 2]. ¤

Let G = {x 7→ tx + z t, z ∈ C, |t| = 1} ⊂ Aff(C) and let Gλ = {x 7→
λnz + b |n ∈ Z, b ∈ R} ⊂ Aff(R). G contains S1 = {(t, 0) |t| = 1} as a

closed subgroup.

Theorem 4.19. If F is a semi-wandering component, then the closure of

all but finite number of Γ -orbits are real codimension-one manifold properly

embedded in F . The rest of the orbits are proper. Let P ⊂ F be the union of

proper orbits.

1) If P = ∅, then (Γ, F ) is equivalent to a pseudogroup generated by a

subgroup H ′ of a group H, where H is either C or Aff(R) and H acts

on a strip Sα,β = {z ∈ C α < Im z < β}, where −∞ ≤ α < β ≤ +∞.

The closure of Γ -orbits in ET are finite coverings of Γ -orbits in F . Let

F0 = {x ∈ F the closure of Γx is simply covered} , and

F1 = {x ∈ F the closure of Γx is doubly covered} .

Then F = F0∪F1, and F0 is a GGS-semi-wandering component and F1

is contained in a GGS-ergodic Julia component. We have the following

cases.

2a) (H, S) = (C,C), H ′ = R×√−1Z and Γ̃F\F̃ = S1.

2b) (H, S) = (C, Sα,β), H ′ = R and Γ̃F\F̃ = (α, β).
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2c) (H, S) = (Aff(R),H), H ′ = Gλ for some λ > 0 and Γ̃F\F̃ = S1,

where H denotes the upper half space.

2) If P 6= ∅, then (Γ, F \ P ) is as in 2b) and (Γ̃F , Ẽ) is equivalent to

a pseudogroup generated by a subgroup H ′ of the group G such that

H ′ = S1. Let (Γ̃F , ẼF ) be the universal covering of (ΓF , EF ). Then

Γ̃F\ẼF is either {z ∈ C |z| < α}, where 0 < α ≤ +∞, or CP 1. P

consists of at most two Γ -orbits.

Proof. Let x ∈ F and let D be a small neighborhood of x. Let X be the

vector field generated by the (GD)0-action. As
√−1X is also invariant under

(GD)0-action, we can find a holomorphic vector field Z on D such that 2 Re Z

is tangent to the GD-orbits by repeating the argument in [11, Lemma 5.2].

Moreover, if D∩D′ 6= ∅, then thus constructed vector fields Z and Z ′ coincide

up to multiplication of a real constant. If Z has no singularities for any D,

then P = ∅. Since (Γ̃F , F̃ ) is simply connected, the argument in [11] can be

applied and we have the classification as in the statement. Noticing that the

GD-action induces a 1-dimensional foliation, the covering degree of closures

of Γx, x ∈ F , by the closures of Γ -orbits in EF are at most 2. Note that

F1 is closed in F so that F0 is open. The action of GD naturally induces a

non-trivial invariant vector field on F0, on the other hand, such a vector field

cannot exist on F1 but an invariant line field is induced.

Assume now that Z has singularities for some D ⊂ F , then P 6= ∅. If x ∈ F

is not fixed by the (GD)0-action, then Z is non-singular at x by construction.

Hence the singularities of Z are fixed by the (GD)0-action. If x is a fixed

point, then (GD)0 = (Gx)0
∼= S1 and there is a closed orbit C of 2 Re Z. If

U is the connected component of F \ C which contains x, then the Gx-action

preserves U so that there are coordinates on U such that the (Gx)0-action is

given by (t, z) 7→ tz, where x corresponds to z = 0. Noticing that the standard

Hermitian metric on U is invariant under Gx, we identify EF |U with the unit

tangent bundle over U with respect to the standard Hermitian metric. Then,

EF |U is naturally identified with S1×U ⊂ G, where G is considered as S1×C
by forgetting the group structure. We denote by ϕU this identification. The

S1-action obtained by lifting the (Gx)0-action is given by the multiplication in

G. Since the local holomorphic vector fields are unique up to multiplication

of real numbers, we have the case 2b) on F \ P . Let x be a non-fixed point

and choose a neighborhood V of x such that the local holomorphic vector field

Z is given by Z = ∂
∂z

and x corresponds to z = 0. By using the standard

Hermitian metric on V , EF |V can be identified with the unit tangent bundle

of V and also with S1 × V by assuming that EF is trivial on V . Define
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ϕV : S1×V → G by ϕV (t, z) = (te2π
√−1 Re z, e2π

√−1z), then we may assume that

ϕV is a diffeomorphism. Since ϕV (t, z + θ) = (te2π
√−1(Re z+θ), e2π

√−1(z+θ)) =

(e2π
√−1θ, 0) · ϕV (t, z), the lifted local GD-action on EF |V is also given by the

local action of S1 ⊂ G. It is easy to see that each transition function of these

trivializations is given by multiplication of an element of S1 ⊂ G. Finally, the

mapping from G to C defined by (t, z) 7→ t−1z induces a mapping from Γ̃F\ẼF

to C. The imaginary parts of the local holomorphic vector fields generating

the GD-orbits induce the radial vector field 2 Re z ∂
∂z

on C, where 0 ∈ P . If

Γ̃F\ẼF = CP 1, then P consists of at most two orbits, otherwise P consists of

a single orbit. ¤

Theorem 4.20. If F is a dense component, then one of the following holds:

1) The Γ -orbits in EF are also dense and (ΓF , EF ) is a Lie pseudogroup

of dimension 3, namely, (ΓF , EF ) is modeled on a 3-dimensional Lie

group. F is contained in a recurrent GGS-Julia component.

2) (ΓF , F ) is a Lie pseudogroup of dimension 2. The closure of Γ -orbits

in EF are finite coverings of F and the covering degree is constant. If

the covering is trivial, then F is a wandering GGS-Fatou component.

If the covering is two-fold, then F is contained in an ergodic GGS-

Julia component. Otherwise, F is contained in a recurrent GGS-Julia

component.

Proof. First assume that dim GD = 3, then the action of GD on EF is locally

free because elements of GD are determined by their 1-jets. Hence GD is

always connected and the germs of GD at any points in F are isomorphic. If

GF is the simply connected Lie group locally isomorphic to GD, then there are

local submersions from EF to GF and (ΓF , EF ) is a Lie pseudogroup modeled

on GF . Since the GD-orbits are locally dense in EF , there are no non-trivial

invariant vector fields nor invariant line fields on F . Hence F is contained

in a recurrent GGS-Julia component. Assume that dim GD = 2, then the

GD-orbits in EF are transversal to the fibers and GD-orbits in F are locally

dense. It follows that for any x ∈ F , there is a neighborhood U of x such

that if g ∈ GD satisfies g(x) ∈ U then g is determined by g(x). Consequently,

GD-action on F is locally free and the germ of GD at any point x ∈ F is

always isomorphic. Hence there is a Lie group GF such that (ΓF , F ) is a Lie

pseudogroup modeled on GF . The group (Gx)0\Gx is also isomorphic for all

x. Moreover, the Γ -action preserves the orientation of F so that any Γ -orbits

in EF is some k-fold covering to F . If k = 1, then it is clear that there is a

non-trivial Γ -invariant vector field on F . If k = 2, then the normal directions



A FATOU-JULIA DECOMPOSITION OF TRANSVERSALLY HOLOMORPHIC FOLIATIONS23

to GD-orbits in EF projects down to a Γ -invariant line filed on F . Otherwise

there are no non-trivial invariant vector fields nor invariant line fields. ¤

The following is now clear.

Theorem 4.21. There is a Γ -invariant complete metric of class Cω on each

Fatou component. The metric can be constructed in the natural conformal class

determined by the transversal holomorphic structure.

The above results are expressed in terms of pseudogroups of isometries as

follows. See [14] and [28] for definitions.

Corollary 4.22. Let g be the sheaf of Lie algebras over F with stalk gx being

the Lie algebra of GD. The pseudogroup generated by ΓF and GD is the closure

(ΓF , F ) of (ΓF , F ) and it is a Lie pseudogroup with Killing vector fields g.

The following is a direct consequence of Lemma 2.16.

Corollary 4.23. If (Γ, T ) is C0-Hermitian, then (Γ, T ) is Cω-Hermitian.

In the simplest case where T = F (Γ ), the Γ -orbits are described as follows.

See also [21, Section 5].

Theorem 4.24. Let (Γ, T ) be a compactly generated pseudogroup. Assume

that Γ\T is connected and T = F (Γ ), then (Γ, T ) is Cω-Hermitian. Let

E = ET be the orthonormal frame bundle of T and let FE be the foliation

formed by orbits of Γ on E. Then, we have the following possibilities:

1) The leaves of FE are dense. The whole T forms a single recurrent GGS-

Julia component. In particular, all Γ -orbits on T are dense and there

are neither invariant Beltrami coefficients nor non-trivial invariant con-

tinuous sections of TT .

2) The closures of the leaves of FE form a real codimension-one foliation

FE of E. All Γ -orbits on T are also dense. The leaves of FE are

finite coverings to T of which the covering degree k is independent of

the leaves. If k = 1, then the whole T is a single dense GGS-Fatou

component. If k = 2, then the whole T is a single ergodic GGS-Julia

component. Otherwise, T is a recurrent GGS-Julia component.

3) 3a) The closures of Γ -orbits form a real codimension-one regular foli-

ation. T is the union of semi-wandering GGS-Fatou components

and ergodic GGS-Julia components.

3b) The closures of Γ -orbits form a singular foliation in the sense of

Molino [21]. The number of singular orbits is at most two. The

complement of the singular orbits is the union of semi-wandering
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GGS-Fatou components and ergodic GGS-Julia components, and

the singular orbits form the recurrent GGS-Julia component.

4) All Γ -orbits are discrete. The union of Γ -orbits without holonomy is

dense and is a single wandering GGS-Fatou component. The comple-

ment is the union of recurrent Julia components. Moreover, there is a

Γ -invariant meromorphic function on T .

The union of ergodic GGS-Julia components is open in the GGS-Julia set.

Proof. The classification follows from Theorems 4.18, 4.19 and 4.20. The first

three cases correspond the cases where dim GD = 3, dim GD = 2 or dim GD =

1, respectively. Assume that dim GD = 0. Since the Lebesgue measure of the

GGS-Julia set should be zero, only recurrent components are possible. The

claim on the meromorphic function is a part of the following theorem due to

Brunella-Nicolau and Haefliger. ¤

Theorem 4.25 (Brunella-Nicolau [5], Haefliger [15]). Let (Γ, T ) be a compactly

generated pseudogroup of holomorphic transformations of a one-dimensional

complex manifold T such that Γ\T is connected. Then either there is a finite

number of closed orbits, or all orbits are closed and there is a non-constant

Γ -invariant meromorphic function on T .

5. Properties of the Julia set and Conformal measures

Throughout this section, we assume that J(Γ ) 6= ∅. An important conse-

quence of the above theorem of Brunella-Nicolau and Haefliger is as follows.

Proposition 5.1. J(Γ ) contains at most finite number of discrete Γ -orbits.

Proof. If there are infinite number of discrete Γ -orbits, then all Γ -orbits are

discrete and J(Γ ) = ∅. ¤

Remark 5.2. The number of discrete Γ -orbits are essentially bounded by the

dimension of a certain cohomological space [15].

The Julia set can be characterized as follows (see also Remark 5.9).

Theorem 5.3. Let z ∈ T ′, then z ∈ J(Γ ′) if and only if there are a sequence

{zn} in T ′ and γn ∈ Γ ′
zn

such that lim
n→∞

zn = z and lim
n→∞

|γ′n|zn
= +∞. Here

the case where zn = z for all n is allowed.

Proof. Let z ∈ T ′ and assume that there are a neighborhood U of z in T ′ and

a real number M > 2 with the property that |γ′|w ≤ M if γ ∈ Γ is obtained

by extending the germ of an element of Γ ′
u, where u ∈ U and w ∈ U ∩ dom γ.

We will show that z ∈ F (Γ ′) by modifying Ghys’ lemma in [10]. First, there is
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a finite set of generators {γ1, . . . , γm} of Γ ′ because Γ is compactly generated.

Let Γ ′(k) be the subset of Γ ′ which consists of elements of Γ ′ which can be

realized by composing at most k generators. Then the germ of any element of

Γ ′ is the germ of an element of Γ ′(k) for some k. Let δ0 > 0 be such that the

germ of any generator γi at a point w ∈ T ′ is extended to Dw(δ0) as an element

of Γ , and set V = Dz(δ0/M). We may assume that V ⊂ U by shrinking V if

necessary. If γ ∈ Γ ′
u, where u ∈ V , then γ is actually the germ of an element

of Γ ′(k) for some k. If k = 1, then γ can be defined on V as an element of Γ

because V ⊂ Du(δ0). Moreover, |γ′|w ≤ M if w ∈ V because V ⊂ U . Hence

γ(V ) ⊂ Dγ(u)(δ0). Assume that γ can be defined on V as an element of Γ if

γ is the germ of an element of Γ ′(k), and let γ be the germ of an element of

Γ ′(k + 1). Then, we can decompose γ as γ = γi ◦ ζ, where ζ ∈ Γ ′(k). By

the assumption, ζ is defined on V as an element of Γ and ζ(V ) ⊂ Dζ(u)(δ0)

because |ζ ′|w ≤ M if w ∈ V . Therefore γ is also defined on V as an element

of Γ , namely, V is a Fatou neighborhood which contains z.

It follows that there are sequences {zn}, {un} in T ′ which converge to z and

a sequence {γn} such that γn ∈ Γ ′
un

and |γ′n|zn
tends to the infinity, where zn

belongs to the domain of γn as an element of Γ . By passing to a subsequence,

we may assume that {γn(zn)} converges to z0 ∈ T ′ ⊂ T . Choose an element

γ of Γ such that γ(z0) ∈ T ′, then the pair ({zn}, {γ ◦ γn}) makes a sense for

large n and is a desired one.

On the contrary assume that z ∈ F (Γ ′), then there is a Fatou neighborhood,

say U , of z. If γ ∈ Γ ′
w, w ∈ U , then |γ′|z is bounded because ΓU is a normal

family. ¤

Remark 5.4. One cannot tell in general if the limit point γ(z0) belongs to the

Fatou set or not.

Some notions for Kleinian groups and the Julia sets of mapping iterations

will be useful. We begin with an analogy of the limit sets for Kleinian groups.

Definition 5.5. Let Λ0(Γ ) and Λ(Γ ) be as follows. First,

Λ0(Γ ) = {z ∈ J(Γ ) ∃x ∈ F (Γ ),∃{γn} ⊂ Γx such that γnx → z} ,

and let Λ(Γ ) = Λ0(Γ ). We call Λ(Γ ) the limit set of Γ .

It is evident that Λ0(Γ ) and Λ(Γ ) are Γ -invariant sets.

Remark 5.6. We do not know any example of (Γ, T ) such that ∂F (Γ ) 6= Λ(Γ )\
Int J(Γ ), where Int J(Γ ) denotes the interior of J(Γ ).

The limit set of Γ and the limit sets of Kleinian groups have a common

property as follows.
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Lemma 5.7. Suppose that x1, x2 belong to the same Fatou component, then

Γx1x1 ∩ ∂F (Γ ) = Γx2x2 ∩ ∂F (Γ ).

Proof. By Lemma 2.20, there is an open neighborhood V of x1 such that

Γx1x1 ∩ ∂F (Γ ) = Γyy ∩ ∂F (Γ ) if y ∈ V . The claim follows since x1 and x2

belong to the same Fatou component. ¤

The following definition can be found in the theory of complex dynamical

systems (see [31]) and also in the theory of Kleinian groups (see [29]).

Definition 5.8. A point z ∈ J(Γ ′) is called conical if there exist θ > 0 and

an infinite sequence {γn} ⊂ Γz, n ≥ 1, such that γn(z) ∈ T ′, γ−1
n is defined on

Dγn(z)(θ) ⊂ T and lim
n→∞

|γ′n|z = +∞. The union of conical points are denoted

by Jc(Γ
′). A conical point is called uniformly conical if one can find a sequence

{γn} such that

lim
n→∞

∣∣γ′n+1

∣∣
z

|γ′n|z
< +∞.

The union of uniformly conical points are denoted by Juc(Γ
′). If (Γ, T ) is the

holonomy pseudogroup of a foliation F , then (uniformly) conical leaves are

defined in an obvious way.

Jc(Γ
′) and Juc(Γ

′) are Γ ′-invariant but not necessarily closed in general. See

Example 8.3.

Remark 5.9. The condition that z is conical implies that Theorem 5.3 holds in

a strong form, namely, the sequence {zn} can be chosen so that zn = z, and

the elements γn fulfill an extra condition on their targets.

Existence of a conical point implies existence of hyperbolic fixed points.

Lemma 5.10. If x ∈ Jc(Γ
′), then there are a neighborhood D of x and a

sequence {γn} of elements of Γ ′
x with the following properties:

1) (γn)◦m is defined on D for any positive integers n and m,

2) for each n, γn has a hyperbolic fixed point zn in D and (γn)◦m uniformly

converges to the constant mapping zn as m tends to the infinity,

3) {γn} uniformly converges to the constant mapping x as n tends to the

infinity.

Moreover, there is a Γ ′-orbit of a hyperbolic fixed point which converges to x.

Here the constant sequence equal to x is allowed.

Proof. Let θ and {γn} be as in Definition 5.8. Set xn = γn(x), then we may

assume that xn converges to y ∈ T ′. We may also assume that γ−1
n is defined

on Dy(θ/2) for any n and that {γ−1
n } uniformly converges to the constant
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mapping x on Dy(θ/2). Let D be a disc contained in γ−1
1 (Dy(θ/2)) ∩ T ′ and

set ζn = γ−1
n γ1. Then ζn is defined on D, and ζn(D) ⊂ D for large n because

{ζn} uniformly converges to x. Each ζn has a fixed point, say zn, on D. It is

clear that (ζn)◦m can be defined on D for all m and that {(ζn)◦m} converges

to zn. Fix now a fixed point zn, then {ζm(zn)} converges to x because {ζm}
converges to x. ¤

Let Hyp(Γ ) be the union of hyperbolic fixed points.

Corollary 5.11. Hyp(Γ ′) ⊃ Jc(Γ
′) ⊃ Juc(Γ

′) ⊃ Hyp(Γ ′). Hence if Jc(Γ
′) is

dense in J(Γ ′), then Hyp(Γ ′) is dense in J(Γ ′). Moreover, if F is a Fatou

component and if Jc(Γ
′) ∩ ∂F is dense in ∂F , then Hyp(Γ ′) ∩ ∂F is dense in

∂F .

Proof. The first claim follows from the fact that hyperbolic fixed points are

uniformly conical. If F is a Fatou component and if x ∈ Jc(Γ
′)∩∂F , then there

are a neighborhood D of x and elements {γn} of Γ ′ as in Lemma 5.10. Recall

that each γn has a hyperbolic fixed point zn in D. We have zn ∈ ∂F ∩Hyp(Γ ′)
because lim

m→∞
(γn)◦mx = zn. On the other hand, lim

m→∞
γm(zn) = x so that

Hyp(Γ ′) ∩ ∂F is dense in ∂F . ¤

Remark 5.12. Let F be a transversally holomorphic foliation of a closed man-

ifold. A recent result of Deroin and Kleptsyn [7] shows that Hyp(Γ ) is non-

empty if F admits no holonomy invariant measures.

If Fi ⊂ F (Γ ′) is a Fatou component, then we denote by ΛFi
the limit points

of Γ ′-orbits in Fi, namely, we set

ΛFi
=

{
x ∈ ∂Fi ∃z ∈ Fi, ∃{γn} ⊂ Γ ′

z s.t. x = lim
n→∞

γn(z)
}
⊂ Λ0(Γ

′).

Note that the choice of z is irrelevant by Lemma 5.7 and |γ′n|z → 0 by

Lemma 2.20. Each ΛFi
is closed and Λ0(Γ

′) =
⋃
i

ΛFi
holds. Under these

notations, we have the following

Corollary 5.13. Jc(Γ
′) ∩ ∂Fi ⊂ ΛFi

and Jc(Γ
′) ∩ ∂F (Γ ′) =

⋃
Jc(Γ

′) ∩ ∂Fi.

Consequently, Jc(Γ
′) ∩ ∂F (Γ ′) ⊂ Λ0(Γ

′).

Proof. Let x ∈ Jc(Γ
′)∩ ∂Fi. If {γn} and D are as in Lemma 5.10, then Fi ∩D

is non-empty and lim
n→∞

γn(z) = x for any z ∈ Fi ∩D. Hence x ∈ ΛFi
. In order

to show the second claim, let x ∈ Jc(Γ
′) ∩ ∂F (Γ ′). Then z as above can be

chosen in F (Γ ′)∩D. The point z belongs to some Fk so that x ∈ Jc(Γ
′)∩∂Fk.

This proves the second claim. ¤
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The equality Jc(Γ
′)∩ ∂F (Γ ′) = Λ0(Γ

′) does not hold in general. For exam-

ple, if J(Γ ′) consists of a single parabolic fixed point which is not hyperbolic,

then Jc(Γ
′) ∩ ∂F (Γ ′) = ∅ but Λ0(Γ

′) = J(Γ ′).
A well-known fact for the Julia sets of mapping iterations holds in the fol-

lowing weak form. Note that ΛFi
6= ∅ if Jc(Γ

′) ∩ ∂Fi 6= ∅ by Corollary 5.13.

Proposition 5.14. Let F be a Fatou component and suppose that ΛF 6= ∅.

Then F = Γ ′(U ∩ F ) for any neighborhood U of any point of ΛF . If ΛFi
6= ∅

for every Fatou component Fi of Γ ′, then T ′ = Γ ′(U) for any neighborhood U

of J(Γ ′).

Proof. Let F be a Fatou component with ΛF 6= ∅. Let z ∈ ΛF and let U be

any neighborhood of z. If x ∈ F , then we can choose a sequence in Γ ′
xx which

converges to z by Lemma 5.7. Hence γx ∈ U ∩F for some γ ∈ Γ ′
x. The second

claim follows from the first one. ¤

Conformal measures are one of the most important tools in the study of

Kleinian groups and Julia sets for mapping iterations. There are some difficul-

ties when considering a direct analogue, for example, it is clear that the Julia

set in Example 3.11 admits an invariant measure. Indeed, any atomic measure

supported on {0}∪{∞} is invariant. However, the standard construction using

the Poincaré series does not work. Indeed,
∑

γ∈Γx

|γ′|sx does not converge for any

x ∈ F (Γ ) and s ∈ R. In addition, the set {γ(x)}γ∈Γx is not discrete in F (Γ ).

We would like to find a construction which is also valid in such a case.

We will introduce an additional notion.

Definition 5.15. Let g = {g2
i dzi ⊗ dz̄i} be a Hermitian metric on F (Γ ′) and

let O be an open subset of F (Γ ′). We say g diverges at ∂O (resp. converges

to 0 at ∂O) if lim
n→∞

gi(xn) = +∞ (resp. lim
n→∞

gi(xn) = 0) for any i and any

sequence xn ∈ O ∩ T ′
i with lim

n→∞
xn ∈ ∂O.

If g is complete, then g diverges at ∂F for each Fatou component F .

We assume the following in the rest of this section.

Assumption 5.16. 1) F (Γ ) is non-empty, and

2) g is a continuous invariant Hermitian metric on F (Γ ) which diverges

at ∂F (Γ ) in the sense of Definition 5.15.

There exist metrics which satisfy the above assumption by Theorem 4.21.

Let dm be the 2-dimensional volume induced by g. The restriction of dm to

Fi = Ti ∩ F (Γ ) is denoted by dmi. Let gi be the positive function on Fi such

that dmi = g2
i |dzi|2. We extend gi to Ti by setting gi = +∞ on the Julia set.

Note that the function 1/gi is continuous and bounded on Ti.
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Set F ′
i = F (Γ ′) ∩ T ′

i = F (Γ ) ∩ T ′
i .

Definition 5.17. Let (Γ, T ) and gi be as above. Let (Γ ′, T ′) be a reduction

and set

Sg(s) =
∑

i

∫

F ′i

g−s+2
i |dzi|2 =

∑
i

∫

F ′i

g−s
i dmi.

The number δ(Γ, g) = inf {s ∈ R Sg(s) < +∞} is called the critical exponent

of J(Γ ) with respect to g. The number δ(Γ ) = inf
g

δ(Γ, g) is called the critical

exponent of J(Γ ), where g runs through invariant metrics which satisfy As-

sumption 5.16. If (Γ, T ) is the holonomy pseudogroup of a foliation F , then

the critical exponents δ(F , g) and δ(F) are defined in the natural way.

Note that the integral remains the same even if we replace F ′
i with F (Γ )∩T ′

i .

Lemma 5.18.

1) The critical exponents are independent of the choice of reductions.

2) If s > δ(Γ, g), then Sg(s) < +∞. Moreover, we may assume that

∑
i

∫

Fi

g−s+2
i |dzi|2 < +∞

for s > δ(Γ, g).

3) δ(Γ, g) ≤ 2.

4) δ(Γ, g) ≥ 0 if the area of F (Γ ′) with respect to g is infinite in the sense

that ∑
i

∫

F ′i

dmi = +∞.

5) The critical exponent depends only on the equivalence class of g in the

sense of Definition 3.6. (Note that equivalence class is considered on

F (Γ ′).)
6) The critical exponent is independent of the choice of invariant Hermitian

metrics if Γ ′|F (Γ ′)\F (Γ ′) is compact.

Proof. The first claim in 2) is a consequence of Assumption 5.16. The second

holds by replacing the pair ((T, Γ ), (T ′, Γ ′)) with ((T ′, Γ ′), (T ′′, Γ ′′)). 3) is

evident from the fact that T ′ is relatively compact. 1, 4) and 5) are clear. 6)

follows from 5). ¤

Remark 5.19. It is not obvious from the definition that δ(Γ, g) > −∞. We will

show that δ(Γ, g) ≥ 0 under a condition on Γ (Corollary 5.26).

Remark 5.20. Fix a point x ∈ Fi and let γ ∈ Γ ′
x. We denote by iγ the index

such that γ(x) ∈ T ′
iγ . Since dmi = g2

i |dzi|2 is invariant under Γ ′, we have
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|γ′|x giγ (γ(x)) = gi(x). Hence, quite roughly speaking, the sum
∑

γ∈Γ ′x

1
giγ (γ(x))s

can be regarded as the Poincaré series of Γ ′. The above integration is obtained

by replacing the sum with the integration with respect to dm.

Definition 5.21. A Borel measure µ on T ′ (resp. T ′) is called a δ-conformal

measure if µ(γ(A)) =
∫

A
|γ′|δx dµ(x) holds for any Borel subset A of T ′ (resp.

T ′) and any element γ ∈ Γ (resp. Γ ′) defined on A. Let Mδ(T ′) and Mδ(T
′)

be set of δ-conformal Radon probability measures on T ′ and T ′, respectively.

We equip Mδ(T ′) with the weak-∗ topology.

Under our assumptions, a δ-conformal measure is in fact a Radon measure

if it is Borel regular. We will consider only Radon measures in what follows.

Lemma 5.22. There is a bijection between Mδ(T
′) and Mδ(T ′).

Proof. If µ ∈ Mδ(T ′), then supp µ cannot be contained in ∂T ′ because (Γ, T )

is compactly generated. Indeed, if x ∈ supp µ∩∂T ′, then there are an element

γ of Γ and an open set U of T such that γ is defined on U , µ(U) 6= 0 and

γ(U) ⊂ T ′. If V is a neighborhood of x in T ′ such that V ⊂ U , then V is

measurable and µ(γ(V )) ≥ C |γ′|δx µ(V ) for some C > 0 by the δ-conformality

of µ. We may still assume that µ(V ) > 0 so that γx ∈ supp µ. Hence we

can define r : Mδ(T ′) → Mδ(T
′) by setting r(µ) = 1

µ(T ′)µ|T ′ . Conversely, let

e : Mδ(T
′) →Mδ(T ′) be as follows. Let ν ∈Mδ(T

′) and let A ⊂ T ′ be a Borel

subset. If A ⊂ T ′, then set µ̃(A) = ν(A). Otherwise, let A = A1 ∪ · · · ∪ Ar

be a decomposition of A into disjoint Borel subsets such that an element γi

of Γ is defined on Ai and γi(Ai) ⊂ T ′. Set then µ̃(A) =
r∑

i=1

∫
γi(Ai)

|ζ ′i|δy dν(y),

where ζi = γ−1
i . It is easy to verify that µ̃ is well-defined. Let e(ν) = µ,

where µ = 1
µ̃(T ′)

µ̃. By the construction, r ◦ e is the identity on Mδ(T
′). If

µ1, µ2 ∈ Mδ(T ′) and if r(µ1) = r(µ2), then 1
µ1(T ′)µ1|T ′ = 1

µ2(T ′)µ2|T ′ holds

in Mδ(T
′). Let A be a Borel subset of T ′ and let A = A1 ∪ · · · ∪ Ar be a

decomposition of A as above. By the δ-conformality of µ1 and µ2, we have

µ1(A) =
r∑

i=1

∫

γi(Ai)

|ζ ′i|δy dµ1(y) =
r∑

i=1

∫

γi(Ai)

µ1(T
′)

µ2(T ′)
|ζ ′i|δy dµ2(y) =

µ1(T
′)

µ2(T ′)
µ2(A).

Letting A = T ′ we see that µ1(T
′) = µ2(T

′) and therefore µ1 = µ2. ¤

We topologize Mδ(T
′) via the above identification, then Mδ(T

′) become

compact.

Proposition 5.23. Assume that F (Γ ) is non-empty and let δ = δ(Γ, g) be

the critical exponent of J(Γ ) with respect to an invariant metric g. Assume in
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addition that δ > −∞, then, there is a δ-conformal Radon measure supported

on ∂F (Γ ) ⊂ J(Γ ) under Assumption 5.16.

The following proof is an adaptation of a proof of a corresponding result for

the limit sets of Kleinian groups and the Julia sets of mapping iterations found

respectively in [24] and [23]. We work on (Γ ′, T ′).

Proof. First assume that lim
s↘δ

Sg(s) = +∞. Let C(T ′) be the set of continuous

functions on T ′. Consider the functional

ϕs(f) =

∑
i∈I

∫

F ′i

f(x)gi(x)−s+2 |dzi|2

Sg(s)
, where f ∈ C(T ′)

and let µs be the probability measure on T ′ obtained by the Riesz representa-

tion theorem. Let µδ be a weak limit of {µs} as s tends to δ from above.

Claim 1. µδ is supported on ∂F (Γ ) ∩ T ′.
Indeed, let x ∈ F (Γ ) ∩ T ′ and let U be a Fatou neighborhood of x in

F (Γ ). Then, gi is bounded from above on U so that lim
s↘δ

µs(U
′) = 0, where

U ′ = U ∩ T ′. Since lim
s↘δ

µs(U
′) ≥ µδ(U

′), we have µδ(U
′) = 0. One can show

that Int J(Γ ) ∩ supp µδ = ∅ by a similar argument.

Claim 2. µδ is δ-conformal.

Let x ∈ T ′
i and let ε > 0. By the Koebe theorem, there is a neighborhood

U of x in F (Γ ) ∩ T ′ such that if γ ∈ Γ is defined on U , then
∣∣∣ |γ

′|y
|γ′|x − 1

∣∣∣ < ε

holds for any y ∈ U . On the other hand, by the definition of µs, we have

|γ′|sx (1−ε)µs(U) ≤ µs(γ(U)) ≤ |γ′|sx (1+ε)µs(U). First take the limit as s ↘ δ,

and then ε → 0, we see that µδ is a δ-conformal measure on T ′. Replacing µδ

with r(µδ), where r is defined in Lemma 5.22, we obtain a δ-conformal measure

on T ′.
If S(s) converges as s tends to δ, then we will apply Patterson’s construction

as follows (cf. [24, p.47]). Let {εn} be a sequence of positive numbers decreas-

ing to zero. We will define a sequence {Xn}, with Xn →∞, and an increasing

function h on [0, +∞) inductively. Let X0 = 0, X1 = 1 and set h(x) = 1 on

[0, 1]. If h is defined on [0, Xn], then choose Xn+1 so that

h(Xn)

Xn
εn

∑
i∈I

∫

Xn<gi≤Xn+1

g−δ+2+εn
i |dzi|2 ≥ 1.

This is possible because Sg(δ − εn) = +∞. Set now

h(x) = h(Xn)

(
x

Xn

)εn

for x ∈ [Xn, Xn+1],
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then h is increasing. Define S∗g (s) by

S∗g (s) =
∑
i∈I

∫

F ′i

h(gi)g
−s+2
i |dzi|2 ,

then S∗g (δ) diverges because the inequality

∑
i∈I

∫

F ′i

h(gi)g
−δ+2
i |dzi|2 =

∑
i∈I

∞∑
n=0

∫

gi∈(Xn,Xn+1]

h(Xn)

(
gi

Xn

)εn

g−s+2
i |dzi|2

≥
∑
i∈I

∞∑
n=0

1

holds. For any ε > 0, there is a real number r0 such that h(rt) ≤ tεh(r) holds

for r > r0 and t > 1. Indeed, log h(x) = εn(log x− log Xn) + log h(Xn) so that

if εn < ε and r > Xn, then log h(rt) = εn(log t + log r − log Xn) + log h(Xn) ≤
ε log t + log h(r) for t > 1. Finally we show that S∗(s) converges if s > δ.

Choose ε > 0 so that δ + ε < s and fix an r > 1 such that h(rt) ≤ tεh(r)

holds for t > 1. Since h is increasing, h(gi)
h(r)

≤ h(rgi)
h(r)

≤ gε
i if gi > 1. Setting

C = h(r), we have h(gi)g
−s+2
i ≤ Cg−δ+2

i for gi > 1. Consequently, S∗g (s)
converges if s > δ. Repeating the construction after replacing Sg(s) with

S∗g (s), a δ-conformal measure can be also obtained in this case. ¤

The following fact is well-known.

Lemma 5.24. Let µδ be a δ-conformal measure and let supp µδ be its support.

Assume that z ∈ Jc(Γ
′) ∩ supp µδ, then there is a positive constant C which

depends on θ and µδ, and a sequence {rn} of positive numbers which converges

to zero such that

C−1 ≤ µδ(Dz(rn))

rδ
n

≤ C.

Proof. Let {γn} be as in Definition 5.8. Let zn = γn(z), Dn = Dzn(θ) and let

ρn =
θ

4 |γ′n|z
. Then γ−1

n (Dn) contains Dz(ρn) by the Koebe distortion theorem.

On the other hand, again by the Koebe distortion theorem, there is a constant

C1 > 0 independent of mappings such that

∣∣∣∣
|γ′n|zn

|γ′n|x
− 1

∣∣∣∣ < C1 if x ∈ Dzn(θ/2).

Hence we have

µδ(Dz(ρn/2)) ≤ µδ(γ
−1
n (Dzn(θ/2))) ≤ (1+C1) |γ′n|−δ

z µδ(Dzn(θ/2)) ≤ (1+C1) |γ′n|−δ
z .

On the other hand, set σn = min

{
ρn

2(1 + C1) |γ′n|z
,
θ

2

}
, then γ−1

n (Dzn(σn)) ⊂
Dz(ρn/2). Hence we have

µδ(Dz(ρn/2)) ≥ µδ(γ
−1
n (Dzn(σn))) ≥ (1 + C1)

−1 |γ′n|−δ
z µδ(Dzn(σn)).
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The proof is completed if we show the following:

Claim. For any r > 0, there is an m > 0 such that µδ(Dx(r)) > m for any

x ∈ supp µδ.

Indeed, if not, then there is a sequence {xn} ⊂ supp µδ such that µδ(Dxn(r)) ≤
1
n
. We may assume that xn converges to a point x ∈ T ′. Then, µδ(Dx(r

′)) = 0

if r′ < r/2. On the other hand, there is an element γ ∈ Γ such that γ(x) ∈ T ′

because (Γ, T ) is compactly generated. We may assume that γ is defined on

Dx(r
′), and then µδ(γ(Dx(r

′))) = 0. This is a contradiction.

This completes the proof of the claim and the lemma. ¤

Assume that Mδ(T ′) is non-empty and let Eδ(T ′) be the set of extremal

elements of Mδ(T ′). It can be shown by modifying Proposition 4.1.6 of [32]

that µ ∈ Eδ(T ′) if and only if µ is ergodic, where an element µ ∈Mδ(T ′) is said

to be ergodic if either µ(A) = 0 or µ(A) = 1 if A is a Γ |T ′-invariant measurable

set. Ergodic measures on T ′ are also defined by replacing T ′ with T ′. By the

Choquet representation theorem [25], given an element µ ∈Mδ(T ′), there is a

unique Borel probability measure τµ on Eδ(T ′) such that µ =
∫
Eδ(T ′) mdτµ(m).

Lemma 5.25. Ergodic measures in Mδ(T ′) correspond to ergodic measures in

Mδ(T
′) under the mappings r and e in Lemma 5.22.

Proof. The claim for r is easy to verify. To show the converse, let ν ∈Mδ(T
′)

and suppose that there is a Γ |T ′-invariant measurable subset A of T ′ such

that 0 < e(ν)(A) < 1. Since A ∩ T ′ is Γ ′-invariant and measurable, either

ν(A ∩ T ′) = 0 or ν(A ∩ T ′) = 1. If ν(A ∩ T ′) = 0, then e(ν)(A ∩ T ′) = 0

and e(ν)(A \ T ′) > 0. By the δ-conformality, there is a measurable subset A′

of A \ T ′ and an element γ of Γ defined on a neighborhood of A′ such that

γ(A′) ⊂ T ′ and that e(ν)(γ(A′)) > 0. This is a contradiction because A is

Γ |T ′-invariant so that e(ν)(A ∩ T ′) ≥ e(ν)(γ(A′)). Hence ν(A ∩ T ′) = 1. Set

B = T ′ \ A, then 0 < e(ν)(B) < 1 holds so that ν(B ∩ T ′) = 1 by the same

reason. This is impossible and the proof is completed. ¤

After identifying Mδ(T
′) with Mδ(T ′) and passing to the reduction, we

denote Mδ(T
′) by Mδ(T ).

There is the following analogue to the Julia sets of rational mappings. The

proof is a modification of a standard argument [23], [31]. For a Borel subset

A of T , the Hausdorff dimension of A is denoted by dimH(A) and the δ-

dimensional Hausdorff measure of A is denoted by Hδ(A).

Corollary 5.26. Let µδ be a δ-conformal measure and suppose that µδ(Juc(Γ )) 6=
0. Then δ = dimH(Juc(Γ )∩supp µδ). More precisely, there is a C > 0 such that

C−1µδ(A) ≤ Hδ(A) ≤ Cµδ(A) holds for any Borel subset A of Juc(Γ )∩supp µδ
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with µδ(A) > 0. In addition, µδ(A) = 0 if Hδ(A) = 0. Finally if µδ ∈ Eδ(T ),

then there is a c > 0 such that µδ = cHδ.

Note that if δ = δ(Γ, g) in the above corollary, where g is an invariant metric

g satisfying Assumption 5.16, it follows that δ(Γ, g) ≥ 0.

Proof. Fix an invariant metric g and denote δ(Γ ′, g) by δ. Let x ∈ Juc(Γ ) ∩
supp µδ ⊂ ∂F (Γ ′). Let {γn} and θ be as in Definition 5.8. We may assume

that {|γ′n|x} is strictly increasing. On the other hand, since x is uniformly

conical, there is a real number α > 1 such that

∣∣γ′n+1

∣∣
x

|γ′n|x
< α. We will show

that there is a positive real number C such that

∀r ∈ (0, 1], ∃n s.t. − C < |γ′n|x + log r − log θ < C.

Indeed, set C = max{log |γ1|x , log α}, then there is an integer n such that

log |γ′n|x − log |γ′1|x + log r − log θ ≤ 0 < log
∣∣γ′n+1

∣∣
x
− log |γ′1|x + log r − log θ.

Since log
∣∣γ′n+1

∣∣
x
− log |γ′n|x < log α, the inequalities log |γ′n|x + log r − log θ <

log |γ′1|x < C and log |γ′n|x + log r− log θ > log
∣∣γ′n+1

∣∣
x
− log α + log r− log θ >

log |γ′1|x− log α > −C hold. Therefore, there is a C1 > 1 such that for a given

r ∈ (0, 1], there is an n such that C−1
1 < r |γ′n|x θ−1 < C1. By repeating the

same argument in the proof of Lemma 5.24, we have

C−1
2 ≤ µδ(Dx(r))

rδ
≤ C2

for a suitable C2 > 1 independent of x.

We will compare µδ with the Hausdorff measure by following [29] (see also

[24, Theorems 4.4.2 and 4.6.3]). Let A ⊂ Juc(Γ ) be a Borel subset and set

A′ = A∩ supp µδ. Let {Di} be any cover of A′ by open balls centered at points

in A′ with ri < 1, where ri denotes the radius of Di. Then, µδ(A) = µδ(A
′) ≤

C2

∑
rδ
i so that µδ(A) ≤ C2Hδ(A

′) ≤ C2Hδ(A).

Next we assume that A ⊂ Juc(Γ ) ∩ supp µδ and µδ(A) > 0. We will show

that Hδ(A) ≤ Cµδ(A) for some C which is independent of A. First we show

the claim when A = Juc(Γ )∩ supp µδ. Fix a positive real number ε less than 1

and let {D1, D2, . . .} be an at most countable family of open balls which covers

A such that the center of Di belongs to A\ (D1∪· · ·∪Di−1) and that ri ≥ ri+1

and r1 ≤ ε, where ri is the radius of Di. Let D′
i be the open ball concentric

with Di and of radius ri/2. Let Ω =
⋃
i

D′
i, then Ω is a disjoint union so that

∑
i

rδ
i = 2δ

∑
i

(ri

2

)δ

≤ 2δC2

∑
i

µδ(D
′
i) = 2δC2µδ(Ω) ≤ 2δC2µδ(A).

By taking the limit with respect to ε, we obtain Hδ(A) ≤ 2δC2µδ(A) if A =

Juc(Γ ) ∩ supp µδ. In particular Hδ is finite on Juc(Γ ) ∩ supp µδ. Let A be a
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Borel subset of Juc(Γ ) ∩ supp µδ with µδ(A) > 0. Then, µ-almost every point

of A is a density point, namely,

lim
t→0

µδ(Da(t) ∩ A)

µδ(Da(t))
= 1

holds for µδ-a.e. a (recall that µδ is a Radon measure). For any α > 0, there

are a measurable subset A′ of A with µδ(A \ A′) < α, Hδ(A \ A′) < α and a

t0 > 0 such that
µδ(Da(t) ∩ A)

µδ(Da(t))
≥ 1− α

for all a ∈ A′ and t < t0. Let 0 < ε < min{1, t0}. By repeating the same

argument as above replacing A with A′, we obtain

∑
i

rδ
i ≤ 2δC2

∑
i

µδ(D
′
i) ≤

2δC2

1− α

∑
i

µδ(D
′
i ∩ A) ≤ 2δC2

1− α
µδ(A).

Hence by taking the limit with respect to ε, we have Hδ(A
′) ≤ 2δC2

1−α
µδ(A).

Therefore, we have Hδ(A) ≤ 2δC2µδ(A) by taking the limit with respect to α.

Finally assume that µδ ∈ Eδ(T ), then µδ is ergodic. Set M = µδ + Hδ,

then µδ is absolutely continuous with respect to M . Let f = dµδ

dM
be the

Radon-Nikodym derivative. Then it is easy to see that f is µδ-measurable and

invariant under Γ . By the ergodicity, f is constant which is neither 0 nor 1 by

the inequality just established. This completes the proof. ¤

6. Characteristic classes

The arguments in [3] depend only on the fact that foliations restricted to

the Fatou sets are transversally Hermitian. Hence they are also valid for the

decomposition in the present paper, and the Godbillon-Vey class and the Bott

class can be localized to the Julia set. The proof is completely the same as in

[3] so that we will give only a sketch.

Theorem 6.1. Let (M,F) be a transversally holomorphic foliation of complex

codimension one, of a closed manifold.

1) The Godbillon measure in the sense of Heitsch-Hurder [16] is supported

on the Julia set.

2) The residue of the imaginary part of the Bott class [3] at the Julia set

is well-defined.

Sketch of the proof. Fix an invariant Hermitian metric g on Q(F)|F (F), where

Q(F) denotes the complex normal bundle of F . If U is a neighborhood of

J(F) (which is not necessarily saturated), then there is a Hermitian metric

h on Q(F) which coincides with g on a neighborhood, say V , of F (F) \ U .
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We can find a Bott connection ∇b which is a unitary connection for h on

M \ V ′, where V ′ is an open set slightly smaller than V . If we denote by ∇u

a unitary connection for h, then, representatives of Godbillon-Vey class and

the imaginary part of the Bott class obtained by using ∇b and ∇u vanish on

V ′. ¤

We have the following weak version of Duminy’s theorem [9] (see also [16]).

Corollary 6.2. Let (M,F) be a transversally holomorphic foliation of complex

codimension one, of a closed manifold.

1) The Godbillon-Vey class vanishes if the Julia set is empty.

2) The imaginary part of the Bott class vanishes if the Julia set is empty.

Remark 6.3. The first claim follows also from the second claim, because the

Godbillon-Vey class is equal to the product of the imaginary part of the Bott

class and the first Chern class of complex normal bundle [2].

Remark 6.4. J(F) 6= ∅ implies that there is either a leaf with a hyperbolic

holonomy or a leaf to which a series of expanding local holonomy converges by

Theorem 5.3. If one happens to know that Jc(F) 6= ∅, then there is really a

hyperbolic holonomy by Lemma 5.10. On the other hand, it is known that the

support of the Godbillon measure contains leaves of exponential growth if it is

non-empty [18]. Theorem 6.1 implies that J(F) contains leaves of exponential

growth if the Godbillon-Vey class of F is non-trivial.

The real part of the Bott class can be non-trivial even if the Julia set is

empty.

Example 6.5. Let (z0, z1) be the standard coordinates of C2 and let X =

z0
∂

∂z0
+ λz1

∂
∂z1

, where λ ∈ C \ {t ∈ R t ≤ 0}. It is known that the integral

curves of X induces a transversally holomorphic foliation F of S3 ⊂ C2 and

the Bott class B(F) of F is given by B(F) = λ + 1
λ
∈ H3(S3;C/Z). If λ ∈ R,

then F is transversally Hermitian but the real part of B(F) is non-zero.

There is another kind of such examples which is essentially due to Bott and

Heitsch [4].

Example 6.6. Let k be an integer greater than 2 and realize Zm = Z/mZ
as {t ∈ C tm = 1}. Define a Zm-action on S2k−1 × CP 1 by t(x, [z0 : z1]) =

(tx, [t−1z0 : z1]). Let M = (S2k−1 × CP 1)/Zm, then M fibers over the Lens

space L(m; 1) = S2k−1/Zm with projection p. (M, p) is a foliated fiber bundle

in the sense that M is equipped with a foliation F with leaves (S2k−1 × {[z0 :

z1]})/Zm. If we set U = (S2k−1 × C)/Zm, where C = {[z : 1]} ⊂ CP 1, then
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U ⊂ M and U is a line bundle over L(m; 1). Let FU be the restriction of F
to U , then the line bundle is isomorphic to the complex normal bundle of FU

pulled back by the inclusion of L(m; 1)×{[0 : 1]} into M . On the other hand,

since p∗ : H∗(U ;Z) ∼= H∗(L(m; 1);Z) → H∗(M ;Z) is injective, it suffices to see

that c1(U)2 has a torsion part. The mapping [x, z] → ([x], zx) is an embedding

of U to L(m; 1)×Ck, where the bracket means the equivalence class. It follows

that U is the pull-back of the tautological bundle over CP k−1 by the natural

projection, which we denote by π. As π∗ is the projection from Z to Z/mZ
in degree 4, c1(U)2 is its generator. On the other hand, the foliation is clearly

transversally Hermitian and therefore the Julia set is empty.

7. the transversal Kobayashi metric

The invariant metric constructed in Section 3 is not canonical although the

Fatou-Julia decomposition has naturality (Lemma 2.12). A canonical (pseudo-

)metric can be constructed by modifying the construction of the Kobayashi

metric. By integrating the Kobayashi metric, the transversal Kobayashi dis-

tance is obtained. The transversal Kobayashi distance was studied by Duchamp

and Kalka [8]. Here we discuss some properties of the transversal Kobayashi

metric.

Let (Γ, T ) be a (not necessarily compactly generated) pseudogroup of local

biholomorphic diffeomorphisms of Cq and we denote by TT the holomorphic

tangent bundle of T .

Definition 7.1 (cf. [14]). Let X be a 1-dimensional complex manifold. A

holomorphic 1-cocycle valued in Γ defined on X is a triplet ({ϕi}, {Ui}, {γji})
as follows:

1) {Ui} is an open covering of X,

2) each ϕi is a holomorphic map from Ui to a component of T ,

3) if Ui ∩Uj 6= ∅, then there is an element γji of Γ such that ϕj = γji ◦ ϕi

on Ui ∩ Uj, moreover, γii = id, and

4) γikγkjγji = id if Ui ∩ Uj ∩ Uk 6= ∅.

Holomorphic 1-cocycles valued in Γ defined on X correspond to transversally

holomorphic mappings from X to a foliated manifold.

Definition 7.2. For (x, v) ∈ TT , denote by Ω(x, v)R the set of holomorphic

1-cocycles valued in Γ defined on D0(R) such that ϕ(0) = x and ϕ∗0e0 = v,

where e0 is a unit vector at the origin with respect to the standard Hermitian

metric on C. It is clear that Ω(x, v)R is non-empty if R is small enough. Set
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then

KT (x, v) = inf
Ω(x,v)R 6=∅

1

R
.

It is immediate that KT (x, 0) = 0.

Actually D0(R) is considered as the Poincaré disc of radius R and centered

at the origin, equipped with the metric R2dz2

(R2−|z|2)2
. The same function can

be obtained even if 1-cocycles such that ϕ(p) = x for some p ∈ D0(R) and

ϕ∗p(ep) = v are considered in the definition if 1
R

is replaced with R
R2−|p|2 .

We recall some fundamental properties [26].

Lemma 7.3 ([26]). KT (x, αv) = |α|KT (x, v) for any (x, v) ∈ TT and α ∈ C.

Proof. Let ({ϕi}, {Ui}, {γji}) ∈ Ω(x, v)R. Then the cocycle ({ψi}, {Vi}, {γji}),
where ψi(z) = ϕi(αz) and Vi = 1

|α|Ui, belongs to Ω(x, αv)|α|−1R. ¤

Lemma 7.4. The function KT is Γ -invariant in the sense that KT (γx, γ∗xv) =

KT (x, v) for any γ ∈ Γx.

Proof. Let ({ϕi}, {Ui}, {γji}) ∈ Ω(x, v)R. Assume that ϕ0(0) = x and (ϕ0)∗0e0 =

v. Let W be an open neighborhood of x of which the closure is contained in

dom γ, and let V∞ = ϕ−1
0 (dom γ) and V ′ = ϕ−1(W ). We define a 1-cocycle

ψ as follows. If we set Vi = Ui \ V ′, then {Vi} ∪ {V∞} is an open covering of

D0(R). Let ψi be the restriction of ϕi and let ψ∞ = γ ◦ ϕ0 on V∞. Noticing

that Vi ∩ V∞ ⊂ Ui ∩ U0, set γ∞i = γ ◦ γ0i and γi∞ = γi0 ◦ γ−1 if Vi ∩ V∞ 6= ∅.

It is easy to see that ({ψi} ∪ {ψ∞}, {Vi} ∪ {V∞}, {γji} ∪ {γab}), where a = ∞
or b = ∞, is a holomorphic 1-cocycle which belongs to Ω(γx, γ∗xv)R. ¤

There is a following property as usual.

Proposition 7.5. The function KT is upper semicontinuous.

Proof. We need the Royden lemma [26], [27] if the dimension of T is greater

than one. Here we give an elementary proof in one-dimensional case. We may

assume that T ⊂ C and denote ϕ∗ by ϕ′. Given a positive real number ε > 0,

choose δ > 0 so that 1
R(1−δ)

< 1/R + ε holds. If (x, v) ∈ TT , then there is a

1-cocycle in Ω(x, v)R such that ϕ0(0) = x, ϕ′0(0) = v and FT (x, v)+ε > 1/R. If

(y, w) is close enough to (x, v), then y ∈ U0 so that y = ϕ0(p) for some p ∈ U0.

Moreover, λϕ′0(p) = w holds for some λ ∈ C close enough to 1. By composing

with a Möbius transformation of D0(R), we can find a holomorphic 1-cocycle

ψ defined on D0(R) such that ψ(0) = y and λψ′(0) = w, where ||λ| − 1| < δ.

It follows that KT (y, w) ≤ 1
R(1−δ)

< 1/R + ε < KT (x, v) + 2ε. ¤
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By integrating KT , a locally defined (pseudo-) distance function dT on T

can be obtained. It is easy to see that dT is continuous.

Remark 7.6. The locally defined distance dT is distinct from the Kobayashi

distance in general. In order to obtain the Kobayashi distance, we need the

infimum of the length of Γ -paths with respect to KT .

Definition 7.7. (Γ, T ) is said to be Kobayashi hyperbolic if dT is locally a

distance.

The Kobayashi hyperbolicity is invariant under equivalence of pseudogroups.

If (Γ, T ) is Kobayashi hyperbolic, then dT induces a metric on each component

of Ti. Moreover, dT induces the same topology on T as an open subset of C.

Remark 7.8. It is not difficult to see that the set {x ∈ T KT (x, v) = 0 for any v ∈ TxT}
is open. If it is also closed and KT (x, v) 6= 0 for some (x, v), then (Γ, T ) is

Kobayashi hyperbolic.

Theorem 7.9. Let (Γ, T ) be a compactly generated pseudogroup of local biholo-

morphic diffeomorphisms of C. If (Γ, T ) is Kobayashi hyperbolic, then (Γ, T )

is Cω-Hermitian and the conclusion of Theorem 4.24 holds.

Proof. We proceed as in the proof of Lemma 2.16 and retain the notation.

First we show that for ∀ε > 0, ∃δ > 0 such that D′
y(δ) ⊂ Dy(ε) for any y ∈ T ′,

where D′
y(δ) denotes the open δ-ball centered at y with respect to dT . If not,

there is an ε > 0 and a sequence {yn} such that D′
yn

(1/n) 6⊂ Dyn(ε). We may

assume that {yn} converges to a point y in T ′. Note that dT (y, yn) converges

to 0. If ε1 > 0, then D′
y(ε1) ⊃ D′

yn
(1/n) provided dT (y, yn) + 1/n < ε1. Hence

D′
y(ε1) 6⊂ Dy(ε/2) for any ε1 > 0. This is a contradiction.

Let x ∈ T ′ and let δ′ be such that D′
y(δ

′) ⊂ Dy(δ/2) for any y ∈ T ′, where

δ is chosen as in the proof of Lemma 2.16. Let δ′′ be such that Dx(δ
′′) ⊂

D′
x(δ

′) ∩ T ′. Assume that the germ at z ∈ Dx(δ
′′) of any element of Γ ′(k)

is defined on Dx(δ
′′) as an element of Γ , then dT (γx, γy) < δ′. It follows

that γy ∈ D′
γx(δ

′) ⊂ Dγx(δ/2). Therefore γDx(δ
′′) ⊂ Dγx(δ/2) ⊂ Dγz(δ) and

γiγ is defined on Dx(δ
′′) as an element of Γ . Therefore, Dx(δ

′′) is a Fatou

neighborhood and consequently T = F (Γ ). ¤

Remark 7.10. The proof of Theorem 7.9 requires only that the dT induces the

same topology as the original one on T , not that it is induced by KT .

The above corollary can be regarded as a variant of the following result of

Duchamp-Kalka [8, Lemma 3.6 and Theorem 3.7].

Theorem 7.11 ([8]). Let (M,F) be a transversally holomorphic foliation of

complex codimension q. If the transversal Kobayashi distance distinguishes
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distinct leaves, then the the leaf space M/F is Hausdorff. If moreover M is

closed, then F is a (generalized) Seifert fibration.

8. Examples

Example 8.1. Let [z0 : z1 : z2] be the homogeneous coordinates of CP 2 and

let Ui = {[z0 : z1 : z2] ∈ CP 2 zi 6= 0}, and let (u1, u2), (v1, v2) and (w1, w2) be

the inhomogeneous coordinates on U0, U1 and U2, respectively. Let Xi be a

vector field on respective Ui given by the formula

X0 = λ1u1
∂

∂u1

+ λ2u2
∂

∂u2

,

X1 = −λ1v1
∂

∂v1

+ (−λ1 + λ2)v2
∂

∂v2

,

X2 = −λ2w1
∂

∂w1

+ (λ1 − λ2)w2
∂

∂w2

,

We assume that λ1λ2 6= 0, λ1 6= λ2 and λ1/λ2 6∈ R, then the (singular) foliation

F of CP 2 induced from these vector fields has three singularities p1 = [0 : 0 : 1],

p2 = [0 : 1 : 0] and p3 = [1 : 0 : 0]. If we set Li = {[z0 : z1 : z2] ∈ CP 2 zi = 0},
then F is Hermitian when restricted to CP 2 \ L, where L = L0 ∪ L1 ∪ L2.

Indeed, choose µ1, µ2 ∈ C such that λ1µ2 − λ2µ1 6= 0, µ1 6= µ2 and let Y =

µ1u1
∂

∂u1
+ µ2u2

∂
∂u2

. Then Y induces a foliated section of Q(F) on CP 2 \ L.

Hence by requiring the length of Y to be 1, a transverse invariant Hermitian

metric, say h, is obtained. Since Y and Xi are linearly dependent on L, the

metric h diverges at L in the sense of Definition 5.15.

Let Di be a small round ball centered at pi and let Si ≈ S3 be its boundary.

The condition λ1/λ2 6∈ R implies that F is transversal to Si. Let M = CP 2 \
(D1 ∪ D2 ∪ D3) and let M3 be its double. Then M3 naturally inherits a

transversally holomorphic foliation F3 induced from F . The foliation F3 has

three compact leaves L0, L1 and L2, namely, the leaves induced from L0, L1

and L2. The above description shows that F (F3) = M3 \ (L0 ∪ L1 ∪ L2). The

residue of the Bott class at J(F3) is calculated in [3].

The number of the Julia components can be arbitrarily large. Let M ′ be

a copy of M and let ∂M ′ = S ′1 ∪ S ′2 ∪ S ′3. Let M1 be the manifold with

boundary obtained by gluing M with M ′ along S1 and S ′1, and S2 and S ′2.
Then ∂M1 = S3 ∪ S ′3. If we denote by F4 the natural foliation of the double

M4 of M1, then J(F4) consists of 4 connected components. In general, let

N1, . . . , Nr−2 be copies of M1 and let Mr be the manifold obtained by gluing

them. Let Fr be the naturally induced foliation of Mr. Then J(Fr) consists of
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r connected components. The Julia sets of foliations in this example consist

of conical leaves and the critical exponents are equal to zero.

There is another description of the above example.

Example 8.2. Let {U0, U1, U2} be as in the previous example. We blow up

CP 2 at the origin of U0, namely, let C̃2 = {((u1, u2), [t1 : t2]) t1u2 − t2u1 = 0}
be C2 blown up at the origin and replace U0 by C̃2. Denote by C̃P 2 the

resulting manifold.

Consider again the vector field X0 on C2, then X0 can be lifted to C̃P 2 as

follows. Let Vi =
{

((u1, u2), [t1 : t2]) ∈ C̃2 ti 6= 0
}

(i = 1, 2) and let ϕi : Vi →
C2 be as follows, namely, define ϕ1 by ϕ1(((u1, u2), [t1 : t2])) = (u1, t2/t1)

and ϕ2 by ϕ2(((u1, u2), [t1 : t2])) = (u2, t1/t2), respectively. Let (Z1, Z2) =

ϕ1 (((u1, u2), [t1 : t2])) and (W1,W2) = ϕ2 (((u1, u2), [t1 : t2])). Define vector

fields X̃0 on C̃2 by the property

ϕ1∗X̃0 = λ1Z1
∂

∂Z1

+ (λ2 − λ1)Z2
∂

∂Z2

,

ϕ2∗X̃0 = λ2W1
∂

∂W1

+ (λ1 − λ2)W2
∂

∂W2

.

It is easy to see that X̃0 is well-defined and it coincides with X0 on C2 \ {0} =

C2 \E, where E denotes the exceptional fiber. Thus obtained foliation of C̃P 2

has 4 singularities. The leaves induced from L1, L2, L3 and the exceptional

fiber E are separatrices. By imitating the previous construction, one can obtain

a (non-singular) foliation of which the Julia set consists of 4 components. Then

by continuing cut and paste procedures or taking blow-ups, foliations with

arbitrary number (greater than 3) of Julia components can be obtained.

We will examine some examples in [11].

Example 8.3 ([11, Example 8.4]). Let Γ be a Kleinian group and let CP 1 =

Ω(Γ) t Λ(Γ) be the decomposition into the domain of discontinuity and the

limit set. Let F be a suspension of this action. Then F (F) corresponds to Ω(Γ)

and the J(F) corresponds to Λ(Γ). Indeed, one can repeat the same argument

as in the proof of Proposition 4.2 after introducing the Poincaré metric on each

component of Ω. Note that if we begin with a Kleinian group Γ such that its

conical limit sets Λc(Γ) is not the same as the limit set Λ(Γ), then we can obtain

a foliation such that Jc(Γ ) is not closed. Note also that if Γ is not torsion-free,

then we have F (F) ) FGGS(F). On the other hand, if Γ is geometrically

finite, then the conformal measure constructed in Section 5 coincides with

the Patterson-Sullivan measure by the uniqueness [29]. Moreover, the critical

exponent of F is equal to the critical exponent of the Poincaré series of Γ. The
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case where Γ ⊂ Aff(R) is non-discrete and non-abelian is important. In this

case, J(F) = JGGS(F) and they correspond to R∪{∞}. The Julia set consists

of conical points, namely, we have Jc(Γ ) = J(Γ ). The critical exponent of F
is equal to 1.

The same construction by suspension is also possible if Γ is non-discrete but

finitely generated. If Γ = PSL(2;C), where the closure is taken with respect

to the Hausdorff topology, then J(F) is the whole manifold.

Example 8.4 ([11, Example 8.10]). Example 8.3 can be modified using ram-

ified covers. We adopt the notation in [11]. Let h : π1(B) → Aff(R) ⊂
PSL(2;C) be a homomorphism and form the suspension. Assume that the

image is non-discrete and non-abelian and that the ambient manifold M is

diffeomorphic to B × CP 1. If we denote by L the leaf which corresponds to

∞ ∈ CP 1, then the holonomy group of L consists of germs of mappings of the

form z 7→ az/(1 + bz) with a > 0 and b ∈ R, where ∞ is considered as the

origin. Set M ′ = B × S3 and consider the mapping M ′ → M induced by the

Hopf fibration S3 → CP 1. By pulling-back, M ′ is equipped with a foliation

with a compact leaf L which is equal to B times the fiber of the Hopf fibration.

By construction, there is a non-trivial homomorphism from π1(M
′ \ L) onto

Z. Hence there is an n-fold covering M ′
n of M ′ ramified along L for any n > 0.

Let Fn be the foliation of M ′
n by pull-back. Then Fn is naturally transversally

holomorphic and has a compact leaf, say Ln, with holonomy group which con-

sists of the germs of the mappings of the form z 7→ (azn/(1 + bzn))1/n. The

Fatou-Julia decompositions also coincide in this case: J(Fn) is the pull-back

of real line of CP 1, which is locally the union of codimension-one submanifolds

with singular locus Ln, while F (Fn) consists of two components which are

pull-back of the upper and lower half spaces. The critical exponent of Fn is

equal to 1.

Example 8.5 ([11, Example 8.6]). There is a foliation which is transversally

Hermitian but of which the GGS-Julia set is the whole manifold. On the

other hand, the Julia set in our sense is empty by Lemma 2.16. In particular,

F (F) ) FGGS(F).

Example 8.6 ([11, Example 8.9]). There is a foliation of a connected manifold

of which the GGS-Julia set has non-empty interior without being the whole

manifold. It is constructed by inserting a certain foliation ([11, Example 8.7])

into Example 8.3 which has two GGS-Fatou components corresponding to the

upper and the lower half spaces. Then, one of the GGS-Fatou components

is changed into a GGS-Julia component so that this GGS-Julia component

has non-empty interior without being the whole manifold. The Fatou-Julia
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decomposition of the original foliation is the same as ours. On the other hand,

the modified foliation is still transversally Hermitian on the modified part. It

is easy to see that the new GGS-Julia component is still a Fatou component

in our sense so that the interior of the Julia set is empty.

In fact, the author does not know if there is an example of a compactly

generated pseudogroup (Γ, T ) such that Γ\T is connected and that the Julia

set J(Γ ) has non-empty interior without being equal to T .

We will present some other examples.

Example 8.7. Let Γ be a lattice in SL(2;C) such that M = Γ\SL(2;C)/U(1)

is a closed manifold, where U(1) =

{(
a 0
0 a−1

)
|a| = 1

}
. Let H =

{(
a b
0 a−1

)
a ∈ C∗, b ∈ C

}
,

and let F̃ be the foliation of SL(2;C)/U(1) with leaves gH/U(1), g ∈ SL(2;C).

There is a foliation F of M naturally induced from F̃ . It is easy to see that

J(F) = M , on the other hand, it is known that the Godbillon-Vey class of F
is non-trivial [2].

There are foliations of which the Julia set is the whole manifold as in Ex-

amples 8.3 and 8.7. There is another kind of such examples.

Example 8.8. Let T = (C \ {0})/〈γ〉, where 〈γ〉 denotes the group generated

by the mapping γ(z) = 2z. We denote again by z the point in T represented

by z by abuse of notation. Let ξ : T → T be ξ(z) = z2. The mapping ξ is not

a diffeomorphism but there is an open covering {Oi} of T such that the each

restriction ξi of ξ to Oi is a diffeomorphism onto its image. It is easy to see

that the pseudogroup Γ generated by ξi’s acting on T is compactly generated.

It is also easy to see that J(Γ ) = T . Γ can be realized as the holonomy

pseudogroup of a transversally holomorphic foliation by modifying Hirsch’es

construction [17]. The following construction is due to S.Matsumoto [20]. Let

T ′ = C/Z2 and let ϕ be the automorphism of T ′ given by ϕ(z) = 2z. Then

(T ′, ϕ) is holomorphically conjugate to (T, ξ). Let D3 be the closed unit ball

in R4 and let f : T ′ → D3 be a smooth embedding into the interior of D3.

Define g : T ′ → T ′ ×D3 by g(z) = (ϕ(z), f(z)), then g is also an embedding.

Let N be a closed tubular neighborhood of g(T ′). Then ∂N is homeomorphic

to T ′ × S2. Let F1 be the foliation of T ′ ×D3 with leaves {{z} ×D3}, where

z ∈ T ′. Then the leaves of restriction of F1 to ∂N are {{z} × S2}, z ∈ T ′. By

gluing ∂N and ∂(T ′ × D3), we obtain a foliated manifold M equipped with

a transversally holomorphic foliation F . The holonomy pseudogroup of F is

equivalent to Γ .

We do not know if there is a reasonable extension of the Fatou-Julia de-

composition to not necessarily compactly generated pseudogroups. Indeed, it
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is easy to obtain non-compactly generated pseudogroups such that they are

equivalent but the Julia sets do not correspond under the equivalence. In

terms of foliations, this implies that the Fatou-Julia decomposition of a folia-

tion of a non-compact manifold depends on the choice of the realization of the

holonomy pseudogroup.

If (Γ, T ) is not compactly generated, we tentatively say that U ⊂ T is a

Fatou neighborhood if any germ γu ∈ Γu, u ∈ U , extends to an element of Γ

defined on U , and let F̃ (Γ ) be the union of Fatou neighborhood. The Julia

set in this sense can have non-empty interior without being the whole space.

Example 8.9. Let (Γ, T ) be as in Example 8.8 and let S = {z ∈ C |z| < 1 + ε},
where ε is a small positive real number. Let O′ = {z ∈ C 1 < |z| < 1 + ε} and

let η : O′ → T be the mapping naturally induced by the inclusion of O′ into C.

If we denote by Γ1 the pseudogroup generated by Γ and η, and set T1 = T tS,

then J̃(Γ1) = T1. The pseudogroup Γ1 is however not compactly generated.

Example 8.10. Let D5+ε(0) be a disc of radius 5 + ε centered at 0 and let

T = T1 t T2, where T1 = T2 = D5+ε(0). We denote the natural coordinates on

T1 and T2 by z and w, respectively. Let Γ be the pseudogroup generated by

γ0, γ1 and γ2 defined as follows. First set

Si = {z ∈ Ti 25/(5 + ε) < |z| < 5 + ε} , i = 1, 2,

and define γ0 : S1 → S2 by γ0(z) = 25/z. Second, let

O1 =
{

re
√−1t ∈ T1 1 < r < 2, |t| < δ

}
,

where δ is chosen so small that γ1 : O1 → T1 defined by γ1(z) = z2 is a

diffeomorphism onto its image. Finally set

O2 =
{

re
√−1t ∈ T1 2 < r < 4, |t| < δ

}
,

and define γ2 : O1 → O2 by γ2(z) = 2z.

It is easy to see that the pseudogroup Γ is not compactly generated, and

J̃(Γ ) = [1, 4] ∪⋃
Ik ∪

⋃
Al, where Ik =

{
e2k−1

√−1δt 1 ≤ t ≤ 4
}

, k = 0, 1, . . .,

and Al =
{

2i/le
√−1t i = 0, . . . , 2l, 0 ≤ t ≤ 2δ

}
. Adding an irrational rotation

to Γ as a generator, one can obtain a pseudogroup Γ1 such that J̃(Γ1) =

{z ∈ T1 1 ≤ |z| ≤ 4}. The pseudogroup Γ1 is not compactly generated, either.

Finally we will mention semigroups. If f is a rational mapping from CP 1 →
CP 1, then it is well-known that the Julia set J(f) of f is defined. It can be

considered as the Julia set of the semigroup generated by f . It is natural to

ask if there is a suitable notion which unifies such a kind of semigroups and

compactly generated pseudogroups, and if it is possible to introduce the notion
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of Julia sets in a compatible way. We think that the answer is positive, and

will discuss this problem in a forthcoming paper.
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