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Abstract

The potential for faults in disttiuted computing sys-

tems is a significant complicating factor for appiica-

twn developers. While a variety of techniques exist for

detecting and cmvcting fault+ the implementatwn of

these techniques in a pa-r context can be dsfl-

cult. Hence, we propose a fawlt &tectwn savice &-

signed to be inc-qomted, in a modular fashion, into

distributed wnaputing systems, tools, or applications.

This setice uses well-known techniques based on un-

reliable fault &tectors to detect and report component

failure, while allowing the user to tm&off timeliness of

reporting against fde positive nates. We describe the

architecture of this Sewice, nqwrt on experimental R-

sults that quantifi its wst and accumcy, and &s*

its use in two applications, monitoring the status of

system wmponents of the GUSTO computational grid

testbed and as part of the NetSolve network-enabled nu-

merical solver.

1 Introduction

A major difference between distributed and sequen-

tial computing, as they are usually practiced, ia that

in a d~tributed computation, individual components

may fail without the entire computation being termi-

nated. Indeed, components may fail without the rest of

the computation being aware that failure has occurred.

These phenomena represent both an opportunity and

a challenge. The opportunity is that a computation

can, in principle, continue to operate despite failure

of individual components. The challenge is that new

techniques are required for detecting and reapondmg to

0
component failures. Many years of research on these

topics have yielded a considerable body of theoretical

and practical knowledge of fault detection, handling,

and recovery techniques.

In our work, we approach these issues from the per-

spective of the user of what are termed wmputational

@is [9], that is, nelxvorks of computing resource+ of-

ten high-performance computers, intended to be used

in an integrated fashion for such problems as collab

orative engineering, computational steering, and dis-

tributed supercomputing. Grid programmers often

want to adapt existing computational models, tools,

or applications for distributed execution. They require

services that simpli& this task by encapsulating com-

plex aspects of distributed computing environments. In

previous work, we have developed and demonstrated

the utility of services for resource location, resource

allocation, information, communication, security, and

data access, collectively termed the Globua toolkit [8].

These services use simple local mechanisms to support

a variety of global policies. For example, the G1obus

resource management service deploys just a simple lo-

cal manager at each managed resource, but supports

a variety of management policies via resource brokera

and co-allocators [6].

In this paper, we propose a low-level service to

support fault handling strategies in grid applications.

These applications may want to respond to component

failure in a variety of ways. For exampIe, they may

●

●

●

terminate the entire application (i.e., fail-stop);

ignore the failure and continue execution;

allocate a new resource and restart the failed ap

plication component [13, 4]; or

The submitted manuscript has been created

by the University of Chicago as Operator of

Argonne National Laboratory (“Argonne”)

under Contract No. W-31 -109-ENG-38 with

the U.S. Department of Energy. The U.S.

Government retains for Itself, and others act-

ing on its behalf, a paid-up, nonexclusive,

irrevocable worldvAde license in ssid arlcle

to reproduce, prepa~e derivative works. dis-

tribute copies to the public, and perform pub-

ficly and display publicly, by or onbehalfo!
the Government.



DISCLAIMER

This repoti was prepared as an account of work sponsored

by an agency of the United States Government. Neither the

United States Government nor any agency thereof, nor any

of their employees, make any warranty, express or implied,

or assumes any legal Iiabiiity or responsibility for the

accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that

its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or

service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United

States Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or

any agency thereof.



DISCLAIMER

Port ions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.



● use replication and reliable group communication

primitives to continue execution [1, 15]:
.

Each of these behaviors has costs and benefits asso-

ciated with it and the appropriate behavior will be

application-dependent.

To date, grid applications have either ignored fail-

ure issues or have implemented failure detection and

response behavior completely within the application.

This approach places an undue burden on the appli-

cation developer and complicates the design and de

velopment of grid applications. The situation could

be improved considerably if the underlying grid infras-

tructure provided basic services that support the im-

plementation of application specific failure behaviors,

such as those described above.

In this paper, we consider the nature of these grid

services and propose a specific service based on fault

detectors, which detect when a system component has

failed and notify the application of that fact. Fac-

tors such as the higidy variable communication latency

and best-effort service provided by today’s wide area

networks, and the need to construct a scalable ser-

vice impact the design of the fault-detector. These

pragmatic issues dictate that we consider an unn4-

able fault-detection service which may sometimes re-

port a resource to have failed, only to retract that re-

port at a later time. We have designed and imple-

mented such a service and have demonstrated that a

range of application-specific fault behaviors can be im-

plemented on top of this service.

In Section 2, we discuss the nature of faults, review

some basic resulta in distributed systems, and show

why fault detection is an appropriate basic service to

provide in the grid. In Section 3, we detie a system

model which we use to define an fault detection archi-

tecture. In Section 4, we present a design for a specific

implementation of a fault detection service and dis-

cuss how th~ service has been used to construct fault-

toIerant grid applications (Section 6). In Section 5, we

provide results that quanti& the accuracy of our fault

detector in a realistic wid+area environment. We then

compare our approach with other approaches to con-

structing fault-tolerant grid applications and conclude

with a discussion of future work.

In summary, the contributions of the work described

in this paper are:

We propose the unreliable fault detector as a ba-

sic grid service and propose a specific fault de

tection architecture and implementation for wide-

area computational environments.

Using experimental data, we demonstrate that our

●
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approach to fault detection can be implemented

efficiently and accurately.

We demonstrate that the proposed service can be

used to implement useful behaviors in distributed

computing systems and applications.

Faults and Distributed Systems

Components of a distributed system can fail in dif-

ferent ways [18]. In the simplest case of crash jazhme,

a component simply ceases to function, for example

due to an operating system crash or the severing of a

network connection. A special case of crash failure ia

fad-stop failure, in which a crash results in the compo-

nent transitioning permanently to a state that allows

other components to detect that it has failed (e.g., by

ceasing to send periodic “i-am-dive” messages). More

complex failure modes are also possible, for example

when a component fails by not functioning “correctly,”

such as when a memory chip returna an incorrect value,

a packet is corrupted during transit over the network,

or (in the extreme, s*caIled Byzantine case) because

a component operates in a malicious fashion, perhaps

causing a general failure or obscuring the real source of

the failure.

In this paper, we focus on the problem of detect-

ing fail-stop crash failures. While in some situations,

system components can detect and correct even Byzan-

tine failures through the use of mechanisms such as r~

dundancy and retransmission, this is difiicult and may

require detailed knowledge about the components in

question. Furthermore, many such failure modes are

masked at the component level.

We are interested in the question of what basic ser-

vices should be provided as part of a distributed com-

putational infrastructure to support fault recovery. To

gain insight into this problem, it is intereating to con-

sider what is the least amount of information needed to

implement some basic reliable distributed algorithms,

such as Consensus. In the Consensus algorithm, all

functioning processes must propose and unanimously

agree on a value, in spite of the fact that any of the

participating processes may fail during the execution of

the algorithm. Consensus has interesting practical uses

as it can be used to implement essential fault-tolerant

functions such as leader election and voting.

A fundamental result from distributed systems is

that Consensus can not be implemented in a dis-

tributed system subject to crash failures if the system

ia asynchronous, i.e., if no timing assumptions can be

made, such as the amount of time it takes for two pro-

cesses to communicate or the amount of time it takes
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for an operation to complete [7]. Note that this asyn-

chronous distributed system model corresponds well.
“with the best-effort service provided over current wide

area networks.

One solution to this problem is to augment the dis-

tributed system with additional information, such as

knowledge about which system components have failed.

Given this information, it is possible to implement Con-

sensus in the presence of crash failure. Less formal fail-

ure behaviors, such as restart, can also be defined with

respect to failure detection. Failure detection provides

a sound foundation on which to build a range of failure

behaviors and as such, we conclude that it should be

provided as a basic service in distributed computing

environments.

It is interesting to consider what are the weakest

properties that a failure detector can have and still

be useful. In [5], it is shown that Consensus in asyn-

chronous distributed systems can be solved with an

unreliable failure detector: a failure detector that can

erroneously indicate that a component has failed only

to correct this error at a later time. Furthermore, an

unreliable failure detector can be distributed, with each

component of the system having access to ita own de

tector and each detector potentially producing a differ-

ent account of which system components have failed.

This result holds as long as the failure detector meets

some minimal requirements for completeness and accu-

racy. In particular:

fact that the failure detector will eventually identify all

failed components and at least one functioning com-

ponent. In real systems, this unbounded wait is unac-

ceptable as it can be the case that the cost of waiting

for an absolutely correct determination may exceed the

cost that would be incurred if we simply assumed that

the failure detector was correct and took action based

on this assumption.

Ultimately, the decision as to when the information

provided by a failure detector is to believed must be

the responsibility of an application; the failure detec-

tor cannot interpret its results. An application must

use the information provided by the failure detector

to make a decision based on the probability of a fail-

ure report being in error, the application-specific cost

of performing some action if the report was false, and

the application-specific cost of not performing that ac-

tion if the report was in fact true. Clearly, information

about the reliability of the failure collector is necessary.

In Section 5, we show that the probability of an erro-

neous report ia generally low, and decreases the longer

that one waits.

In summary, we propose that a d~tributed comput-

ing environment should provide unreliable failure de-

tection as a basic service, providing notification when

system components might have failed and leaving it to

the application to interpret this information based on a

characterization of the fault service, future information

provided by the service and application requirements.

● all failed components are eventually discovered

and permanently identified as such, and

● at least one functioning component is known to be

functioning by all functioning components in the

system after some point in time.

From the perspective of producing a practical ser-

vice, unreliable failure detectors have several a&an-

tages over reliable detectors. Because each component

can have access to its own failure detector, and detec-

tors do not have to agree about what components of

the system have failed, the service does not have to be

centralized, nor do we need to provide a globally con-

sistent state across detectors. Furthermore, unreliable

communication protocols can be used to implement an

unreliable failure detector. These protocols have the

advantage of lower overheads, lower latency and better

scalability. For these reasons, an unreliable failure de-

tector will be more scalable, simpler, and more efficient

to implement then a reliable detector.

An unreliable failure detection service is not with-

out limitations. Provably correct algorithms guaran-

tee termination by a combination of iteration and the

3 Design of a Fault Detection Service

We now consider issues that arise in designing the

proposed fault detection service. We discuss the en-

tities for which we wish to detect failure, the design

goals for our fault detection service, and the overall

architecture of this service.

3.1 SystemModel

We fist define a model for the system being moni-

tored by the fault detector. This model identifies the

visible components of the system and hence determines

what types of entities the fault detector needs to mon-

itor. In principle, system components could be entire

sites, specific computers, processors within a computer,

processes, threads, network interfaces, network connec-

tions, or any number of other low-level system abstrac-

tions. For reasons of complexity, utiMy and overhead,

we have chosen to model the system as consisting of

processes and computers.

Our ultimate goal in constructing the fault detec-

tor is to enable the construction of robust applications,
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not to diagnose the causes of system or application fail-

ure. Considering a computer w a single unit prohibits
.

the detection of some types of failure, such as a spe+

cific disk going off-line. However, it is often the case

that failures of a component of a computer are detected

by underlying system mechanisms and cause the entire

computer to fail. A similar argument can be made for

not considering low-level software abstractions such as

threads. In both cases, we considered the cost of having

the fault detector deal with such low-level abstractions

ss outweighing any potential benefits.

Note that we do not include networks as components

to be monitored. Detection of network failure tenda to

be difficult because it is hard to discriminate between

host failure and network failure without the existence

of a second, independent path. Furthermore, the iden-

tification of such patha when they exist requires both

detailed knowledge of network topology and coordina-

tion among distributed monitors. For reasons of sim-

plicity and generality, we limit monitoring to processes

and hosts. Note that monitoring processes and hosts

does serve to monitor indirectly the network connec-

tions between these monitored objects.

3.2 Design Goals

Given this system model, we consider the require-

ments which the fault detector must satisfy. The main

concerns that should be addressed in the design of a

fault detector for grid environments are:

●

●

●

●

b

Scalability. The design of the fault detector must

be capable of scaliig to large numbers of processes

and computers.

Accuracy and completeness. The fault detec-

tor must identi~ faults accurately, with both false

positives and false negatives being rare.

Timeliness. Problems must be identified in a

timely fashion, so that responses and corrective

actions can be taken as soon as possible.

Low overhead. Monitoring should not have a

significmit impact on the performance of applica-

tion processes, computers, or networka.

Flexibility. We want to support a range of

application-specific fault detection policies and us-

age models. For example, applications may wish

to control which entities are monitored, how of-

ten they are monitored, the criteria used to report

failure, and where failures are reported.
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Figure 1. Architecture of a fault detector for

monitoring computers and processes

3.3 A Fault Detection ServiceArchitecture

Aaillustrated in Figure 1, our fault detection service

architecture is defined in terms of two types of entities:

1.

2.

A local monitor is responsible for obseming the

state of both the computer on which it is located

and any monitored processes on that computer. It

generates periodic “i-am-alive” messages or heart-

beats, summarizing th~ status information.

A data collector receives heartbeat messages gener-

ated by local monitors and actually identifies failed

components based on missing heartbeats.

As we shall see in the next section, this separation

of local monitor and data collector functions providea

considerable flexibility in how we handle faults.

Scalability and performance concerns require that

the heartbeats communicated by the local monitors be

transmitted via a connectionless, typically unreliable

protocol. Hence, the data collector must take into ac-

count network delays and possible packet loss when

interpreting a lack of heartbeat from a particular local

monitor. We d~cuaa these issues beIow.

4 A Fault Detection Service

We now discuss the implementation of a specific

fault detector service, namely the Globus Heartbeat

Monitor (HBM), which provides a fault detection ser-

vice for applications developed with the Globus toolkit.

HBM comprises three components:
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●

✎

●

●

A local monitor, responsible for monitoring the

computer on which it runs, as well as selected pro-

cesses on that computer.

A client registration API, which an application

uses to specify the processes to be monitored by

the local monitor, and to whom heartbeats are

sent.

A data collector API, which enables an applic~

tion to be notified about relevant events concern-

ing monitored processes.

In brief, an application that wishes to use the HBM

service needs to do just two things:

1.

2.

Register the processes for which failure detection is

required, either by calling the registration API di-

rectly, or by having the registration function called

externally on behalf of the application.

Use the data collector API to construct a data

collector that implements the desired application-

specific fault behavior, whether this is global ter-

mination, rescheduling of a failed component, fur-

ther testing to verify that failure has occurred, etc.

We describe these aspects of the HBM service in turn.

4.1 Client Registration API

Globus-baaed grid systems maintains a HBM local

monitor for each Globua-managed resource. Hence, the

Globus user need not be concerned with creating or

maintaining these processes. The local monitor ia typ-

ically run on the resource itself, to simplify the task of

monitoring the status of the resource and of processes

running on the resource. On workstations and shared

memory computers, such as the Convex Exemplar, the

local monitor runs directly on the machine in question.

On distributed memory computers such as the Cray

T3E, the local monitor runs on a tightly coupled front

end or service node.

A process must be explicitly registered with the local

monitor for its status to be reported. A client regiatr~

tion API is provided for this purpose. This API may

be called either from within the application program

or externally by a separate process. The registration

process provides the local monitor with the identity of

the process to be monitored, the identity of the data

collector(s) to which process heartbeats are to be sent,

and a heartbeat interval. On termination, processes

use an unregister function provided by the client API

to disconnect from the local monitor, preventing them

from being reported as failed.

The local monitor can use a range of methods to

determine the status of registered processes. We cur-

rently use the standard UNIX ps command to report

on monitored processes. The /et c/proc mechanism

found on many UNIX platforms could also be used.

The local monitor reports the status of each moni-

tored process to the appropriate data collectors at the

time of process registration and unregistration, and at

fixed specified intervals in between. A separate mes-

sage of size 70-90 bytes is sent for each monitored pro-

cess. This message includes data identifying the mon-

itored process and its current status. In addition to

process heartbeats, the local monitor also generates a

heartbeat for itself, allowing an application to detect

a resource failure even if there are no monitored pro-

cesses running on that resource.

Heartbeat data is sent to the data collectors using

an unreliable datagram service: specifically, the UDP

protocol. We chose this protocol over the reliable TCP

protocol for several reasons. First, TCP ia comection-

oriented and consumes resources on both the sender

and receiver. The overhead associated with UDP ia

less, making this solution more scalable than if TCP

had been used. Second, the fact that TCP ia a reli-

able protocol tends to introduce additional latency into

communication operations. Given that heartbeats are

time sensitive, introduction of additional latency in the

delivery of heartbeat data is ill advised. Finally, when

available, we wanted to have the option to use multi-

cast to send data from a local monitor to an arbitrary

and dynamic set of data collectors, and TCP cannot

be used in conjunction with multicast.

4.2 The Data Collection API

The HBM data collection API allows for the con-

struction of application-specific data collectors. The

API is callback-based, allowing an application to reg-

ister a function to be called when an event of inter-

est occurs. When making a call to the data collection

API, an application provides a callback function along

with an event mask to indicate the events the callback

should be called on, such as a late heartbeat or a heart-

beat received.

The API implementation keeps track of all regis-

tered processes and records whenever a heartbeat ar-

rives. Since the data collector knows the frequency

at which heartbeats are being generated by registered

processes, it can infer missing heartbeats. The API

can generate callbacks for missing heartbeats for indi-

vidual processes, or for the host itself. Callbacks can

also be issued when other events of interest occur, such

ss when a new process is registered, or when a process
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unregisters or is reported as having failed.

Note that the function of the data collection API

Is limited to keeping track of heartbeats and invoking

callbacks into the application. An application-specific

data collector must provide a set of callback functions

that implement the desired responses in response to

the HBM callbacks. Again, it is the responsibility of

the application to make the determination as to com-

ponent failure based on how late the heartbeat is, the

requirements of the application, and the type of fault

recovery being implemented.

We note that the structure of the data collection API

offers us a great deal of flexibility not only in how a data

collector is implemented, but where it is implemented

as well. Data collection functions can be integrated

into the basic algorithms of an application, provided by

specialized modules started as part of the application,

or by separate, stand-alone programs. This flexibility

further promotes the use of the HBM to implement a

wide range of fault behaviors.

5 Experimental Results

We are concerned with two aspects of HBM perfor-

mance: first, the costs associated with monitoring (at

hosts, network, and data collectors), particularly as the

number of monitored hosts increases; and the accuracy

of the HBM reports: that is, how quickly a failure is

reported, and how frequently such reports turn out to

be incorrect. We discuss these two issues in this section

and report on experimental results that provide some

insights into these questions.

As discussed above, HBM monitors send heartbeat

messages to data collector(s) at regular intervals. In

addition to recording and handling failures reported

by the local monitors, the HBM data collector must

diagnose potential component failure when no heart-

beat message hss been received from that component

for a specified amount of time. The data collector ia not

guaranteed to receive all such messages, as heartbeata

may be lost or delayed for a variety of reasons, includ-

ing network congestion, scheduling delays at the local

monitor or data collector, and network failure. Hence,

there is always the possibility that the data collector

may diagnose a component w having failed when it has

not. For this reason, any discussion of HBM accuracy

involves a tradeoff between the amount of time we are

prepared to wait before concluding that a component

has failed, and the number of false reports that we are

prepared to deal with.

Our goal ia to minimize some function of report-

ing delay, false positive rates, and system overheads.

The parameters that we can control are system costs
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Figure 2. The nine hosts used in the HBM ex-

periments, showing their connectivity, which
included local area networks, a metropolitan
area network (Los Nettos, a 100 Mb/s network

in southern California), and the Internet.

(by which we mean primarily heartbeat frequency, al-

though the priority given to HBM processes and to

HBM network traffic can also be cost issues) and defi-

nition of failure. Note that these variables can be varied

on a per-component basis.

Previous research [2, 16, 3, 17] provides some rele-

vant data. For example, in a 1992 study in which 32

byte packets were sent over a 128 Kb/s transatlantic

link at regular intervals for extended periods, Bolot ob-

serves high loss rates (970) but notes that losses are es-

sentially independent as long as probe traffic accounts

for less than 10% of available bandwidth. In a 1997

study, Borella et al. [3] analyzed traffic between three

pairs of sitea located variously within a metropolitan

area and on a wide area network. They sent an 80 byte

packet every 30 msec and observed packet loss rates of

0.36%, 0.61% and 3.54% for the three pairs. Losses

were seen to be bursty, but the mean loss burst size

of 6.9 (around 200 msec) suggests that loss rates for

packets sent at 10 aec intervala would be essentially

independent. Simulation studies show similar results.

In order to obtain more detailed data on loss rates

we conducted our own studies. We studied HBM per-

formance on an experimental system comprising the

nine hosts shown in Figure 2. A local monitor at each

host sent heartbeats to data collectors at every host (in-

cluding itself) at 10 second intervals for several days,

during which time a total of 3,835,905 messages were

sent, of which 93.6% were received. The (modified)

data collectors logged timestarnped heartbeats for sub-

sequent analysis.

We use the heartbeats received at each host to com-
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plit~’ intmwrrival times. The results are summarized

in four figures. Figures 3 and 4 present results from
<

the point of view of a single host, bolas at 1S1; Fig-

ures5and 6 provide results for all heartbeats received,

summed across all hosts.

Figures 3 and 5 express results as a histogram, show-

ing the frequency with which various interarrival times

are observed. Because heartbeat packets are generated

every 10 seconds, and messages losses are independent,

we expect a large peak at 10 seconds (corresponding to

packets that arrive with no intervening lost packet); a

second step at an interarrival time of 20 seconds cor-

responding to one lost packet; and so on. This is more

or less what we see, although because packets can be

delayed both in the network (to a small extent: typical

router queue delays are small) and by scheduling delays

at the generating and receiving processors (especially if

the processor is heavily loaded), the graph ia not quite

so regular.

Figures 4 and 6 express results in terms of the num-

ber of observed interarrival times greater than the time

on the X axis. (Notice that these graphs hence plot the

false positive rate that we can expect if we accept that

X-axis value as our definition of “failure.”) Figure 4

distinguishes the heartbeata received at bolss accord-

ing to the originating host. Notice the wide variation

in loss rates and in the extent to which network and

scheduling delays skew the interarrival times. Skew-

ing ia particularly noticeable for data from the Convex

Exemplar at Caltech ( “CIT:neptune” ). Examination

of the interarrival times observed by the local data

collector showed that this skew was due to delay in

scheduling the local monitor, caused by high loads on

the processor running the local manager.

Our results confirm the general trends observed in

previous studies. The vast majority of interarrival

times correspond to a packet that arrives with no in-

tervening lost packet. If we define “failure” as corre-

sponding to no heartbeat seen for 240 seconds, then the

false positive rate is leas than 1 in a 100,000. Further-

more, it appears that some of these “false positives”

are due not to an unfortunate series of dropped pack-

ets, but to temporary losses in network connectivity

that lasted several minutes: that is, eventa that we

might well wfit to see signalled as “failures.” More

rapid failure detection is possible, with some increase

in false positive rates: for example, at 35 seconds, the

false positive rate ia 1 in a few hundred. More frequent

heartbeats would be required to reduce false positive

rates at low interarrival times.

We also measured overheads associated with moni-

toring. The local monitors at the different hosts showed

CPU utilization averaging under 1.3%, with minimum

Figure 7. An interactive display tool for

GUSTO fault data

and maximum of 0.0570 and 1.5Y0, respectively. Most

of this utilization was due to children of the local moni-

tors, which executed the system ps program to get the

client status. The data collectors showed even lower

utilization, averaging under 0.1470, with minimum and

maximum of 0.06% and 0.29Y0, respectively.

6. HBM Applications

The HBM service has been used to monitor the

health and status of critical components in GUSTO,

a grid testbed that currently spans over 20 inatitu-

tiona [8]; and to detect server failure in a distributed

computing system called NetSolve [4].

HBM is used in GUSTO by system administrators

to identify problems in the testbed and to determine

which testbed sitea are functional. We are currently

using a single data collector which can report its data

through a web interface (e.g., see F@re 7) or via an

email notification system. This application revealed

that determining the status of arbitrary processes can

be expensive on some large parallel computers. For ex-

ample, a ps command without arguments on a loaded

512-processor Cray T3E can take 17 seconds of real

time. This time can be decreased significantly by pro-

viding ps with the list of processes whose status is of

interest, a change that has been made in the current

version of HBM.

HBM is used within NetSolve to construct a

application-specific restart-based fault recovery mecha-

nism. NetSolve is a library that provides remote access

to mathematical solvers and libraries such as ScaLA-

PACK. Client calls to a NetSolve-enabled library are

9



Forwarded to a NetSolve agent, which transparently

dispatches the call to the most capable server that haa
>

the library installed. If either the server fails or the

server or network becomes too slow, the NetSolve agent

redispatches the request to another server.

lNetSolve initially relied on the underlying network

transport layer to notify it of broken connections. How-

ever, in many situations, this resulted in the NetSolve

agent hanging. This behavior has been eliminated by

modifying NetSolve to use HBM to detect server fail-

ure.

Only NetSolve servers register with HBM, while

l~dbh agents act as data collectors, monitoring the

status of the servers to which they have dispatched re-

quests. Clients are not monitored at all. Currently,

NetSolve shifts a computation over to a new server if

a single heartbeat is missed. However, since the over-

head of moving a problem to a new server is known to

the agent, it would be possible to wait for additional

missed heartbeats if the cost of resubmitting the re

quest is high.

7 Related Work

Numerous distributed computing systems incorp~

rate fault detection and recovery mechanisms. We re-

view some of th~ work here, contrasting it with the

approach described in this paper. Our work ia distin-

guished primarily by its focus on providing a basic,

flexible service that can be used to construct a range

of application-specific fault behaviors.

Distributed systems, such as ISIS [1] and Horue [19]

provide high reliability via replication and ordered

group communication protocols. An ISIS-specific fault

detection system, similar to HBM, is used to deter-

mine when a process or computer leavea a computa-

tion. However, this service is not made available to the

application, nor ia the application able to choose how

faults are handled. Ordered group communication op

erationa enable the construction of robust applications,

but the use of replication as the only means of provid-

ing fault recovery makes ISIS unsuitable for some grid

applications, especially extremely large computations

requiring the use of multiple supercomputing resources.

Network batch queuing systems operate in dis-

tributed, networked environments and often use check-

point and restart techniques to provide fault toler-

ance. Checkpointing is provided in systems such as

CODINE [11] and in high-throughput systems such as

Condor [13]. The fault behaviors for these systems are

limited to checkpoint/restart with no support for more

robust design such as replication.

In the Legion widt+area computing system [12], a

hierarchy of “phoenix” demons is used to monitor sys-

tem processes and restart them as needed. Applica-

tion fault tolerance is provided using the Mentat macro

dataflow model, in which objects can be replicated,

with only one replica active and the remaining dor-

mant. The first dormant replica is scheduled by the

Legion system only if it does not receive a reply to

a status query (ping) from the active replica within

a prescribed number of seconds. While this approach

suffices for the Mentat programming model, it assumes

that system components function perfectly and that

communication links do not fail.

In PVM [10] and the PVM-based SNIPE sys-

tem [14], fault detection is performed by the PVM dae-

mon which is located on each host, based on the receipt

of responses (or not) from the daemons on other hosts.

Application-level fault detection must be explicitly in-

cluded in the application program code.

Weissman has compared different fault tolerance

techniques for wide-area metacomputing [20]. In the

Gallop system, each site runs a Scheduling Manager

that actively discovers the status of local machines by

“pinging” them. This monitoring function has been

used to notify replication and checkpointing fault tol-

erance mechanisms, which were also compared. This

approach detects some host and network failures, but

does not detect the failure of hosts on which ping re-

sponses are generated independently by the network

card. I?urthermore, it does not detect either system or

application process failures, and the scheduling man-

agers are single points of failures for their sites.

8 Conclusions and Future Work

We have described the design and implementation

of a fault detection service for high-performance dis-

tributed computing systems. By basing the service on

unreliable fault detection and providing a clear separa-

tion between monitoring, detection, and response, we

believe that we have succeeded in providing a flexible

and efficient core service that supports a wide range of

application requirements.

In our work to date, we have demonstrated that this

service can be used by applications with minimal per-

turbation to application structure. We have also shown

that this service has minimal impact on the load of the

machine implementing the service, typically less then

1.5% CPU utilization. Furthermore, we have shown

that the use of an unreliable fault detector does not

prohibit an application from making sensible decisions,

as the characteristics of the underlying transport mech-

anism ensure that the probability of error decreases

with time.
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While the HBM does well detecting process fail-

ure, discriminating between host and network failure
..1

‘& fundamentally difficult for any remote monitoring

approach. If absolutely no information about a host

is obtainable (e.g., a heartbeat) then it is impossible

to decide whether it is due to host or network failure.

However, we do not regard this as a significant prob-

lem for our applications, for which the knowledge that

a host is unavailable is more important than knowing

why.

We are working with various application groups and

tool developers to investigate further the utility of this

fault detection service. We expect to see a variety of

application-specific fault recovery mechanisms impk+

mented, including the use of replication and voting

protocols. We also hope to explore the use of more

rigorous fault tolerant behaviors such as reliable group

communication primitives, and to investigate the re-

lationship between heartbeat frequency, system over-

heads, failure criteria, and false positive rates. We are

particularly interested in understanding the utility of

adaptive techniques that modify either heartbeat rates

or failure criteria in response to observed heartbeat lose

behavior and system overheads.
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