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Variational mode decomposition (VMD) is a newmethod of signal adaptive decomposition. In the VMD framework, the vibration
signal is decomposed intomultiplemode components byWiener 	ltering in Fourier domain, and the center frequency of eachmode
component is updated as the center of gravity of themode’s power spectrum.�erefore, each decomposedmode is compact around
a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components
a
ect the decomposition e
ect inVMDalgorithm, a novelmethod of fault feature extraction based on the combination ofVMDand
particle swarm optimization (PSO) algorithm is proposed. In this paper, the numerical simulation and the measured fault signals
of the rolling bearing experiment system are analyzed by the proposed method. �e results indicate that the proposed method is
muchmore robust to sampling and noise. Additionally, the proposedmethod has an advantage over the EMD in complicated signal
decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with
the common method of envelope spectrum analysis.

1. Introduction

Rolling bearing is one of the most commonly used parts in
rotating machinery to support rotating sha�s. Due to the fact
that its health state is directly related to the safety and a stable
operation of the machine, the research of rolling bearing
fault diagnosis has a great signi	cance in actual application
[1]. However, the early incipient fault feature is very faint
and interfered by the strong background noise [2]. When
the rolling bearing is in failure due to the in�uence of load,
friction, noise, and other factors, the measured vibration sig-
nal is a multicomponent amplitude-modulated-frequency-
modulated (AM-FM) signal using system’s natural frequency
as carrier frequency and the fault characteristic frequency as
modulation frequency, respectively.�us, obtaining the AM-
FM signal by the original signal decomposition and reducing
the e
ect of noise are the emphasized research content in
extracting the early faint fault feature of the rolling bearing.

Currently, there aremanymethods used to fault diagnosis
for rolling bearings, but these methods have some inherent
limitations. For instance, wavelet transform (WT) [3, 4]
analysis is not adaptive, which is restricted by the selection of

wavelet basis function and the number of decomposition
levels; empirical mode decomposition (EMD) is lack of theo-
retical basis and there are some problems in its own algorithm
such as the phenomenon of model mixing and the end
e
ect [5–7], which has been used to detect the bearing fault
[8]. Although the ensemble empirical mode decomposition
(EEMD) [9] has some improvement in solving the problem
of model mixing, the actual e
ect is sensitive to the strong
background noise. Empirical wavelet transform (EWT) is
introduced by Gilles et al. aimed at extracting a series of AM-
FM signal from the original signal, which largely depends on
choosing the boundaries of Fourier spectrum appropriately
[10, 11]. �e sparse decomposition theory [12] and manifold
learning method [13] are proposed recently. However, the
sparse decomposition relies on the design of the redundant
atom library and decomposition algorithm, which has an
obvious problemof the large amount of calculation.�eman-
ifold learning result is also restricted by the parameter selec-
tion of delay time and embedded dimension. From another
aspect, the spectroscopy and ferrography of used grease are
applied to condition monitoring for rolling element bearing
[14], which has a limited capacity in detecting the noniron
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particle in lubricating oil and largely depends on the human
experience.

Lately, Dragomiretskiy and Zosso proposed a new varia-
tionalmode decomposition (VMD) [15]method, whichwas a
new advancedmultiresolution technique. A series of iterative
updating process was used to minimize the constrained
variational model; therefore, the vibration signal was decom-
posed into variousmodes or intrinsicmode functions (IMFs)
using calculus of variation. It overcame the disadvantage
of lacking theoretical basis and noise sensitivity of EMD.
Moreover, the VMD method could adaptively determine the
relevant frequency band and estimated the corresponding
model. Based on the above-mentioned advantage, it was
applied to the early fault diagnosis of rolling bearing [16,
17] and economics 	eld [18]. From the theory of VMD
algorithm, it can be known that the decomposed result of
VMD is restricted by the penalty parameter selection and
the number of components. In order to extract the faint
fault information of the bearing vibration signal e
ectively,
the parameters’ selection needs to be optimized. Taking into
account the characteristics of fast convergence speed, small
setting parameters and easy to implement particle swarm
optimization (PSO) algorithm [19, 20], the paper applies it
into the parameters optimization of VMD. �e optimized
two parameters are obtained by the PSO algorithm, which
is used to the process of feature extraction for faint fault
signal. A�er the original signal is decomposed by improved
VMD method, the optimal component can be identi	ed by
the principle of maximum correlated kurtosis [21]. �e index
of correlated kurtosis has integrated the characteristics of the
kurtosis and correlation function, which can represent the
changes of shock signal and avoid the problem of over	tting.
�e merits of the proposed method can be summarized that
the parameter selection and decomposition result of VMD
algorithm are less a
ected by human experience. Using this
method to analyze the simulated signal and the measured
vibration signal from rolling bearing experiment system, the
results indicate that the proposed method can accurately
extract the early characteristic frequency of faint fault signal
of the rolling bearing. �e �owchart about the proposed
method is shown in Figure 1.

�e rest of the paper is organized as follows. In Section 2,
the basic ideas of VMD and PSO are introduced. �e
simulation signal analysis is described in Section 3. �e
measured signal in rolling bearing experiment system was
analyzed in Section 4. �e 	nal conclusions are given in
Section 5.

2. Theories

2.1. Variational Mode Decomposition (VMD) Algorithm. Var-
iational mode decomposition (VMD) is a new method of
signal decomposition based onWiener 	ltering, one-dimen-
sional Hilbert transform, and heterodyne demodulation pro-
posed lately by Konstantin Dragomiretskiy. Di
erent from
EMD, it de	nes the mode component as amplitude-modu-
lated-frequency-modulated (AM-FM) signals as follows:

�� (�) = �� (�) cos (�� (�)) , (1)

�e time series of
vibration signal

Initialization parameter

Optimal parameter
combination obtained by

PSO method

�e signal preprocessing
by the proposed improved

VMD

Numerical simulation
signal analysis

Envelope spectrum
analysis

Fault feature
extraction

�e optimal mode

component selection by

correlated kurtosis

Measured signal analysis

Figure 1: �e �owchart about the proposed method.

where ��(�) is a nondecreasing function; thus ���(�) ≥ 0;
the envelope is nonnegative ��(�) ≥ 0. Additionally, the
change of envelope ��(�) and instantaneous frequency ���(�)
are much slower than ��(�). �erefore, the mode component��(�) can be regarded as a pure harmonic signal with
amplitude ��(�) and instantaneous frequency ���(�).

�e input signal is decomposed by VMD method into
the mode component of a speci	ed scale according to the
subjective setting scale assuming that each mode is a 	nite
bandwidth signal with a pulse as the center. In order to
evaluate the bandwidth of each mode and construct the
constraintmodel of the variational problem,VMD	rstly uses
the Hilbert transform to obtain the single spectrum of each
mode and then transfers them to the fundamental frequency
by exponential correction. �e bandwidth of each mode is
obtained through Gauss smooth demodulation signal 	nally,

which is called as 	2 norm squared of the gradient. �ereby,
the constrained variational problem is given as follows:

min��,��
{∑
�

��������� [(� (�) +
���) ∗ �� (�)] �−����

��������
2

2
} (2)

Subject to ∑
�
�� = �, (3)

where � is the original signal, � is the Dirac distribution, �
is number of modes, {��} fl {�1, �2, . . . , ��} denotes each
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mode function, {��} fl {�1, . . . , ��} indicates each center

frequency, ∑� fl ∑��=1 represents the sum of all mode
function, and ∗ denotes convolution. Due to the di�culty of
solving the constrained problem, the penalty parameter� and
the Lagrange multiplication operator �(�) are introduced to
convert the above constrained problem to the nonconstraint
problem. �ereby obtaining a new solution expression:

	 ({��} , {��} , �)
fl �∑
�

��������� [(� (�) +
���) ∗ �� (�)] �−����

��������
2

2

+ ����������� (�) − ∑� �� (�)
����������
2

2

+⟨� (�) , � (�) −∑
�
�� (�)⟩ .

(4)

�erefore, the Lagrangemultipliers,modal functions, and
their corresponding central frequency are iteratively updated
by using alternating directionmultipliermethod (ADMM) to
obtain the saddle point in the expression. Speci	c algorithm
of classical VMD is given as the �owing expression.

Step 1. Initialize {�̂1�}, {�1�}, �1, # ← 0.
Step 2. �e value of ��, ��, and � is updated according to the
following formula:

�̂�+1� (�) = �̂ (�) − ∑	 ̸=� �̂	 (�) + �̂ (�) /21 + 2� (� − ��)2 ,

��+1� = ∫
∞
0 � &&&&�̂� (�)&&&&2 '�∫∞0 &&&&�̂� (�)&&&&2 '� ,

��+1 = �� + *(� −∑
�
��+1� ) .

(5)

Step 3. Repeat the iterative process of (2) until the function

converges, which is to satisfy the condition of ∑� ‖�̂�+1� −�̂��‖22/‖�̂��‖22 < �, where � is a given accuracy requirement.

2.2. Particle Swarm Optimization (PSO) Algorithm. Particle
swarm optimization (PSO) is an intelligent algorithm to imi-
tate birds’ foraging behavior proposed by Kennedy, through
referring to the characteristics of all the individual bird in the
process of feeding, which is widely used in solving nonlinear
problems.

Each particle in the PSO algorithm is used as the solution
of the optimization problem, which has a position and the
corresponding speed determined by the optimization func-
tion.�e algorithm evaluates the pros and cons of all particles
by setting the appropriate 	tness function. In each iteration,
the particles constantly update their speed and position
according to the 	tness value of individual and the group.

�e updated particles continue to search the optimal value
in the search space.

Speci	c con	guration steps of PSO are as follows.

Step 1. Establish the appropriate 	tness function according
to the actual problem.�e iteration calculation is carried out
by setting the number of iterations, population number, the
initial position, and velocity of the particles.

Step 2. Calculate the optimal values 5 and 6, respectively,
compared with the optimal solution of the current popula-
tion and retain the better results, where 5 represents local
extremum of individual particles and 6 indicates global
extremum of group particles.

Step 3. Update the position and speed of all particles in the

population according to the formula 7�+1	� = �7�	� + 819(:�	� −;�	�) + 829(>�� − ;�	�), ;�+1	� = ;�	� + 7�+1	� , where � is the inertia
weight, 81, 82 are the learning factor, 9 is the random number

between 0∼1, and 7�	�, ;�	� are the speed and position of the
particle in the �th iteration of the ' dimension.

Step 4. Repeat Steps 2 and 3 until meeting the maximum
number of iterations.

2.3. VariationalModeDecomposition Based on Particle Swarm
Optimization Algorithm. In the traditional algorithm of
variational mode decomposition, the user needs to set the
penalty parameter and the number of the components before
processing the signal because of the theory limitation. From
the theoretical study of VMD, it can be known that the
larger penalty parameter indicates the smaller bandwidth
of each component decomposed by source signal and vice
versa. Similarly, inappropriate setting number of components
will also result in some unacceptable mode compositions.
�erefore, selecting the appropriate parameter group of the
component number and the penalty parameter is the key to
accurately extract the fault information.

PSO algorithm is a widely used intelligent optimization
algorithmcomparedwith other optimization algorithms such
as genetic algorithm and arti	cial 	sh algorithm. It is suitable
for the optimal selection of parameters in consideration of
its simple principle and mechanism, fast convergence speed,
and, meanwhile, the good performance of global search.
�e key part of the PSO algorithm based on the variable
mode decomposition is the selection of 	tness function.
Because of the incorrect settings of the penalty parameter and
the number of components, some artifact components will
generate, which are independent with the source signal. It is
acceptable that the artifact components have less similarity
with the source signal. �erefore, the cross-correlation coef-
	cient between the decomposed mode component and the
original signal is regarded as an evaluation index, which is
de	ned in the following formula:

A = ∑�=1 (B (#) − B) (C (#) − C)
[∑�=1 (B (#) − B)2∑�=1 (C (#) − C)2]1/2

, (6)



4 Shock and Vibration

where B(#), C(#) represent the original signal and the mode
component, respectively; F is the data length; A represents
the cross-correlation coe�cient.

From the above analysis, it can be seen that the cross-
correlation coe�cient A may �uctuate under the condition
of di
erent parameters selection. �e largest mean value of
cross-correlation coe�cient does not imply the best result of
mode decomposition. �e globally optimal value is achieved
by considering the mean value and the variance of cross-
correlation coe�cient.�e smaller value of variance indicates
the less deviation from themean value.�erefore, the optimal
penalty parameters and the number of components can be
well obtained by regarding the maximum ratio between
the mean value of A and the variance as 	tness function.
�e detailed 	tness function is expressed in the following
formula:

	t fun = mean (A)
var (A) . (7)

On the basis of the above theory analysis, VMD based on
PSO algorithm is applied to the analysis of simulated signal
and the fault feature extraction of rolling bearing experiment
system to verify the validity of the method in fault diagnosis.

3. The Analysis of Simulated Signal

�e measured rolling bearing vibration signal is always
consisted of the amplitude-modulated-frequency-modulated
(AM-FM) signals, harmonic signal, and noisy signal in actual
application. In order to verify the validity of the VMD based
on PSO, the fault signal model is built by the following
simulated signal:

;1 = sin (2��1�) ,
;2 = cos (2��2�) ,
;3 = sin (2��3� + cos (2��4�))

(8)

and then

G = ;1 + ;2 + ;3, (9)

where the frequencies of �1, �2, �3, and �4 are chosen as
90Hz, 150Hz, 500Hz, and 270Hz, respectively.�e synthetic
signal G is composed by sinusoidal signal ;1, cosine signal;2, and frequency-modulated (FM) signal ;3. �e sampling
frequency is set as 1000Hz and the sampling point is 1000.�e
time-domain graph of simulated signal G is shown in Figure 2.

�e VMD based on particle swarm optimization algo-
rithm is applied to decompose the above simulated signal.
�e number of iterations and the particles is 20, the inertia
weight linear decrease in the iterative process of the initial
value is 0.9, and the 	nal value is 0.4. �e penalty parameter
and the number of components optimized and selected by
particle swarm optimization (PSO) search algorithm are a
collection of (2064, 3), and the results of the decomposition
are shown in Figure 3.

In the three decomposed components shown in Figures
3(b), 3(c), and 3(d), the blue line is on behalf of the original
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Figure 2: �e simulated signal G.

Table 1: �e cross-correlation coe�cient of reconstruction signal.

Sinusoidal signal Cosine signal FM signal

Cross-correlation
coe�cient

0.9962 0.9985 0.9974

Table 2: �e result of EMDmethod.

Sinusoidal signal Cosine signal FM signal

IMF1 0.2021 0.6132 0.5921

IMF2 0.7983 0.2180 0.0032

IMF3 0.0276 0.0014 0

signal and the red line represents the signal a�er the decom-
position. In order to more directly express the result of
decomposition, the similarity analysis is carried out between
the decomposed component and the original signal by the
index of cross-correlation coe�cient. Table 1 demonstrates
that the proposedmethod has a perfect ability of complicated
signal decomposition.

Empiricalmode decomposition (EMD) is used to decom-
pose the above simulated signals, and the results of EMD
decomposition are shown in Figure 4. �ere are eight IMFs
decomposed by EMD.

Similarly, the decomposition result also carried out simi-
larity analysis with the original component. Since the similar-
ity of the three signal components (sinusoidal signal, cosine
signal, and FM signal) compared with mode components
a�er IMF3 is basically close to zero, so there is only a list of
the previous three components shown in Table 2.

From the decomposition results of EMD, it can be known
that sine, cosine, and FM signal are partly mixed in IMF1 and
IMF2, which cannot be separated well. Compared with the
proposed method in this paper, the decomposition e
ect of
VMD is obviously better than EMD, which can well separate
the components from the original signal.

�e above experimental results show that the proposed
method can almost completely separate the components
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Figure 3: �e result of VMD decomposition.

from the simulation signal free of noisy signal. However,
the actual measured bearing vibration signal in the runtime
is o�en a
ected by the strong noise background. �us, the
fault feature information is usually submerged in the noise
environment. In order to prove the validity of the method,
we discuss the feature extraction e
ect of this method under
the di
erent noise level. In the simulation signal, the Gauss
white noise with standard variance being 0.1, 0.2, 0.4, 0.3,
0.5, 0.7, and 0.9 is added in turn. �e cross-correlation
coe�cient between the decomposed mode components and
the original components in di
erent noise conditions is
calculated. Results of signal reconstruction by the proposed
method are shown in Figure 5.

�e noise of di
erent intensity is added in the simulation
signal, and then the signal is processed by using the proposed
method. From Figure 5, it is obvious that the VMD algorithm
based on PSO has a good performance of denoising.

4. Analysis of Measured Signal in
Rolling Bearing Experiment System

In order to verify that the proposed method is e
ective in the
experiment, the vibration data of rolling bearing experiment
system is used to be analyzed. �e experimental system is
shown in Figure 6. �e whole experimental device is driven

by a 550W (220V∼50Hz) AC motor. �e yellow arrow
points the position of the replaceable bearing in Figure 5.
In this experiment, the electric spark machining method
is used to carry out pitting treatment on the outer ring
of replaceable bearing to simulate the faults of the outer
ring of bearing. �e acceleration signal of the experiment
is collected in the vertical direction of the bearing on the
right side of the experimental platform using the CSI2130
data analyzer of America. �e parameter failure frequencies
of fault simulation test-bed are shown in Table 3. It is worth
mentioning that the rotating frequency �� and outer fault
frequency �� are 24.17Hz and 87.01Hz, respectively.

�e time-domain graph of measured bearing fault signal
is shown in Figure 7(a). �e result of envelope spectrum
analysis demonstrates that it is di�cult to extract the fault
feature due to the interference of noisy signal, which is
presented in Figure 7(b).

From Figure 7(b), it is a fact that the 1 to 3multiplications’
frequency of bearing outer fault is interfered by other irrel-
evant signals such as noisy signal. Particularly, the rotating
frequency �� can hard be identi	cation by the means of
envelope spectrum analysis. �e proposed method in this
paper is introduced to optimize and analyze the bearing fault
data. In the PSO algorithm, the number of iterations is set
as 50 and the population size is selected as 20. �e 	tness
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Figure 4: �e result of EMD decomposition.

Table 3: �e experimental parameters and fault frequency.

Rotating speed B/min Rotating frequency/Hz Sampling frequency/Hz Sampling time/s Outer fault frequency/Hz

1450 24.17 16384 1 87.01

value during the iteration process is shown in Figure 8. �e
optimized parameters of the penalty parameter and the num-
ber of the components about VMD method are selected as a
collection (1800, 10). By using the optimized parameters, the
bearing fault data are decomposed into ten-mode component
and the selection of optimal mode component is carried
out. Subsequently, the best representative decomposition
component of eighth decomposed component was employed
to verify the validity of themethod, which was determined by
the criterion of maximum correlated kurtosis. �e correlated
kurtosis of di
erent component was shown in Figure 9
and we can draw a conclusion that the eighth decomposed
component has a lager correlated kurtosis value. Figure 10
indicates the result of envelope spectrum analysis for the
eighth decomposed component.

It can be seen from the decomposition results of opti-
mized VMD algorithm that the identi	cation accuracy of
fault feature frequency is improved compared with the

traditional envelope spectrum analysis shown in Figure 7(b).
Only 3 multiplications’ frequency of the outer ring fault
frequency can be found in the envelope spectrum of the
original signal, while a�er optimization, it can 	nd more
than 10 multiplications of the fault frequency and detect the
rotating frequency��. Additionally, the characteristic spectral
line was obvious and less inferred by other spectral lines,
which con	rms the validity of the proposed method to the
fault feature extraction of rolling bearing. �e contrastive
analysis of the EMD and the proposed method is also carried
out, which indicates that the optimized VMD algorithm has a
better ability in fault feature identi	cation shown in Figure 11.

5. Conclusions

Anovelmethod of particle swarm optimization in variational
mode decomposition method was introduced in faint fault
feature extraction of rolling bearing.�emain conclusions of
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Figure 5: �e results of VMD decomposition with varied noise level.

Figure 6: �e rolling bearing experiment system.

this paper include the following. (1) �e particle swarm opti-
mization algorithm was applied to the parameter selection
of the optimal penalty parameter and the number of com-
ponents, which largely depends on the suitable 	tness func-
tion determined by the maximum ratio between the mean

value and the variance of cross-correlation coe�cient. More-
over, the maximum correlated kurtosis is used to select
the optimal component. It is signi	cant that the proposed
method can avoid the interference of human experience and
the diagnostic results are more reasonable. (2) Simulated
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Figure 7: �e time-frequency diagram of the measured signal.
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Figure 11: �e decomposition results of EMD.

signal and measured fault bearing signal measured from the
rolling bearing experiment system were used to verify the
validity of the method. �e result demonstrated that the
proposedmethod has an advantage over the traditional EMD
method and envelope spectrum analysis in faint fault signal
processing for rolling bearings, whichmake it possible for the
proposedmethod to be a powerful tool in solving the problem
of signal channel bind source separation.
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