
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 850487, 11 pages
doi:10.1155/2012/850487

Research Article

A Fault Injection Analysis of Linux Operating on
an FPGA-Embedded Platform

Joshua S. Monson, Mike Wirthlin, and Brad Hutchings

Department of Electrical and Computer Engineering, Brigham Young University, 459 Clyde Building, Provo, UT 84602, USA

Correspondence should be addressed to Joshua S. Monson, jsmonson@gmail.com

Received 1 May 2011; Revised 28 July 2011; Accepted 1 September 2011

Academic Editor: Claudia Feregrino

Copyright © 2012 Joshua S. Monson et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An FPGA-based Linux test-bed was constructed for the purpose of measuring its sensitivity to single-event upsets. The test-bed
consists of two ML410 Xilinx development boards connected using a 124-pin custom connector board. The Design Under Test
(DUT) consists of the “hard core” PowerPC, running the Linux OS and several peripherals implemented in “soft” (programmable)
logic. Faults were injected via the Internal Configuration Access Port (ICAP). The experiments performed here demonstrate that
the Linux-based system was sensitive to 199,584 or about 1.4 percent of all tested bits. Each sensitive bit in the bit-stream is
mapped to the resource and user-module to which it configures. A density metric for comparing the reliability of modules within
the system is presented. Using this density metric, we found that the most sensitive user module in the design was the PowerPC’s
direct connections to the DDR2 memory controller.

1. Introduction

Over the last decade, Linux Operating Systems (OSs) have
been used on several space-based computing platforms.
NASA, for example, sponsored the FlightLinux project which
culminated by demonstrating a reliable Linux OS on the
UoSat12 satellite [1]. The use of Linux on the UoSat12 pro-
vided enough compatibility with ground systems to allow the
satellite to be accessible over the Internet. Compatibility with
ground systems is only one of the many reasons to use Linux
on space-based computing platforms.

Reliable hardware is essential for Linux to operate; how-
ever, integrated circuits (ICs) aboard space-based computing
platforms are susceptible to failures known as Single-Event
Upsets (SEUs). SEUs are random bit flips caused by high-
energy particles that collide with the ICs. To ensure correct
operation in the presence of radiation, ICs can be specially
designed or “hardened.” Unfortunately, radiation-hardened
ICs are expensive and usually two or three silicon generations
behind the state of the art [2]. These factors limit the use
of radiation-hardened parts in space-based computing and
leave engineers looking for alternatives.

Field Programmable Gate Arrays (FPGAs) are among the
state-of-the-art components that are of interest in space-
based computing. FPGAs are microchips that contain an
array of logic and interconnect that can be programmed
and reprogrammed to perform almost any digital function.
FPGAs often replace application-specific integrated circuits
(ASICs) in space-based computing because designing for
FPGAs is faster and less expensive than designing for ASICs.
Additionally, reprogrammability allows designers to remo-
tely fix bugs that appear after the platform has launched.
These features make FPGAs ideal for space-based platforms
[3–5].

The function performed by reprogrammable FPGAs is
defined by the values of memory cells on the device known
as the bit-stream. Changing the values of the bits in the bit
stream may modify the behavior of a logic circuit on an
FPGA (until it is reconfigured). For example, a single change
in the bit stream has the potential to change the contents of a
Look-Up Table (LUT), connect nets together, or completely
disconnect a net. In most ICs, SEUs will only corrupt data.
In FPGAs, however, SEUs are able to affect data and the logic
function performed.

2 International Journal of Reconfigurable Computing

To prevent SEUs from affecting the output of an FPGA
design, mitigation techniques are used. Common methods
of mitigating and detecting the effects of SEUs are bit-stream
scrubbing [6], Triple Modular Redundancy [7] (TMR),
Partial TMR (PTMR) [8], and duplicate with compare
(DWC) [9]. TMR uses redundant circuits and majority
voters to improve the reliability of FPGA designs. PTMR is a
reduced form of TMR that has been shown (on small circuits,
at least) to reduce area overhead with only a small reduction
in reliability. In bit-stream scrubbing, the bit-stream of the
FPGA is occasionally rewritten to prevent the accumulation
of SEUs. DWC is a method of detecting SEUs by creating
a copy of the circuit, comparing the results, and flagging
differences when they occur.

In FPGA-Embedded Linux systems using “hard core”
processors, important peripherals (such as the memory
controller) are implemented in the reconfigurable fabric of
the FPGA and are susceptible to SEUs. SEU-induced failures
in these components have the potential of crashing the
kernel. Understanding each peripheral’s likelihood of causing
a kernel failure due to an SEU aids in understanding the
reliability of the system and in creating a more reliable system
at the lowest cost. To gain this understanding, we constructed
a test-bed that allows us to simulate SEUs in the FPGA fabric
surrounding a “hard core” embedded processor running a
Linux kernel using a process known as fault injection [10].
Preliminary results, along with a fault injection analysis,
from this test-bed have been previously reported [11]. In
this paper, we present new results from a fault injection
test using the same design under test. For this new test, we
have improved both our fault injection process and analysis.
These changes have resulted in a 3X improvement in detected
sensitive bits and a decrease (from 8% to less than 1%) in
sensitive bits that could not be mapped to part of the design.

2. Previous Work

The development of fast, comprehensive fault injection
systems has been the focus of much of the previous work [12–
14]. These fault injection systems are able to emulate upsets
in FPGA fabric and microprocessor cache lines and special
registers. Rather than performing exhaustive tests, these fault
injection systems use a probabilistic model to statistically
determine the reliability of a design.

The work presented by Sterpone and Violante [15]
performed fault injection experiments on the memory image
of a Linux microkernel running on a Xilinx Microblaze proc-
essor implemented in soft-logic. Their work focused on
memory faults during the bootstrapping process but did not
examine the sensitivity of the circuitry/logic that implements
their system. Essentially, their fault-injection process mod-
ified the content of the memories that contain the Linux
program. In contrast, our effort injects faults directly into
the hardware implementation and analyzes the sensitivity of
a full Linux kernel system (rather than a micro kernel) to
circuit and logic failures that may be caused by SEUs.

In another work by Johnson et al. [16], they describe the
validation of a fault injection simulator using a proton accel-

erator. Their analysis used the bit-stream offsets of sensitive
bits to compute the row and column locations of the sensitive
bits. Doing this allowed them to create a “map” of the FPGA
showing the locations of sensitive bits. Their fault injection
simulator was able to predict the locations of an impressive
97% of the upsets caused by the proton accelerator.

In this work, we also endeavor to improve the verification
of fault injection experiments. For our fault injection exper-
iment, we studied the bit-stream to determine the relation-
ships between configuration bits and FPGA resources; this
allowed us to take the next logical step and map sensitive bits
to FPGA resources and, further, map resources to user-design
modules.

Sterpone and Violante also used knowledge of the con-
figuration bit-stream, but rather than examining what hap-
pened (as we do) they tried to predict where faults would
occur. In [17, 18], they present a reliability analysis tool
that would perform a static analysis to predict locations of
sensitive bits then they would perform fault injection based
on their predictions. They found that their static analyzer
could predict the locations of all the sensitive configuration
bits in a design mitigated using TMR without being overly
pessimistic. They also found that their partial fault injection
results matched that of an exhaustive fault injection test.

The similarity between our work and their work is
the reliance on architectural and configuration bit-stream
knowledge to identify where the problems might occur. A key
difference is that their work focused on verifying relatively
small systems mitigated by TMR, while our work focuses on
the reliability analysis of large, unmitigated FPGA designs. It
is likely that their techniques could be used to analyze this
Linux system but unfortunately, their system is not available
to us and direct comparisons between the two approaches
cannot be made.

3. System Architecture

The process of fault injection requires a development board
with the ability to feed test vectors into a design under test,
monitor the important outputs, and modify the configura-
tion memory of the design. The ideal development board to
perform these functions would contain three FPGAs, one to
act as the golden, one to act as the device under test, and
one to act as the experiment controller. Should the output of
the golden be known or simple, a two-FPGA solution would
be sufficient. These FPGAs should be connected such that
the experiment controller is able to access the configuration
memory of the device under test and send (receive) input
(output) vectors from both the golden and design under test.
Unfortunately, there are very few boards that provide the
required connectivity. This is the primary reason we have
developed our own fault injection platform.

Our two-FPGA fault injection system consists of a Linux-
based host PC, two Xilinx ML410 development boards,
and a 124-pin custom connector board. In our system, one
ML410 acts as the experiment controller and golden and the
other acts as the Device Under Test (DUT). The connector
board provides enough connectivity for the controller to

International Journal of Reconfigurable Computing 3

Host

Controller Device under test

PPC

ICAP
core

Custom
connector

board

ICAP

Design under
test

PLB

GPIO
core

GPIO
coreEthernet

Figure 1: A block diagram of our fault injection system.

Configure
and boot

kernel

Inject
fault

Wait
(10 ms)

Test ICAP

and DUT

Test ICAP

and DUTfault

Repair Wait

(5 ms)

P

P

FF

Figure 2: Flowchart of the fault injection routine.

send (receive) input (output) vectors from the DUT and
also provides enough pins to fully connect the experiment
controller to the Internal Configuration Access Port (ICAP)
of the DUT. The ICAP is a module that resides inside the
FPGA fabric and provides connections that allow compo-
nents inside the FPGA to read and write the configuration
memory.

As shown in Figure 1, the Linux-based host provides a
simplified interface to the fault injection platform over an
Ethernet connection. This allows the host to maintain an
NFS mounted file system that provides a simple means for
transferring software, test vectors, and results to and from the
experiment controller. This connection allows experiment
software to be developed on the host and then cross-
compiled and transferred to the PowerPC 405. The RS-232
serial port acts as the console for the Linux kernel.

All DUT test designs communicate directly with the
experiment controller via routing (contained in the DUT test
design) that connects the DUT’s ICAP to the custom connec-
tor board. The experiment controller injects faults through
this 400 MB/sec connection. In cases where an injected fault
causes the DUT’s ICAP interface to fail, the controller can
completely reconfigure the DUT using the external con-
figuration interface. The control and communication cir-
cuitry for the ICAP is implemented on the experiment
controller board to maximize available circuitry in the DUT.
The ICAP interface on the experimental-controller board is
controlled and configured by software and supports a wide
variety of experiments.

4. Description of Fault Injection Experiment

The goal of this fault injection experiment is to measure
the sensitivity of an FPGA-based Linux system to upsets
in the configuration memory. In this FPGA-embedded sys-
tem, all inputs and outputs of the processor must travel
through the FPGA fabric. For example, the clock, memory
interface, STDIN and STDOUT, general purpose I/O, and

reset circuitry are implemented in the FPGA fabric. Thus the
processor is unable to operate independently of the FPGA
fabric, and faults injected into these components may cause
the processor or Linux kernel to fail.

In general, fault injection tests are performed by modify-
ing the configuration memory of the FPGA and then testing
or observing the design to determine if the modification
has caused a failure. The configuration memory is modified
by reading a frame (the smallest addressable portion of
configuration memory), changing a bit within the frame, and
writing the frame back into the device. If the modified con-
figuration memory causes the DUT to fail, the bit is
considered “sensitive”, otherwise the bit is considered “not
sensitive.”

In this test, each configuration bit is upset for over 106

FPGA clock cycles. However, it is not possible to test each
bit in all possible states of the processor, I/O, and operating
system. It is possible that some configuration bits tested dur-
ing fault injection may be tagged as nonsensitive but are in
fact sensitive under certain system conditions. While we rec-
ognize that some sensitive configuration bits may be tagged
as nonsensitive, this form of fault injection provides a good
estimate of the “average” sensitivity behavior of the system
under test. Previous results from similar fault injection
experiments show that the vast majority of sensitive bits are
easily detected (i.e., they have a high probability of detection)
and the average sensitivity of a design is adequately repre-
sented in fault injection experiments [16].

This fault injection procedure is carried out by the
controller as illustrated in Figure 2. Before starting the first
test, the controller reconfigures the DUT and waits for the
Linux kernel to boot and the test program to start. After the
DUT has booted, the controller injects a single fault into the
configuration memory of the DUT. After 10 ms, the DUT
is tested five times over an interval of 1 ms before the fault
is classified. If the DUT fails to respond to any of the tests,
the bit is classified as sensitive and the DUT is reconfigured
and rebooted. On the other hand, if the DUT successfully
responds to all five tests, the bit is classified as not sensitive.

4 International Journal of Reconfigurable Computing

Table 1: Time breakout of a nonsensitive bit test.

Configure FPGA 4 sec

Boot Linux Kernel 16 sec

Inject fault .226 ms

10 ms wait 12.5 ms

Test ICAP .105 ms

Test DUT 17.9 ms

Repair fault .120 ms

5 ms wait 8.9 ms

Test ICAP .104 ms

Test DUT 17.9 ms

Avg. test time (non-sensitive bit) 59.7 ms

To prevent the accumulation of faults, the hardware and
software must be returned to a correct state before beginning
the next test. This can be done by performing a full FPGA
reconfiguration, recopying the original Linux image into
memory and rebooting the kernel. While this is the ideal
approach, the process of reconfiguring, copying the Linux
memory image, and booting the kernel takes 20 seconds.
Since 98% of the more than 13 million configuration bits
tested are not sensitive, rebooting the DUT after each bit
would cause the test to be prohibitively long. The alternative
to rebooting the DUT is to repair the fault and move onto the
next test. This approach does not guarantee that the system
state is error free and in fact it may be possible for the repair
of a fault to induce an error. To ensure that the system is
at least working correctly, we subject the DUT and ICAP to
another set of tests after a 5 ms wait period. If a fault is found,
it is attributed to the bit most recently tested and the entire
DUT is rebooted.

Sensitive configuration bits are detected in the DUT
using a simple two-phase hand shaking protocol over the
general purpose I/O connections (GPIO) provided by the
custom connector board. The controller initiates a test of
the DUT by inverting its GPIO bit. The DUT responds
successfully to the test by inverting its GPIO bit to match
the controller’s GPIO bit. The DUT implements this protocol
with a small test program that runs in the background of the
Linux kernel. The pseudo-code for this test program is shown
in Listing 1. The test program accesses the GPIO module
to see if the controller inverted its bit; if the controller has
inverted its bit, the test program responds by inverting the
DUT’s GPIO bit to match. At the end of each iteration, the
test program is supposed to sleep for 200 µs and wake up
and repeat the process; however, time measurements of the
test program reveal that the program really sleeps for close to
4 ms. Using the top program, we found that the Linux kernel
spends 99% of its time in the idle state and 1% of its time for
user and system processes.

Table 1 shows the average time for each phase of the
test of a single non-sensitive bit. The total testing time of
a non-sensitive bit is almost 60 ms with the majority of the
time occupied receiving 5 test responses from the DUT. Note
that the wait times are slightly longer than initially intended
because of the use of the usleep() function.

dut test program ()

{

int dut gpio = 0;

int controller gpio;

init gpio ();

while (1)

{

controller gpio = read gpio ();

if(gpio value != dut gpio)

{

dut gpio = controller gpio;

set gpio (dut gpio);

}

usleep (200);

}

close gpio ();

}

Listing 1: Pseudo-code of DUT test program.

To convince ourselves that the 5 and 10 ms wait times
imposed after faults were injected were sufficient to detect
the vast majority faults, we performed additional tests with
longer wait times. A subset of the configuration memory (4
different configuration blocks) was tested with an additional
15 ms (2X) and 30 ms (3X) of wait time. Table 2 summarizes
the number of sensitive configuration bits found in each
test. As Table 2 shows, increasing the length of the test did
not significantly increase the number of sensitive bits found.
Additionally, we found 97.8% percent of the sensitive bits
were identical for all three tests which suggests that the 10 ms
wait time is adequate.

Although fault injection is a proven and effective way to
emulate SEUs, there are a few FPGA components that fault
injection cannot test. For example, reading and writing the
block rams (BRAMs) via the ICAP may cause side effects
that artificially increase the bit-sensitivity count. Some LUTs
in the Virtex 4 architecture contain additional circuitry that
allows them to be used as 16-bit shift registers (SRL16s)
or distributed RAM memories (LUT RAMS). The dynamic
memory elements of SRL16s and LUT RAMs are part of the
configuration memory and can be corrupted during reads
and writes. To prevent this, Xilinx has included the GLUT-
MASK as a configuration option in the Virtex 4 architecture.
When set, the GLUTMASK prevents both configuration
memory reads and writes from modifying the contents of
SRL16s and LUT RAMs. IOB (input/output buffer) con-
figuration blocks should also be avoided; these bits control
FPGA I/0 pins and arbitrarily flipping these bits may cause
board or device damage. All of these situations were taken
into account during the design of our experiment.

5. Sensitive Bit Density Metric

When designing for FPGAs, the goal is often to squeeze as
much performance out of the device as possible. Reliability

International Journal of Reconfigurable Computing 5

Table 2: Number of sensitive configuration bits detected in original
and 2X and 3X wait time tests.

Block Original test 2X wait times 3X wait times

1 495 494 494

2 478 456 462

3 494 494 494

4 577 579 569

requirements often make this goal difficult to achieve because
of the area overheads of mitigation techniques such as TMR.

A way to reduce the area cost of reliability is to use lesser
mitigation techniques such as PTMR or DWC. While the area
costs of these methods are lower they may have other costs
such as lower performance or reliability. In some systems,
costs may also be reduced by applying different mitigation
techniques to different modules in the design. How should
an engineer decide which mitigation techniques should be
applied to each module to make the most efficient use of the
FPGA?

One method would be to perform a fault injection test
and determine which modules contain the most sensitive
bits and apply more aggressive mitigation techniques to the
modules that contain the most sensitive bits.

While this method is simple and straightforward it may
not lead to the most efficient use of area. For example,
consider a fault injection test of a design containing a large
module that is moderately resilient to injected faults and a
small module that is unable to tolerate a single fault at any
time. After the test, it may be found that the large module,
because of its size, contained more sensitive configuration
bits than the small module. However, because the large
module masks a portion of its sensitive bits while the small
module does not, redundancy techniques would be more
efficiently applied to the small module even though it has
fewer sensitive bits. By using more redundancy techniques
on the smaller module, more sensitive bits will be mitigated
per unit area than using the same mitigation technique on
the larger module.

5.1. A New Metric. To deal with this issue, we present a
metric that takes into account both the number of sensitive
bits and size of the module. This metric is called the sensitive
bit density metric. This metric was first introduced by us
in [11] and was measured in sensitive bits per unmitigated
resource. The resources considered were nets and instances.
Unfortunately, nets can vary in length while instances
can vary in configuration, thus using nets and instances
obscures the size of the sensitive cross-section of configu-
ration bits. In this paper, we have improved the accuracy
of the sensitive bit density metric by measuring it in sensitive
bits per configuration bit. This directly links the metric to
the sensitive cross section of the design. Modules with a
higher sensitive bit density metric will be more efficiently
mitigated by redundancy techniques than modules with
lower sensitivity bit metrics.

To calculate the sensitive bit density metric, we must
know the number of sensitive configuration bits and the bit-
area of each module in the design. Fault injection is used
to estimate the number of sensitive configuration bits of
each module in the design. Ideally, the bit-area of the each
module is calculated by adding up the configuration bits that
must have a specific value for the design to work properly.
To make our estimate of design bit-area for modules in our
Linux system, we have added up all the bits in used routing
resources and the bits required to set components of slices
that are explicitly used.

One might ask, why do not all of the bits actually
demonstrate sensitivity during a test? It is because sensitivity
is a dynamic phenomenon that depends, to some extent, on
system behavior. In our Linux system, there are three issues
that reduce the number of detections of sensitive bits:
masking, hiding, and kernel resiliency.

5.2. Masking, Hiding, and Kernel Resiliency. Masking occurs
when the current operating mode of the circuit does not
allow the invalid signal to propagate and cause a system
failure. A well-known form of masking is TMR. In TMR,
majority voters mask the effects sensitive bits that reside
in one of the three redundant copies of the circuit. In our
system, many modules are addressed over the processor local
bus (PLB). If these components are not used by the processor,
they cannot cause a failure in the Linux kernel and are thus
masked from causing a failure.

Hiding occurs when the SEU causes the value of the
affected signal to be correct during the fault injection test. For
example, consider a circuit with a low asserted reset signal
and assume that the reset is asserted infrequently. Suppose an
SEU strikes a portion of the routing causing an open which
results in a “stuck at” 1 fault. This circuit will continue to
operate correctly until a reset is required. During the time the
circuit is operating correctly, we would say that this sensitive
bit was hidden.

The kernel is said to be resilient to faults that are prop-
agated into the processor but that do not cause a kernel
failure. In our opinion this is most likely to occur when a fault
appears in a data or instruction word before it is consumed
by the processor. A data word may not effect the operation of
the kernel at all, while a fault could appear in an unused field
of an instruction word.

6. Analysis of Results

Our results will be presented using three different analyses.
The general overview analyzes the overall number of sensitive
bits and describes the reliability of our unmitigated Linux
System. In the FPGA resource analysis, the sensitive bits
analyzed in the general overview are mapped to the resources
they control. In the user circuit analysis, the sensitive
resources are mapped to the modules that contain them
(memory controller, UART, etc.) and a metric for comparing
the sensitivity of modules is explained.

These three analyses are interesting because they provide
a designer with data that answers questions such as what is

6 International Journal of Reconfigurable Computing

Table 3: Device logic utilization.

Resource Used Available Utilization

Slice registers 6,271 50,560 12%

4-input LUT 5,688 50,560 11%

Block RAMs 53 232 23%

SRL16 shift registers 281 50,560 .5%

LUT RAMs 0 50,560 0%

the general sensitivity of the DUT? What resources contain
the most sensitive configuration bits? Which modules in the
DUT are most sensitive to SEUs? Answers to these questions
could aid in the directed application of mitigation techniques
and possibly save design area or suggest FPGA architecture
improvements.

In addition, these analyses allow those performing fault
inject experiments to verify their results by confirming that
sensitive bits actually have the ability to effect the design.
This is done by mapping sensitive bits to actual resources in
the FPGA and verifying that they belong to or can affect a
component in the DUT.

Our analysis relied heavily upon the open source tool
RapidSmith [19] developed at Brigham Young University.
RapidSmith is a Java API that is able to both parse Xilinx
design files and interface with part databases. In this project,
RapidSmith was one of the key components that allowed us
to do sensitivity analysis in both the logic and interconnect
portion of the design.

6.1. General Overview Analysis. This subsection provides the
reader with a general idea of the vulnerable cross section of
our design. Specifically, it presents the design utilization, the
bits in the bit-stream that were and were not tested, and the
number of sensitive configuration bits found in the design.

Table 3 shows the device utilization of the DUT. While
23% of the BRAMs are instantiated less than half of them
are actually used by the Linux kernel, making their effective
utilization about 10%. The BRAMs not used by the Linux
kernel are inserted by Xilinx’s Embedded Development Kit
(EDK) and are used to boot the PowerPC. Overall, the device
utilization is between 10% and 12%.

Table 4 gives a summary of the bits that were and were
not tested. The majority of these bits were BRAM and SRL16
bits. The number of sensitive configuration bits contributed
by these resources was estimated as discussed in the next
paragraph. We did not attempt to estimate the number of
sensitive-masked bits or the IOB bits.

Table 5 presents the number of sensitive configuration
bits found in the DUT and ICAP circuitry. The SRL16 bits
were estimated by assuming that all content bits in the
shift register would be sensitive. The same assumption was
made for all BRAMs used by the Linux kernel (some were
instantiated by EDK but not used by the kernel). The IOB
bits were not tested, and no attempt was made to estimate
the effect of their sensitivity on the device.

The Mean Time Between Failure (MTBF) is a common
parameter used in reliability analysis. The equation for

Table 4: Summary of bits tested/not tested.

Bits tested 13,757,308 66%

Bits not tested 7,140,228 34%

Mask file bits (not
tested)

821,636 4%

IOB bits (not tested) 944,640 4%

BRAM content (not
tested)

5,373,952 25%

Total bits 20,960,512 100%

Table 5: Summary of sensitive bits.

Sensitive bits SRL16 bits
BRAM
content

Total

DUT 119,110 4,496 58,880 182,486

ICAP 1,329 0 0 1,329

estimating the MTBF is presented in (1). The calculation
requires that we know the configuration bit upset rate, λbit,
and the number of sensitive configuration bits in the design,
Nbits.

The configuration bit upset rate is λbit = 2.78 ×
10−7 upsets per day [20]. This failure rate is the same for
commercial- and radiation-tolerant Virtex 4 devices. The
difference between the commercial- and radiation-tolerant
devices is the use of a thin epitaxial layer to remove single-
event latch-up (SEL) and to significantly increase the total
ionizing dose (TID) of the device.

Nbits is the number of sensitive configuration bits found
in the design. To estimate this value, we use the number
of sensitive configuration bits we found during our fault
injection experiment, 119,110. Additionally, upsets in BRAM
and SRL16 content will also cause failures in the DUT.
Since these components were not tested we estimate them
by assuming that all bits in these elements are sensitive.
We choose this approach because it provides a slightly
pessimistic lower bound on the MTBF. The actual measured
faults plus the estimated BRAM and SRL16 content bits
brings Nbits to 182,486.

Kernel failures can also be caused by upsets in the
processor. Since our focus was on faults in the reconfigurable
fabric, we did not perform any fault injection into the
processor. Additionally, we do not know the number of
state elements within the processor so we cannot form a
pessimistic guess. Thus, our MTBF only indicates the average
time between failures caused by the reconfigurable fabric.
Using these numbers for λbit andNbits, we calculate the MTBF
of our system due to faults induced by the reconfigurable
fabric to be 19.7 days while in the IDLE operating mode:

MTBF =
1

λ
=

1

λbit ×Nbits

=
1

2.78× 10−7upsets/day× 182, 486 bits

= 19.7 days.

(1)

International Journal of Reconfigurable Computing 7

Open

48%

Bridging
shorts
18%

Buffer
shorts
17%

Clock
column

0.3%

Logic

16%
Unknown

0.6%

Figure 3: The distribution of sensitive configuration bits among
utilized resources.

6.2. FPGA Resource Analysis. An FPGA resource analysis
provides insight into which resources contained the sensitive
configuration bits that cause system failure. This is done by
mapping the sensitive bits analyzed in the previous section
to the resources that they program. Understanding the
resources involved in causing a design to fail could suggest
improved resource-level mitigation approaches or future
improvements to FPGA architectures.

Failures were placed into three sensitivity categories:
Logic, Routing, and Unknown. The routing failures can be
subdivided into three categories: open, bridging, and buffer
failures. Figure 3 shows the distribution of the different types
of failures identified in the design.

6.2.1. Logic Failures. Logic failures are the failures that
occurred within the logic elements (slices) of the FPGA
and accounted for 19% of all design failures. We were able
to directly match most of the sensitive bits that caused
these failures to components of slices that were specified as
used in the design file. Some of the sensitive bits mapped
to components of slices that were specified as unused in
the design file; however, we often found that the unused
(default) setting of the sensitive bit had relevance to the
proper configuration of used slice components. For example,
there is a mux at the input of the slice flip-flop set/reset
line that allows the designer to choose between the inverted
and noninverted version of the reset signal. When a flip-flop
is instantiated in a design without a reset, an assumption
is made by the bit stream generator about the default bit-
stream setting of the mux. If the bit that controls the mux is
flipped by an SEU it will invert the default reset signal and
hold the flip-flop in its reset state.

To compensate for this problem, we used the part da-
tabase in RapidSmith to determine if an unused logic
element’s default setting could affect a used logic element.
In about 10% of all logic sensitivities, an upset of the default
setting was the cause of the failure.

6.2.2. Routing Failures. Routing failures accounted for 80%
of all failure in the design. We now describe how routing fail-

Bit A Bit B Bit C Bit D

Bit E

Bit F

Bit G

1

Buffer

Figure 4: An example of a virtex 4 Routing Switch.

ures occur, what their effects are, and how we identify them.
To understand routing failures, one must first understand the
structure of a programmable interconnect point (PIP) in the
Virtex 4. While the structure of the Virtex 4 is not completely
documented in the literature, the structure of a Virtex II pip
is documented in [21, 22]. Our bit-stream studies lead us to
believe a similar structure is used in the Virtex 4.

We conjecture that the Virtex 4 PIP (shown in Figure 4)
is a two-level mux followed by a level restoring buffer. The
select signals on this mux come from configuration bits A–
G. Bits A–D are column bits while bits E–G are row bits. The
small circles on the pass transistors represent connections
from other wires in the switchbox. To properly pass a signal
through the switch box, two configuration bits (a row bit and
a column bit) must be set to “1” while all of the other bits
must be set to “0”.

For example, if we wanted to connect the wire coming
into the top-left most pass transistor to the wire at the output
of the PIP, we would set bits A and E to “1” and all the other
bits to “0”. Setting the other bits to “0” prevents contention
within the PIP. By default, routing bits are set to “0”. Since bits
A and E are the bits that change from their default conditions
we refer to them as primary bits.

Open failures are caused when an SEU sets one of the
primary bits to a “0”. This results in the disconnection of
the input wire from the output wire. Since the PIP is now
undriven the output will be driven high by the level restoring
buffer.

To describe bridging and buffer failures, we have simpli-
fied the PIP in Figure 4 from a 3 × 4 PIP to the 2 × 2 PIP
in Figures 5–8, where A and C are the primary bits in
each PIP and net1 was originally passed through the PIP.
Figure 5 shows the simplified PIP under normal (non-SEU)
conditions. A lightning bolt on one of the configuration bits
indicates that the bit has been changed to its current value by
an SEU. The inside of the circles tells whether a buffer or net
is driving the connection. The circle on the output describes
a common function performed by the PIPs in the given
configuration. Please note that these are common functions,
not necessarily the function performed by every PIP in the
given configuration. In fact, our data suggests that some
invalid configurations of PIPs result in no failures at all.

8 International Journal of Reconfigurable Computing

Bit A = 1 Bit B = 0

Bit C = 1

Bit D = 0

T1 T2

T3 T4

T5

T6

Buf. Buf.

net1

net1

net2

Figure 5: A simplified pip under normal operating conditions. No
bits affected by SEUs.

Bit A = 1 Bit B = 0

Bit C = 1

Bit D = 1

T1 T2

T3 T4

T5

T6

Buf.

Buf.

Net2

AND
net2

net1

net1

Figure 6: Example of a row bridging short. Bit D was affected by an
SEU.

Figure 6 demonstrates a row bridging failure. The pri-
mary bit A allows net1 and net2 to drive the inputs of
transistors T5 and T6, respectively. Since bit D was affected
by an SEU, both row bits are active allowing both net1 and
net2 to drive the output of the PIP causing a row bridging
failure. Figure 7 demonstrates a column-bridging failure. In
this case, net2 is driving the input of transistor T2, the SEU
has effected bit B which allows both net1 and net2 to drive
the input of T5 causing a column bridging short.

Figures 8 and 9 are examples of buffer failures and are
exactly the same as row and column bridging failures with
the exception that a buffer rather than a net is driving the
connection created by the SEU.

In general, row-based buffer and bridging failures exhibit
ANDing behavior. For a bridging failure this means that net1
and net2 are ANDed together. For a buffer failure this means
that net1 is ANDed with a level restoring buffer, fortunately,
this reduces to net1 being ANDed with a constant “1”, which
produces no effect on net1. While this ANDing behavior
reduces the amount of row buffer failures, it does not
always eliminate them. The majority of all row buffer failures

Bit A = 1 Bit B = 1

Bit C = 1

Bit D = 0

T1 T2

T3 T4

T5

T6

Buf. Buf.

net1

OR
net2

net1

net2

Figure 7: Example of a column bridging short. Bit B was affected
by an SEU.

Bit A = 1 Bit B = 0

Bit C = 1

Bit D = 1

T1 T2

T3 T4

T5

T6

Buf.

Buf. Buf.

net1

AND
buf.

net1

Figure 8: Example of a row buffer short. Bit D was affected by an
SEU.

Bit A = 1

Bit C = 1T1 T2

T3 T4

T5

T6

Buf.

Buf. Buf.

Bit D = 0

Bit B = 1

net1

OR buf.
= 1’

’

net1

Figure 9: Example of a column buffer short. Bit B was affected by
an SEU.

International Journal of Reconfigurable Computing 9

Table 6: Comparison of components.

Module name
Primary

bits
Interconnect

bits
Logic bits Bit-Area # of sens. Density metric

ICAP 987 3,827 23 3,850 1,329 0.34519482

IPLB 2,439 11,035 2,276 13,311 3,641 0.27353317

DPLB 2,417 11,025 2,163 13,188 2,781 0.21087351

PPC 10,030 43,188 6,219 49,407 8,957 0.1812901

DDR2 122,228 554,433 113,114 667,547 91,398 0.1369162

GPIO 917 4,522 1,688 6,210 850 0.136876

SYSTEMRESET 1,503 6,842 1,370 8,212 728 0.088650756

CLOCKGEN 11,966 48,194 562 48,756 4,145 0.08501518

PLB 18,121 78,556 10,864 89,420 3,449 0.038570788

INTC 2,236 10,642 2,932 13,574 365 0.026889643

IIC 11,558 53,990 13,562 67,552 927 0.0137227615

UART 2,633 12,563 3,425 15,988 203 0.012697022

SystemAce 3,093 14,348 3,808 18,156 113 0.006223838

BRAMCNTRL 11,525 50,616 4,099 54,715 25 4.5691308E-4

JTAGDEBUG 1,728 7,737 0 7,737 0 0.0

MGTPROTECTOR 13,504 64,784 0 64,784 0 0.0

in our fault injection test occurred in PIPs that are driven by
the outputs of the slices. This is expected because the default
settings of some logic elements in the slice is “0”. Instead of
the net being ANDed with a constant “1” which has no effect,
the net is ANDed with a “0” which is always “0”.

Column-based buffer and bridging failures typically
result in ORing behavior. For a bridging failure, this means
that net1 and net2 are ORed together. For a buffer failure, this
means that net1 is ORed with a constant “1” which results in
a constant “1” output for the PIP. In our fault injection test,
column-based failures occurred twice as often as row-based
failures for both bridging and buffer failures.

Once we understand the structure of PIPs and the ways
that failures can occur, identifying these failures from fault
injection results is straight forward. If the sensitive bit is a
primary bit, then we know an open failure has occurred. If
the sensitive bit is not a primary bit, the driver (buffer or
net) of the connection created by the SEU will classify the
failure as a buffer or bridging failure. We can further classify
buffer and bridging as row or column failures by identifying
whether the sensitive bit is a row bit or column bit.

Unknown failures accounted for less than 1% of all fail-
ures in the design. These were failures for which the sensitive
bits that caused the failures could not be mapped to part of
the design. Even though we do not know why these sensitive
bits have caused design failure, we are confident in our
fault injection results due to the fact that we were able to
diagnose over 99% of the sensitive configuration bits that
were found.

6.3. User-Circuit Reliability Analysis. The user-circuit reli-
ability was analyzed on a module by module basis. In
this analysis, the sensitive resources identified in the FPGA
resource analysis are mapped to the modules that contain
them. This information can be used to make decisions on

the amount of redundancy used to increase the reliability of
a system on a module by module basis. The primary method
we have chosen in comparing modules is the sensitive bit
density metric described in Section 5. This metric provides
guidance on which modules would be most efficiently
mitigated using redundancy techniques.

Table 6 provides the number of sensitive bits, bit area,
and sensitive bit density metric for each component. The
bit area is broken down into primary bits, interconnect
bits (which also include primary bits), and logic bits.
Recall from the previous subsection that primary bits are
interconnect configuration bits that result in open failures.
The Interconnect Bit column is the total of all interconnect
configuration bits for the specified component. The logic bits
column is the total number of bits used to configure the logic
elements of the component. The bit area is the sum of the
interconnect and logic bits for the component.

It is interesting to note that the majority of the bit area
of each component is composed of nonprimary interconnect
bits. The components with the highest densities of sensitive
bits have far fewer sensitive configuration bits than the
number of configuration bits specified in the interconnect bit
area. This data seems to suggest that many shorting connec-
tions (caused by the faults in non-primary bit interconnect)
do not affect the output of individual PIPs. This may suggest
that our current method overestimates the actual sensitive
bit area of a component; however, at the present time we do
not know which non-primary configuration bits will cause
errors and which ones will not; therefore, we must include
all of these bits to avoid underestimating the bit area of
the component. Further work would need to be done to
conclusively show which bits will and will not cause shorting
failures.

Since the ICAP component on the DUT is almost purely
interconnect, it is comforting to see that the number of

10 International Journal of Reconfigurable Computing

sensitive ICAP bits found exceeds the number of primary
bits. In fact, our test caught 959 of the 987 faults introduced
into the primary bits of the ICAP. Twenty-six of the twenty-
eight remaining primary bits exhibited the hiding behavior
discussed in Section 5. The other two bits exhibited masking
behavior. All 28 bits belonged to a state machine that
initializes the ICAP immediately after configuration. After
initialing the ICAP the nets in the state machine hold values
of “1” that do not ever change. A fault in one of the primary
bits of a PIP causes the PIP’s output to be pulled high leaving
the signal at its correct value and exhibiting hiding behavior.
The fact that all the possible open failures within the
ICAP were caught demonstrates that our tests of the ICAP
during fault injection were sufficient to catch errors on all
the interconnect of the ICAP module.

The first group of components we discuss are the mod-
ules that are on the main processor data path. These
components occupy 4 of the first 5 rows of Table 6. These
components are the IPLB, DPLB, PPC, and DDR2. The IPLB
and DPLB are the connections between the PowerPC and the
DDR2 memory controller. The PPC is the module that is
used to instantiate PowerPC processor. The PPC defines the
connectivity to the IPLB, DPLB, processor local bus (PLB),
ground and VCC connections. The DDR2 is a multiported
memory controller that has direct connections to the
PowerPC through the IPLB and DPLB and also is connected
through another port to the PLB.

One thing to notice about Table 6 is that the DDR2
contained 85% of the sensitive bits found in the fault
injection test but did not have the highest sensitive bit density
metric. The IPLB and DPLB each contained only 2% of
the sensitive bits but had the highest density metrics. This
suggests that using redundancy techniques on the IPLB and
DPLB will result in a more efficient use of area than using
redundancy techniques on the DDR2.

The reason the DDR2 has a lower metric than the IPLB
and DPLB is because of the second port connected to the
PLB. The second port adds more bit-area to the DDR2 com-
ponent but does not add any sensitive configuration bits
because the port is essentially unused. A solution to this
problem would be to examine the DDR2 module and
determine the sensitive-bit density metric of the port that is
used by the processor. The metric is then likely to suggest
that using redundancy techniques is likely more efficient for
that one port. We also notice that the GPIO module, which
the processor uses to respond to test requests also has a high
sensitive bit density metric. The reader is referred to Table 6
for the remaining results.

We should also mention that the sensitive bit density
metric may change under different operation modes of the
system. Our results have only presented the metric from
one operation mode. It is possible that the module with the
highest metric may change throughout the operation of the
design. This means that there are possible gains from using
different mitigation techniques as the sensitive bit density
changes during the run-time of the design. A possible way
to accomplish this would be to use the dynamic partial
reconfiguration ability of FPGAs.

7. Conclusion

A reliable Linux OS can be a useful tool on an FPGA-
embedded system. Fault injection testing is an important
first step in testing the reliability of FPGA-Embedded Linux
Systems. Our test-bed provides an effective platform for
fault injection and other useful experiments investigating the
low-level details of the FPGA. Using different analyses in
fault injection may help in identifying the lowest cost SEU
mitigation techniques for FPGA-Embedded Linux Systems
and provide additional confidence in fault injection results.

Our experiment showed that our Linux FPGA-embedded
system was sensitive to 182,515 bits which gave our unmit-
igated system an MTBF of 19.7 days. We were able to
match more than 99% of all failures to design utilized FPGA
resources. We also found that in our system routing failures
account for 83% of all design failures, while logic failures
accounted for the other 16%.

In our FPGA resource analysis, we described the effects
and identification of open, bridging, and buffer failures. We
found that bridging and buffer failures often impose logic-
like behavior on the net that was affected by the failure. Some
of these logic-like behaviors affected the operation of the
circuit while others did not.

We also suggested the use of the terms hiding and kernel
resiliency to describe phenomena in which faults injected
into the user circuit did not cause kernel failure. We even
found an example of hiding in our ICAP circuitry that
demonstrates the phenomena actually exists. Although we
did not find an example of kernel resiliency, there are ways
it could be evaluated. For example, by performing fault
injection testing on the instruction and data memory of the
Linux kernel, we may be able to draw correlations between
the faults that cause kernel failure and the faults that do not.

In our user-circuit analysis, we showed that modules
could be compared using the sensitive bit density metric.
This metric helps determine which modules can be mitigated
most efficiently using redundancy techniques such as TMR
and PTMR. The sensitive bit density metric also indicated
that using the same mitigation technique for the whole
design may not lead to the most efficient use of FPGA area.
Additionally, since the metric may change for a module
during the operation of the circuit, it may be profitable to
change the mitigation method of a module during run-time
using dynamic partial reconfiguration.

Acknowledgments

The authors would like to express their thanks to the Infor-
mation Sciences Institute-East (ISI) for providing the ML410
boards and custom connector board. They would especially
like to thank Neil Steiner for his assistance in the initial stages
of their project.

References

[1] B. Ramesh, T. Bretschneider, and I. Mcloughlin, “Embedded
linux platform for a fault tolerant space based parallel

International Journal of Reconfigurable Computing 11

computer,” in Proceedings of the Real-Time Linux Workshop,
pp. 39–46, 2004.

[2] D. S. Katz, “Application-based fault tolerance for spaceborne
applications,” 2004, http://hdl.handle.net/2014/10574.

[3] M. Caffrey, “A space-based reconfigurable radio,” in Proceed-
ings of the International Conference on Engineering of Re-
configurable Systems and Algorithms (ERSA ’02), T. P. Plaks and
P. M. Athanas, Eds., pp. 49–53, CSREA Press, June 2002.

[4] M. Caffrey, K. Morgan, D. Roussel-Dupre et al., “On-orbit
flight results from the reconfigurable cibola flight experiment
satellite (CFESat),” in Proceedings of the 17th IEEE Sympo-
sium on Field Programmable Custom Computing Machines
(FCCM ’09), pp. 3–10, April 2009.

[5] M. Caffrey, K. Katko, and A. Nelson, “The cibola flight ex-
periment,” in Proceedings of the 23rd Annual Small Satellite
Conference, August 2009.

[6] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-
event upsets through virtex partial configuration,” Xilinx
Application Notes, vol. 1.0, 2000.

[7] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, “On
the optimal design of triple modular redundancy logic for
sram-based fpgas,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’05), pp. 1290–1295,
IEEE Computer Society, Washington, DC, USA, 2005.

[8] S. Baloch, T. Arslan, and A. Stoica, ““Probability based par-
tial triple modular redundancy technique for reconfigurable
architectures,” in Proceedings of the IEEE Aerospace Conference,
p. 7, 2006.

[9] D. L. McMurtrey, Using deplication with compare for on-line
error detection in FPGA-based designs, Ph.D. dissertation,
Brigham Young University, Provo, Utah, USA, 2006.

[10] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A
fault injection analysis of virtex fpga tmr design methodology,”
in Proceedings of the 6th European Conference on Radiation and
Its Effects on Components and Systems, pp. 275–282, 2001.

[11] J. Monson, M. Wirthlin, and B. Hutchings, “Fault injection
results of linux operating on an fpga embedded platform,” in
Proceedings of the International Conference on Reconfigurable
Computing and FPGAs, pp. 37–42, 2010.

[12] U. Legat, A. Biasizzo, and F. Novak, “Automated SEU fault
emulation using partial FPGA reconfiguration,” in Proceedings
of the 13th IEEE International Symposium on Design and Di-
agnostics of Electronic Circuits and Systems (DDECS ’10), pp.
24–27, 2010.

[13] M. S. Reorda, L. Sterpone, M. Violante, M. Portela-Garcia, C.
Lopez-Ongil, and L. Entrena, “Fault injection-based reliability
evaluation of SoPCs,” in Proceedings of the 11th IEEE European
Test Symposium (ETS ’06), pp. 75–82, 2006.

[14] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and
M. Violante, “FPGA-based fault injection for microprocessor
systems,” in Proceedings of the 10th Asian Test Symposium, pp.
304–309, November 2001.

[15] L. Sterpone and M. Violante, “An analysis of SEU effects in
embedded operating systems for Real-Time applications,” in
Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE ’07), pp. 3345–3349, 2007.

[16] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirth-
lin, “Accelerator validation of an FPGA SEU simulator,” IEEE
Transactions on Nuclear Science, vol. 50, no. 6 I, pp. 2147–2157,
2003.

[17] L. Sterpone and M. Violante, “Static and dynamic analysis of
SEU effects in SRAM-based FPGAs,” in Proceedings of the 12th
IEEE European Test Symposium (ETS ’07), pp. 159–164, May
2007.

[18] L. Sterpone and M. Violante, “A new analytical approach
to estimate the effects of SEUs in TMR architectures imple-
mented through SRAM-based FPGAs,” IEEE Transactions on
Nuclear Science, vol. 52, no. 6, pp. 2217–2223, 2005.

[19] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
and B. Hutchings, “HMFlow: accelerating FPGA compilation
with hard macros for rapid prototyping,” in Proceedings of
the 19th IEEE Annual International Symposium on Field-Pro-
grammable Custom Computing Machines (FCCM ’11), May
2011.

[20] G. Allen, “Virtex-4VQ dynamic and mitigated single event
upset characterization summary,” 2009, http://hdl.handle.net/
2014/41104.

[21] C. Beckhoff, D. Koch, and J. Torresen, “Short-circuits on fpgas
caused by partial runtime reconfiguration,” in Proceedings of
the International Conference on Field Programmable Logic and
Applications (FPL ’10), pp. 596–601, 2010.

[22] S. Srinivasan, A. Gayasen, and N. Vijaykrishnan, “Leakage
control in FPGA routing fabric,” in Proceedings of Conference
on Asia South Pacific Design Automation (ASP-DAC’05), vol. 1,
pp. 661–664z, 2005.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

