
24 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Fault Injection Environment for Microprocessor-based Board / Benso, Alfredo; Prinetto, Paolo Ernesto; Rebaudengo,
Maurizio; SONZA REORDA, Matteo. - STAMPA. - (1998), pp. 768-773. ((Intervento presentato al convegno IEEE
International Test Conference (ITC) tenutosi a Washington (DC), USA nel 18-23 Oct. 1998
[10.1109/TEST.1998.743259].

Original

A Fault Injection Environment for Microprocessor-based Board

Publisher:

Published
DOI:10.1109/TEST.1998.743259

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2499850 since:

IEEE

A Fault Injection Environment for Microprocessor- based Boards

A. Benso, P. Prinetto, M. Rebaudengo, M. Sonza Reorda

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract*

Evaluating the faulty behavior of loiv-cost
microprocessor-based boards is an increasingly
important issue, due to their usage in nun2 safety
critical systems. To address this issue. the paper
describes a Software-implemented Fault Injection
system based on the trace exception mode available in
most microprocessors. The architecture of the complete
Fault Injection environment is proposed, integrating
modules for generating a fault list, for performing their
injection and for gathering the results, respectively.
Datu gathered from some sample benchmark
applications are presented. The main advantages of the
approach are low cost, good portabili5, and high
efficiency.

1. Introduction

Our society is facing an increasing dependence on
computing systems, even in areas (e.g., air and railway
traffic control, nuclear plant control, aircraft and car
control) where a failure can be critical for the safety of
human beings. A major problem in the development of
safety-critical systems is the accurate determination of
the dependability properties of the system. Unlike
performance, fault-tolerance and reliability can not be
evaluated through the use of benchmark programs and
standard test methodologies, only, but requires
observing the system behavior when a fault appears into
the system. Since MTBF (Mean Time Between Failure)
in a safety-critical system can be of the order of years,
fault occurrence has to be artificially accelerated in
order to observe the system behavior under faults

"Contact address: Matteo SONZA REORDA,
Dipartimento di Automatica e Informatica, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 1-10129
Torino (Italy), e-mail sonza@polito. i t

without waiting for the natural appearance of actual
faults.

In many cases, Fault Injection [ClPr95] emerged as a
viable solution, and has been deeply investigated by
both academia and industry. Several Fault Injection
techniques have been proposed and practically
experimented; they can basically be grouped into
simulation-based techniques [JAR0941 [DJPr96],
software-implemented techniques [KKAb95] [CMSi95]
[HSRo95], and hardware-based techniques [AAACgO]
[KLDJ94]. As pointed out in [IyTa96], simulated fault
injection is more suited for the early design phase,
while physical fault injection (hardware- and software-
implemented fault injection approaches) is more suited
for the prototype and production phases of a system.
The software-implemented approach can be effective
when simple boards have to be analyzed, and hardware
fault injectors, although generally less intrusive, are
often too cumbersome and expensive.

This paper presents a software-implemented fault
injection system, which is particularly suited for
microprocessor-based boards. The main characteristics
of the approach are the robustness, the reduced
intrusiveness into the target system, the low cost (it
does not require any special hardware device), the high
speed (which allows a higher number of faults to be
considered), the low requirements in terms of features
provided by the Operating System, the flexibility (it
supports different fault types), and the high portability
(it can be easily migrated to address different target
systems).

The kernel of the system is a Fault Injection
Manager, which is based on the truce exception mode
available in most microprocessors. A Trace procedure is
automatically activated after the execution of every

proper time, and the triggering of possible time-out
conditions.

The overall system runs on two different units,
connected by a serial port interface: a host computer
and the actual target board. The communication

instruction, thus allowing the injeotion of the fault at the

Paper 31.1
768

INTERNATIONAL TEST CONFERENCE
0-7803-5092-8/98 $1 0.00 0 1998 IEEE

interface, the downloading of the code into the target
board, and the analysis of the system behavior, exploit
the routines available through the built-in ROM
Monitor of the target board.

The tool is able to inject faults in the memory image
of the process (daia and code) and in the user registers
of the processor.

The adopted fault model is the transient single bit-
flip fault. This model is frequently used in fault
injection tools [KKAb95] [DJPr96] since it is highly
representative of faults occurring in real systems
[LalaGI. Nevertheless, the approach can be easily
extended to other fault models. Moreover, since Fault
Injection aims at reproducing the behavior of actual
faults that can appear in any moment during the system
operation, the injection time is an additional degree of
freedom that has to be taken into account while
generating the fault list. Each fault is thus characterized
by the following information:

fault injection time: each fault is injected at the
assembly level, before the execution of an
instruction. The fault injection time is thus expressed
in terms of number of instructions executed since the
beginning of thi: application execution;
fault location: the address of the memory location or
the register where the fault has to be injected;
fault mask: the bit mask that selects the bit(s) that
has (have) to bet flipped.
Therefore, for the purpose of the experiments

described in this paper, each fault corresponds to
flipping a single bit in a microprocessor register or in
the memory area containing either the code or the data
at a given time insfant (e.g. executed instruction) during
the program execulion.

Our technique is ideally suited to systems whose
behavior, in presence of a given sequence of input
stimuli, can be de terministically computed and easily
reproduced. Moreover, in the present version we do not
address the issue of checking the system behavior from
the time point 01’ view: the extension to real-time
systems composed of several interacting modules is
currently under development.

The approach resorts to Error Detection Mechanisms
(EDMs) present in microprocessor-based systems:
Hardware EDMs (I .e., system exceptions, built-in in the
processor chip) and Software EDMs (i.e., software
checks possibly inserted in the target application).

A case study is presented in which a Motorola
M68KIDP board [Mot0921 based on a M68040
microprocessor is (considered; a prototypical version of
a tool implementing the proposed approach has been
setup, and some sample application programs are
considered.

The paper is organized as follows: Section 2
describes the Fault Injection environment, and Section 3
reports some experimental results; some conclusions are
eventually drawn in Section 4.

2. The Fault Injection System

As illustrated in Fig. 1, the fault injection system can
be divided in three sections:

the Fault List Manager (E M) generates the fault
list to be injected into the target system;
the Fault Injection Manager (FIM) injects the
faults into the target system;
the Result Analyzer collects the results and
produces a report concerning the whole Fault
Iniection exDeriment.

I
I Target System
I

I
I
I

Host Computer

Fault-free I
behavior

I I I I

Fig. 1 : The Fault Injection environment.

Since one of the main goals when setting up a Fault
Injection environment is to minimize the intrusiveness
into the target system, a host computer can be used to
perform some of the tasks depicted in Fig. 1. The target
system handles the serial communications exploiting
the ROM monitor existing in most microprocessor
system for debugging purposes. The host computer
stores the relevant input and output information for the
whole Fault Injection process (e.g., the Fault List, and
the output statistics) and allows an easy interface
towards the user, without introducing any overhead
during the Fault Injection experiment. This solution
presents several advantages:

The intrusiveness into the target system is minimal.
Only a small amount of additional code is present
on the target system. Nevertheless, no code
modification is required on the target application.

Paper 31.1
769

The overall environment is more robust; in fact. if
the target system crashes, the host computer can
keep the control of the environment, reset the target
system, and resume the execution of the
experiment.
The fault list and the result information are safe;
they cannot be corrupted by a target system crash
or by an error in the memory area storing them.

The main disadvantage of this approach is the slow-
down factor caused by the communication through the
serial interface. Nevertheless, this configuration can run
the test of the target code in a worlung condition as
close as possible to the real one.

2.1. The Fault List Manager

The Fault List Manager generates a random fault list
according to some input constraints. To include in the
proposed Fault Injection system more sophisticated
fault list generation capabilities, we implemented a set
of the collapsing rules presented in [BRIM981 and
briefly outlined in the following. They aim at avoiding
the injection of those faults whose behavior can be
foreseen a priori. In particular, we can remove a fault
from the Fault List when:

the fault is guaranteed to trigger an Error Detection
Mechanism;
the fault is guaranteed not to have any effect on the
target system behavior;

0 the fault is equivalent to another fault already
existing in the fault list.

From a practical point of view, the implementation
of the fault collapsing rules requires the availability of
some information collected during a preliminary fault-
free run of the target program. In particular we
generated an instruction trace that includes the
execution time, the address, and the operative code of
all the executed instructions. The execution time
corresponds to the number of instructions executed
from the beginning of the experiment. The number of
executed instructions is also exploited to trigger
possibly time-out conditions during the actual
experiments .

Moreover, the system saves a copy of the data
segment containing the results that it produced at the
end of the fault-free run. This copy is then used to
validate the application results at the end of each Fault
Injection experiment.

2.2. The Fault Injection Manager

The Fault Injection Manager (FIM) is the most
crucial part in the whole Fault Injection System. It is up

to the FIM to activate and to continuously monitor the
execution of the target application once for each fault in
the fault list. When the fault injection time is reached,
the fault injection is performed according to the fault
type (e.g., single bit-flip) and location specified in the
fault list. The pseudo-code of the FIM is reported in
Fig. 2.

void sau4t-Injection-Manager ()
{

for(every fault f , in the fault list)
(
Environment-initialization(f,);

in parallel do
I
Execute-target-application() ;
Inject-fault (f,) ;
Wait-for-completion();

}

Analyze-results();
I
return () ;

I

Fig. 2: Pseudo-code of the Fault Injection Manager.

Besides the target application code, in order to
minimize the intrusiveness in the target system and to
maintain the experiment as close as possible to the
actual working conditions, only the I n j ec t-f a u l t
and the Wait-for-completion modules are
executed on the target board. All the other modules run
on the host computer.

The following paragraphs describe the different
modules that compose the overall FIM code.

2.2.1. Environment initialization
This module is executed before the beginning of

each new fault injection experiment in order to set up a
fault-free environment where to execute the target code.
The fault-free initial environment is necessary to avoid
that the effects of a previous fault (e.g., corrupted bit in
data and code memory sections) be still present in the
environment where the new experiment is run.

The first task of the
envi r omrent-ini t i a 1 i z a t i on module is thus
to download from the host computer to the target board
a fault-free copy of the target application program in the
memory area where the program is going to be
executed.

To prevent its corruption during the experiments, the
fault list is stored on the host computer. The second task
of this module is thus to transfer on the target board the
information concerning the fault to be injected and the
time-out condition (e.g., the maximum number of
instructions which can be executed before the time-out
condition is activated.

Paper 31.1
770

2.2.2. Execute target application
This module starts the execution of the target code in

trace mode. The T::ace bit in the Status Register is
enabled from the host computer using a ROM Monitor
command. As depicted in Fig. 3, since the trace mode is
enabled, after the execution of each assembly
instruction a trace exception is triggered and the trace
exception routine i:j executed. As explained in the
following paragraph, this routine is in charge of
injecting the fault and triggering possible time-out
conditions.

Instr 1
Instr 2

Instr i-1
Instr i
Instr it1

Instr n

...

...

U

Fig. 3: Target code execution flow.

2.2.3. Inject fault
This module runs on the target board and is

implemented by tk e trace exception routine. This
routine is in charge of injecting the fault into the
system: each time the procedure is executed, a variable
that stores the number of executed instructions is
incremented. As soon as this value matches the current
injection time, the procedure performs the injection,
e.g., flips a bit in he target memory on in a target
microprocessor register.

2.2.4. Wait for completion
After the injection of a fault the target code can

behave mainly in three different ways:
it can terminate without triggering any hardware
EDMs, possibly with a failure in some output data
result;
it can trigger an hardware EDMs, and therefore
force the execution of the relative exception
routine;
it can enter an mdless loop or force the system in
an unknown state, and therefore cause a time-out
condition.

In the first case it is necessary to understand whether
the fault caused a Fail-Silent behavior (i.e., the results
are correct) or a Fail' Silent Violation Behavior (i.e., the
program terminated correctly but providing wrong
results). Therefore, t i e Analyze-results () module
should be able to vsrify the correctness of the results

0

produced by the target application execution when it
terminates without triggering any exception or time-out
condition. It is up to the application programmer to
write this procedure, which is highly dependent on the
application itself. In our environment, the results
produced by the target code are just compared with the
ones computed during the preliminary fault-free run,
but more sophisticated check procedures can be used if
needed.

To detect all faults triggering an exception during the
system activity, we exploited the microprocessor built-
in exception handling mechanism. We used the
exception routines provided by the ROM Monitor
present on the target board; these routines stop the
execution of the target code and output an error
message on the serial interface.

In the third case, again the Trace exception routine is
exploited to monitor the instruction counter; if its value
exceeds a user-defined limit the experiment is
terminated and a message is output on the serial
interface.

In all cases, the host computer captures the
termination message from the target board, and initiates
a new experiment.

2.3. The Result Analyzer

The Result Analyzer modules processes the system
output behavior obtained through the Fault Injection
experiments and produces a report concerning fault
coverage information. The module runs on the host
computer. Faults are classified according to four main
categories:

Fail-Silent: the fault has no effect on the system
behavior.
Detected by an EDM: the faulty system behavior
triggers the activation of either a software or
hardware EDM.
Fail-Silent Violation: the faulty system behavior
does not trigger any EDM, and the output results
are different from the fault-free ones.
Time-out: this category includes faults triggering
the time-out condition. These faults alter the system
behavior from a temporal point of view without
triggering any EDM.

3. Experimental results

To evaluate the effectiveness of our Fault Injection
approach, a case study is described below.

The prototypical environment we considered is a
commercial M68KIDP Motorola board [Moto92]. This
board hosts a M68040 microprocessor with a 25Mhz

Paper 31.1
771

frequency clock, 2 Mbytes of RAhl memory, 2 RS-232
Serial U 0 Channels. a Parallel Printer Port, and a bus-
compatible Ethernet card.

The Fault List Manager, the Fault Injection Manager
and the Result Analyzer have been fully implemented in
ISO-C and amount to about 2,000 source lines.

Some simple programs have been adopted as
benchmark target applications:
0 Bubble Sort: an implementation of the bubble sort

algorithm, run on a vector of 10 integer elements;
Parser: a syntactical analyzer for arithmetic
expressions written in ASCII format. The program
also implements a simple software Error Detection
Mechanism, which consists in verifying the
correctness of each part of the expression;
Matrix: a program performing the multiplication of
two matrices composed of 10x1 0 integer values.

For each target program, the fault list is composed of
30,000 randomly selected faults located in the code
(10,000 faults) and data (10,000 faults) memory area, as
well as in the microprocessor registers (10,OOO faults).

Based on the fault list generated by the Fault List
Manager, the Fault Injection Manager orchestrates the
Fault Injection experiments, whose results are reported
in Table 1.

0

Sort
%

Bubble Sort
I Code I Data I Reas

Yo %

Fail-Silent
Fail-Silent Violation
Detected bv an EDM

60.62 62.86 32.09
26.35 11.18 52.19
11.98 24.40 14.54

Table 1 : Faults injection report for the faults injected in
the code, data and registers.

Fault Category
Fail-Silent
Fail-Silent Violation

The results of Table 1 show that the behavior of
faults injected in the code area is more regular than that

% % %
58.10 66.11 70.81
24.18 3 1.20 2.97

of the faults injected in the data area, which highly
depends on the characteristics of the considered
application. As a further example, the reader should
observe the very different percentages of Fail-Silent and
Fail-Silent Violation Faults reported for the three
benchmarks among those injected in the data area.
Bubble and Parser are control-dominated programs:
many variables (e.g., those associated with flags and
loop indexes) are used for the execution flow control,
and faults injected in them are likely to either trigger an
EDM, or be fail-silent. On the other side, Matrix is data-
dominated, and most variables contain data rather than
control information. Faults injected in them are
therefore more likely to generate Fail-Silent Violations.

The Fault Coverage figures concerning the whole
fault list are reported in Tab. 2.

I I Bubble I Parser I Matrix I

Bubble Sort
[SI

To ta 1 Time 1,455

Parser Matrix
[SI [SI

2,279 2,537 Fault Category
Fail-Silent
Fail-Silent Violation
Detected bv an EDM

I Time-out I 1.06 I 1.56 I 1.19 I

% % %
63.96 64.34 82.73
13.42 10.34 2.99
20.24 24.30 13.48

Table 2: Summary of Faults injection results.

To quantitatively evaluate the time required to
perform a fault injection experiment using the proposed
environment, we compared the total time reported in the
last row of Table 3 with the one required to execute
30,000 time the same program with the same input data
and without injecting any fault. The resulting ratio falls
between 20 and 22 for the considered benchmarks.

The main cause of this slow-down factor is the time
spent to exchange information through the serial
interface, which is equal to about 80% of the total time
needed for the whole experiment. Nevertheless, this
configuration can run the test of the target code in a
working condition very close the real one, with a
minimal code overhead and intrusiveness, since from

Paper 31.1
772

the beginning of the target program execution to its
termination, no communication is required on the serial
line.

4. Conclusions

In this paper we presented a Software-based fault
injection environment suitable to be used for fault
coverage evaluation on microprocessor-based boards.

Our environment is composed of three main parts:
the Fault list Manager to generate the Fault list, the
Fault Injection Manager to perform Fault Injection, and
the Result Analyzer to produce output reports.

During each fault injection experiment, the target
application program is executed in trace mode and the
fault is injected by a suitably modified exception
handler routine. In this way, faults can be injected into
any location accessible through an Assembly
instruction. Faults are injected without any change in
the target application code and with very limited
intrusiveness in the system behavior, the only overhead
being in terms of an increase in the execution time with
respect to a fault-free system.

The approach is quite general and flexible, as it is
based on common features supported by most
microprocessors. Moreover, it does require neither
dedicated hardware, nor any Operating System being
present on the board, thus matching well the constraints
of many low-cost embedded microprocessor-based
systems.

To practically evaluate the feasibility of the
approach, a software fault injection environment has
been set up for a Motorola M68KIDP board. The
preliminary results gathered on some simple benchmark
programs have kleen reported to demonstrate the
advantages of the approach.

References

[AAAC90]

[BRIM981

J. Arlat, M. Aguera, L. Amat, Y. Crouzet,
J.C. F'abre, J.-C. Laprie, E. Martins, D.
Powel 1, Fault Injection for Dependability
Validation: A Methodology and some
Applications, IEEE Transactions on
Software Engineering, Vol. 16, No. 2,
February 1990
A. Benso, M. Rebaudengo, L. Impagliazzo,
P. Marmo, Fault-list collapsing for fault
injectbn experiments, Proc. Ann.
Reliability & Maintainability Symp., 1998,
pp. 383-388

[CIPr9.5]

[CMSi95]

[DJPr961

[HSRo95]

[JAR0941

[KKAb95]

[KLDJ941

[IyTa96]

[Lala851

[Mot0921

J. Clark, D. Pradhan, Fault Injection: A
method for Validating Computer-System
Dependability, IEEE Computer, June 1995,

J. Carreira, H. Madeira, J. Silva, Xception:
Software Fault Injection and Monitoring in
Processor Functional Units, DCCAJ,
Conference on Dependable Computing for
Critical Applications, September 1995, pp.

T.A. Delong, B.W. Johnson, J.A. Profeta
111, A Fault Injection Technique for VHDL
Behavioral-Level Models, IEEE Design &
Test of Computers, Winter 1996, pp. 24-33
S. Han, K.G. Shin, H.A. Rosenberg,
Doctor: An Integrated Software Fault-
Injection Environment for Distributed
Real-Time Systems, Proc. IEEE Int.
Computer Performance and Dependability
Symposium, 199.5, pp. 204-213
E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J.
Karlsson, Fault injection into VHDL
Models: the MEFISTO Tool, Proc. FI'CS-
24, 1994, pp. 66-75
G.A. Kanawati, N.A. Kanawati, J.A.
Abraham, FERRARI: A Flexible Software-
Based Fault and Error Injection System,
IEEE Trans. on Computers, Vol 44, N. 2,
February 1995, pp. 248-260
J. Karlsson, P. Liden, P. Dahlgren, R.
Johansson, U. Gunneflo, Using Heavy-Ion
Radiation to Validate Fault-Handling
Mechanisms, IEEE Micro, Vol. 14, No. 1,

R. K. Iyer and D. Tang, Experimental
Analysis of Computer System
Dependability, Chapter 5 of Fault-Tolerant
Computer System Design, D. K. Pradhan
(ed.), Prentice Hall, 1996
P.K. Lala, Fault Tolerant and Fault
Testable Hardware Design, Prentice Hall
Int., New York, 1985
Motorola Inc., M68000 Family Integrated
Development Platform (IDP), 1992

pp. 47-56

13.5- 149

pp. 8-32, 1994

Paper 31.1
773

