
Newcastle University e-prints

Date deposited: 22
nd

 May 2012

Version of file: Author final

Peer Review Status: Peer reviewed

Citation for item:

Farj K, Chen Y, Speirs NA. A Fault Injection Method for Testing Dependable Web Service Systems. In:

15th IEEE International Symposium on Object/Component/Service-oriented Real-Time Distributed

Computing. 2012, Shenzhen, China: IEEE.

Further information on publisher website:

http://www.ieee.org

Publisher’s copyright statement:

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

The definitive version of this paper is available at:

http://dx.doi.org/10.1109/ISORC.2012.15

Always use the definitive version when citing.

Use Policy:

The full-text may be used and/or reproduced and given to third parties in any format or medium,

without prior permission or charge, for personal research or study, educational, or not for profit

purposes provided that:

 A full bibliographic reference is made to the original source

 A link is made to the metadata record in Newcastle E-prints

 The full text is not changed in any way.

The full-text must not be sold in any format or medium without the formal permission of the

copyright holders.

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.

NE1 7RU. Tel. 0191 222 6000

javascript:ViewPublication(184529);
http://dx.doi.org/10.1109/ISORC.2012.15

A Fault Injection Method for Testing Dependable Web Service Systems

Khaled Farj

School of Computing Science,

 Newcastle University,

 NE1 7RU, UK.

k.a.s.farj@ncl.ac.uk

Yuhui Chen

Wellcome Trust Centre for Human

Genetics,

University of Oxford,

OX3 7BN, UK.

Jeff.yuhui.chen@gmail.com

Neil A. Speirs

School of Computing Science,

Newcastle University, NE1 7RU, UK.

neil.speirs@ncl.ac.uk

Abstract

Testing Web services performance and their Fault

Tolerance Mechanisms (FTMs) are crucial for the

development of today's applications. Testing the

performance and FTMs of composed service systems is hard

to measure at design time because service instability is often

caused by the nature of the network. Using a real internet

environment for testing is difficult to set up and control. We

have developed a fault injection toolkit that emulates a WAN

within a LAN environment between composed service

components and offers full control over the emulated

environments in addition to the ability to inject network-

related and application specific faults. The tool also

generates background workloads on the tested system for

producing more realistic results. We describe an experiment

that has been carried out to test the impact of fault tolerance

protocols deployed at a service client by using our fault

injection toolkit.

1. Introduction

Web services technology is becoming progressively more

important in service oriented computing and applications.

Web services are software programs that offer services over

the Internet to other software programs, including web

applications and other Web services. They have changed the

way we look at the Internet from being a repository of data

into a repository of services.

Web services play critical roles in developing

information systems that rely on integration of

heterogeneous data and autonomous component services.

Web service technology is being used to allow the creation

of complex systems, composed of simple Web services,

which exchange messages to form complex conversation

schemas [1]. These services are usually developed and

administrated by different service providers, running on

different platforms, and distributed over the Internet in

different geographic locations.

The quality of such complex systems depends both on

the quality of the network environment and on the quality of

the Web service applications participating in forming such

systems. One of the obstacles of the adoption of the Web

service paradigm in such composed systems is the problem

of assessing their overall quality. Web services are

inherently distributed and heterogeneous, and in real-world

practice, are often invoked with little understanding of their

reliability and performance.

In many applications, service composition often relies on

dynamic service integration, meaning that very possibly the

component services are discovered, selected, and composed

at runtime. Thus it becomes more difficult to assess the

behaviour and performance of these component services,

especially in the presence of transient faults. Therefore,

there is no guarantee that all parts of the composite service

are highly reliable. In [15] it is reported that communication

faults such as message loss, duplication reordering, or

corruption have an effect on traditional distributed systems

such as CORBA applications. Moreover it has been found

that unstable Internet environments and server connections

can lead to unreliability of Web service applications [3].

Web services are subject to many network faults such as

delaying, dropping, damaging, and reordering messages and

also to software faults within the services.

Testing the performance and fault tolerance of Web

services has become an active research area. Software Fault

injection is a well-proven method of assessing the reliability

of a system [2]. In this paper we describe a tool for testing

the performance and fault tolerance of either a single Web

service or composed service, without modification to the

component services being tested. No recompiling or

patching is necessary. Furthermore, the tool will generate

background workload to more accurately emulate real

networks. Our tool is also independent of the hosting

environment for portability. In Section 2, we describe

existing tools for injecting faults into web services. In

Section 3 and 4, we describe the design and implementation

of our Network Fault Injector service (NetFIS). In Section 5,

we describe an example experiment that uses NetFIS to

assess the dependability of a Bioinformatics Web service.

This Web service employs an off-the-shelf Mediation [4]

framework to provide fault tolerance. We demonstrate how

to apply the NetFIS tool in evaluating the performance and

the fault tolerance mechanisms of a service. Section 6

describes our conclusions and future work.

2. Related work

There are many Software Fault Injection tools for testing

general distributed systems. Some of these are specifically

designed for testing Web services. Well-known fault

injection tools, such as DOCTOR [5] and Orchestra [6],

support network level fault injection and could potentially

be used to inject faults into Web services. These two tools

however have been designed for testing network protocols

without decoding complete middleware message sequences.

Therefore they are not wholly suitable for debugging Web

services in which message integrity is a big concern.

In Almeida and Vergilio [7] a tool is proposed for

generating and validating test cases. The tool interprets

WSDL schema, and then introduces some operator to

generate a request with random data and a test script that

manipulates the request parameters. Paper [8] proposes a

technique for testing Web services using mutation analysis.

A mutant WSDL document is generated by applying mutant

operators to the original WSDL document. A test tool called

WSDLTest [9] generates Web service requests from the

WSDL schemas and tunes them in accordance with the pre-

conditions written by the user, and then verifies the

responses against the post-conditions offline. In [10] a

testing tool is proposed based on some rules defined in

XML schema or DTD. The tool modifies the value of the

parameters in requests by using boundary value testing, and

on interaction perturbation, using mutation analysis.

Another tool [11] introduces a framework intercepting and

perturbing SOAP messages by injecting faults by corrupting

the encoding schema address, dropping messages, and

inserting random text in the SOAP Body. The work

described in [12] helps service requesters to create test cases

so as to select suitable and correct Web services from public

registries. It proposes a method where faults are injected

into SOAP messages to test boundaries of the parameters, as

specified in the WSDL document. The WS-FIT tool [13]

injects faults by modifying SOAP messages using scripts.

The user may define the value boundaries that the tool uses

for manipulating the function parameters. The WSInject [14]

tool injects both communication and interface faults and can

WS-RM WS-RM be used for testing a single Web service or

composed service system.

A common characteristic of the work discussed above is

that their focus is largely on testing single services in

isolation (such as WSInject); furthermore, most of them

focus on injecting faults by modifying the SOAP message.

We argue that such a strategy is only sufficient for

debugging simple Web services and communication

between a client and a Web service, but is hard to extend to

testing composite services. Many Web service applications

employ dynamic service integration and service redundancy,

and may involve multiple autonomous component services.

In order to test the dependability of such application as a

whole, many more parameters have to be considered. For

instance, the workload of the component systems and

networks, the quality of the network environment etc. may

greatly influence the overall dependability of a Web service

application. Different workloads could lead to different

testing results, due to cause different system activation

patterns [15]. System testing becomes an even more difficult

task when dealing with composed Web services, in which a

component service may also act as a client of other services.

In this paper, we propose a fault injection method that,

adopting the architecture of a Wide Area Network emulator

used for testing other distributed systems, extends it to test

composed service systems. In addition, two classes of faults

are injected, communication faults and software-specific

faults without any modification to the system under test. The

method also generates additional workload on the tested

system in order to produce more realistic results.

3. Network fault injection method

The Network Fault Injector Service (NetFIS) is a Web

service system that implements our fault injection methods

for testing Web service performance and FTMs. The tool

acts as a fault injection proxy and network emulator

between the Service Client and the Service Provider. It

manipulates the invocation and response messages to

emulate incorrect behaviours of faulty networks and

services. It intercepts the request from the Service Client,

injects appropriate faults (if any), and then forwards the

request to the Service Provider. Similarly, it intercepts the

response from the Service Provider, injects faults (if any),

and then forwards it to the Service Client.

NetFIS is able to emulate WAN behaviours and inject

network faults such as message dropping and delaying, and

randomly corrupting SOAP messages. There are existing

tools for inject networking faults in Web service

applications. For example, [16] proposes a tool to inject

faults at the IP level to investigate the effect of the TCP

retransmission mechanisms on Web services. This allows

examining the relationship between the time-out and

retransmission mechanisms implemented in the TCP and the

WS-ReliableMessaging protocol. By contrast, our tool can

drop a whole SOAP message which may consist of more

than one packet. In this way the consequences of faults

injection can be propagated to the application level so as to

examine whether the application level FTMs can effectively

handle such faults. In addition, the tools can interpret Web

services parameters definitions (including data types) from

WSDL files to inject software faults into RPC parameters

based, however this class of faults will not be detailed in this

paper.

The network emulation mechanisms implemented in the

NetFIS are configurable. This gives the ability to control

every property of the emulated networks. The tool

implements a graphical user interface to allow users to

control the emulator at runtime for simulating dynamic

networking environments. The tool uses the network

topology configuration file, network traffic trace files and

the GUI to measure and test the performance and FTMs of

composed service systems in an emulated WAN.

3.1 Application level and network level

Before going through more details about the proposed

system architecture, it is worthwhile to go over some of the

major design issues.

Networking faults typically involves packet corruptions,

reordering, and dropping. Faults may be present in the

physical media and all the layers in the network stack. It is

logical to inject intentional network related faults at the

network level in networking emulation. Traditionally, it has

been done for assessing the reliability and performance of

networking protocol stacks. Such faults are normally

automatically dealt with by the actual underlying network

protocols [15]. Consequently, the application or middleware

will not notice the presences of the faults, and therefore will

not be tested. Moreover network level fault injection

tampers with packets, but not application level messages.

NetFIT is intended to inject communication faults and

tests their impact on the performance and FTMs of a

composed service system. Therefore it is more efficient and

desirable to inject faults at the application/middleware level

instead of the network level. Communications between the

component services are intercepted at application level and

faults are injected by using proxies. We elaborate on the

architecture of this choice in later sections.

3.2 Network emulation

In composed services, the component services in the

system are usually deployed over the Internet. The

performance and fault tolerance of an application with

composed services are very difficult to be measured at

design time. In order to test such systems, a distributed

testing environment is required, such as a WAN or the

Internet. However, it is usually impractical to use the real-

world Internet or WAN for system tests. It is very costly and

time consuming to set up a WAN or use the Internet for the

sake of testing. It is impossible to control such dynamic

environment as networks such as putting more stress, load,

or errors. Moreover, errors may take a long time to occur.

Some errors may not occur without applying a certain chain

of events.

A realistic approach is to run the system in one machine

or over a LAN using a WAN emulation system which can

provide the sense that the system is running over a WAN

and provides all the properties of a dynamic WAN like the

Internet. That will help the testers to test the performance

and fault tolerance of a system by running the system under

different circumstances such as different network traffic

load, delays, loss rate, and so on. By using network

emulation, not only the performance of the whole system

can be measured under different circumstances, but also the

contribution of each service to the overall composed service

system can be measured, and a bottleneck service can be

discovered. Such runtime environment should also be able

to inject faults to the system under test.

Based on the discussion above, the proposed solution we

present in this paper is emulating customizable and

controllable WANs over LANs. This way the Web service

systems are tested on virtual WANs that are very similar and

comparable to a real world WAN environment. Testing over

these virtual WANs will not be suffering the problems of the

real WANs as previously discussed. The assumption made

in this work is that the actual LANs used for hosting the

virtual LANs are very reliable and very fast thus making

uncontrolled faults and delays negligible. We argue this

assumption applies to most well maintained LANs.

Our network emulation is based on the architecture of a

fault injection testing method with successful results for

testing CORBA Applications [17]. The original testing

method is for emulating the behavior of WAN and injecting

network faults at the application level. The messages

exchanged between CORBA components are intercepted

(using CORBA Interceptors), and then network faults are

injected.

However, there are some shortcomings of the CORBA

fault injection approach [17]. In CORBA interceptor level,

the messages are already coded in binary code. The method

does not target any particular elements in the message to

inject faults, such as function parameters, in the case of

RPC. Also message corruption and dropping faults are only

injected by throwing exceptions. That means the CORBA

fault injection method can only inject the mentioned faults

to test only the system’s ability of dealing with such

exceptions, whereas it is more logical to inject explicitly the

faults and observe the effects on the system. Injecting faults

such as dropping and delaying messages can help

developers to assign a reasonable time period before the

system times out. The CORBA approach cannot help in

distinguishing between message delays and message losses.

If the time-out interval is made too short, then there is a risk

of duplicating messages and also reordering in some cases.

If the interval is made too long, then the system’s

performance will suffer.

All the discussed issues above have been taken into

account in order to produce a WAN Emulation design for

our fault injection method. As discussed in the previous

section, the messages are intercepted at application level by

using proxies, so at this level the complete message entities

are captured and any particular part of the messages can be

manipulated. In addition, the network faults may be injected

explicitly (dropping or corrupting messages). The time out

period setting issue is tackled by testing the system under

different real delay rate and drop rate scenarios. By

explicitly assigning the best timeout period, the risk of

confusing between the normal network delays and the

message losses can be minimized.

3.3 Scalability and overhead

There are some other key issues have been considered in

order to design our fault injection method. In order to

emulate a large multi-hop network, scalability and overhead

issues need to be addressed. The emulator must scale well

for networks with hundreds or more of nodes while

maintaining an acceptable emulation overhead. It is intended

that the emulation be hosted over a LAN where every

physical node is responsible for a clique of virtual nodes.

This reduces the chances of uncontrollable faults caused by

the underlying hardware or networking devices and allows

accurate emulation of other traffic sources. The design

assumes that the emulated WAN is large enough so that the

emulation overhead is negligible compared to the actual

network delays.

3.4 System monitoring (failure detection)

Many failure modes affecting distributed systems have

been classified. For example, in [15], failure modes, which

can occur in CORBA applications, have been classified. In

[11], failure modes affecting Web service systems are also

explained. Based on the those failure modes classifications,

we summarize the failure modes of composed service

systems as follows: 1) crash of a service instance/hosting

environments, 2) service hang, 3) corruption of data coming

into the system, 4) corruption of data coming out of the

system, 5) duplication of messages, 6) omission of messages

and 7) delay of messages.

 The effect of the above failure modes depends on the

capability of the FTMs of the system that detects the faults

and prevents the system from deviating from its specified

behavior. Corrupted data coming into the system should be

detected by the middleware (or the Web service

application), rejected, and then raise an appropriate error

exception as a response. Corruption of data coming out of

the system should be handled by the middleware at the

client side. Undetected corrupted data can cause failures

when being propagated from the middleware to the

application level. In such cases, a mechanism must be

deployed at application level to deal with the issue.

Duplication and omission of messages should also be

handled by the middleware layer of the service and raise

appropriate exceptions. However omission of messages

from client to service must be detected by the middleware of

the client since the service would have no mechanism for

knowing the message had been sent.

If an application server is crashed, it will not be able to

accept invocations and the client will get exceptions from

the transport layer. If the application server hangs, it may

not respond to invocations, making it hard for the client to

discover what has happened.

Delayed messages may cause timing faults. Timing faults

should be detected by the middleware at client side when a

response message is not received in a specified time.

However at the service client there is a problem of

distinguishing between a lost request message and the

message experience a long delay in the network. A

reasonable time span should be deployed before raising

timeout exception at service client to minimize this issue.

Because of all the problems above, some of the failure

modes are very difficult to detect. For example as discussed

above, it is difficult to distinguish between crash and hang

failure modes in some cases. In addition, some other failure

modes are also difficult to detect. For example, it is difficult

to distinguish if a client request is lost before reaching to the

service provider or the acknowledgement packet is lost

before reaching to the client.

To face these problems, we rely on the logging

mechanism of the proposed methods and the logging of the

client as well. The failure modes mentioned before can be

observed by analyzing the log files to detect exceptions

caused by corruption and omission of messages. Crashes of

services/hosting environments and hanging services can be

detected by receiving exceptions or via time-out

mechanisms applied at the client side.

4. NetFIS Implementation

Figure 1. NetFIS Architecture for a 2 Node System

The NetFIS tool has been implemented for SOAP based

composed service systems. However, the architecture is

generally applicable to most SOA distributed computing

platforms (e.g. Open Grid Services Architecture). The

Site B

Web Service

Network Emulator Service

Fault Injection Service

FIC

Decision

maker

Injector

Logging

Script

WS-Proxy

Request

Interceptor

Response

Deliverer

Request
Deliverer

Response

Interceptor

Site A

Client

Network Emulator Service

Site C
Network Controller Service

Fault Injection Service

FIC

Script

Injector

Logging

Decision

maker

WS-Proxy

Request

Interceptor

Response

Deliverer

Request
Deliverer

Response

Interceptor

emulator is transparent to the applications and requires no

modifications, recompiling or patching to the middleware. It

is also independent of the hosting environment for

portability. Finally, it emulates other synthetic application

traffic running at the same time and sharing the networking

resources. The architecture of NetFIS is shown in Figure 1

for a 2 node system

4.1 Fault injection service

The Fault Injection Service (FIS) is a Web service which

has the capability to generate a proxy Web service to one or

more Web services of the system under test. More

importantly, it injects the proper faults into the system under

test with its sub-components.

At the client side, FIS generates a proxy WSDL from the

actual Web service WSDL needed to be called by client. As

a result, all client requests are processed by the FIS.

Thereafter, the FIS sends the request to its internal

subcomponent, the Fault Injection Controller (FIC) to inject

faults. Then the request is sent to another FIS that is

deployed on the site where the actual Web service is

running. When the client side FIS receives a response from

the Web service, it forwards it to the client.

At the Web server side, messages received from the

client side FIS are forwarded to the actual Web service by

the FIS. When the response is received, it is redirected to the

internal FIC for fault injection, and then the response, if

any, is sent back to the FIS deployed at the client site.

In the case of composed services, where a component

service acts as both a service and a client in the same

system, a single FIS can perform both of the roles explained

above. By using this way of intercepting messages, no

modification is made to the system under test.

4.2 Fault injection controller

 The Fault Injection Controller (FIC) is a component

inside the FIS which is responsible for controlling the tool

and injecting the proper faults into the messages. Faults are

injected into the SOAP messages based upon decisions

coming from two other components of the tool – the

Network Emulation Service (NES) and the Script Fault

Model (SFM). These two components can either be turned

on or off at the choice of the user. The SFM is a java

program written by the user. The function parameters may

be modified by using the value boundaries specified by the

tester. When both SFM and NES are active, the SFM

decision can only be applied if the decision from NES is not

to drop or corrupt the message. The FIC gives network

faults higher priority. The FIC also logs SOAP messages to

be analyzed offline. The message, if it has not been dropped,

is sent back to the interceptor to complete its journey to the

corresponding FIS.

4.3 Network emulator service

The Network Emulator Service (NES) is a WAN

Emulator Web service, which gives the applications the

sense that there are other synthetic applications running at

the same time and sharing the networking resources. In

addition, it provides the ability to inject network faults (loss,

delay, corruption, reordering, etc.). All the generated

workload traffic and the faults injected use SOAP messages.

The system is deployed and exposed as composed Web

services. The NES consists of one centralized Network

Controller Service (NCS), controlling the emulated network

and a set of NES’s deployed at each node in the system

which emulates the nodes of the targeted network. The NCS

and every NES communicate with each other by exchanging

SOAP messages and also communicate with the FIC using

SOAP messages as required.

4.4 Setting up the tool

The first stage consists of building a description of the

target network using a topology file and to describe the

traffic load to generate on all network nodes. The next stage

is to start the NCS and load the topology. The third step is to

start the NES’s for all the network nodes. Then to start the

FIS for every node which will generate a proxy service for

each service to be called, and finally, to order the NEC to

start the emulation and then start the system to be tested.

The Topology file is a simple configuration XML file

that describes the target network topology. It lists the nodes

in the network together with their configurations. In addition,

a trace file also must be provided for each node to describe

its traffic load. It shows packet counts per unit time and can

either be created by hand, captured from real traffic traces or

produced using network traffic modelling algorithms. Then,

the NCS, which is a Web service itself, is started. NCS is

used by NES’s to provide node configuration parameters and

locations of neighbouring NES’s. Each node of the emulated

network is represented by one FIS and one NES.

Each FIS at the client side needs to be provided with an

XML file containing the URL(s) of the Web service(s)

under test. The client needs to call this, in order to generate

a Web service proxy which will be called by the client

instead of the actual Web service under test. The XML file

also contains the URL of the NES emulating the same node.

As the tool does not require any modifications to the

system under test, the only job for the client is to start

calling the proxy service generated by the FIS instead of

calling the actual Web service.

5. Example experiment

In this section we describe an example experiment that

injects a number of networking faults (delaying, dropping

and randomly corrupting SOAP messages) into a collection

of Bioinformatics BLAST Web services [18]. BLAST is an

algorithm which is commonly used in silico experiments in

bioinformatics to search for gene and protein sequences that

are similar to a given input query sequence. We needed a

fault tolerant mechanism to test so we deployed the WS-

Mediator [4] at the client side to invoke a three times

replicated Bioinformatics Web services [18

The performance and the fault tolerance pr

system under test have been examined.

5.1 Experiment setup

The topology of the target network that we

four-node fully connected network. Since stud

traffic suggest that it is self-similar in nature

to emulate continuous self-similar traffic in

We used a mean packet rate of 30 packets/s

link, and the self-similarity parameter valu

packet size distribution follows measuremen

Internet backbones [20]. The link utilization v

the generated packet size and the link configur

5.1.1 Network configuration

We measure the performance of the pro

network configurations:

i). LAN Configuration: The LAN was

deploying NetFIS to test the base performance

ii). Fast WAN Configuration: The propagat

fixed at 2ms which is typical of inter-city lin

UK. The bandwidth of each link is 4Mb/s

utilization of each link given this bandw

simulated traffic described in previous se

between 10% and 20%.

iii). Slow WAN configuration: All services

far apart geographical locations and conne

links. The propagation delays are fixed at 5

typical of far apart locations and internatio

between Newcastle, England and Tripoli,

bandwidth of each link is 512Kb/s. The aver

of each link given this bandwidth and the

between 20% and 40%.

iv). Heterogeneous WAN configuration: This

represents a case somewhere between the

One of the services was placed in a far

(connected by slow WAN links) while the oth

the client were close to each other (connected

links). The links and loads used here are si

used for the slow and fast WAN configuration

5.1.2 Client configuration

The functionality of the client is as follo

the three replicated Web services repeatedly w

the NetFIS. The number of invocations a

interval between invocations can be configure

In our client application, we chose to use

first response programming mechanism offere

Mediator i.e. requests are sent to all three s

and the first response obtained is accepted

voting of responses. During the invocations, a

response messages are logged.

8] via NetFIS.

rotocols of the

e emulated is a

dies of network

[19], we chose

n our network.

econd on each

ue is 0.8. The

nts taken from

varies based on

ration.

otocols in four

used without

e of the system.

tion delays are

nks within the

. The average

width, and the

ection, ranges

are located in

ected by slow

50ms which is

nal links (e.g.

 Libya). The

rage utilization

traffic ranges

s configuration

two extremes.

away location

her servers and

d by fast WAN

imilar to those

ns.

ws. It invokes

with or without

and the delay

ed dynamically.

the 3-version,

ed by the WS-

ervice replicas

d. There is no

all request and

5.2 Experimental Results

The experiment comprises

validating the NetFIS approach

logged (SOAP requests and respo

trip response times and except

experiment. Those logs generate

client application have been us

analysis.

Section 1: NetFIS emulates

with simulating varied traffic loa

shown in Table 1. A prelimina

check the network condition and

services before the other test cas

three Web services 1000 times

NetFIS. The overall maximum

round trip response time (RTT

application are 102ms, 8ms and 5

Figure 2. Client invocation Ro

Figure 2 shows the RTT to the

by the WS-Mediator. It is intere

Web services had much longer RT

the test. It may suggest that th

optimized by some kind of cach

in the Web services. It is also

three replicated Web services

operating system, middleware,

longer delays than WS1 and W

variations of a Web service itself

services are indeed insignificant

delays to be injected by the Ne

safely ignored. The average RTT

are 10ms, 11ms and 12ms. The

slightly smaller than 10ms, be

quickest response from the three W

The preliminary test results p

information of the physical LAN

several test cases for

h. All events have been

onses, injected faults, round

tion messages) during the

ed by the NetFIS and the

sed for quantitative result

different types of network

ad. The detailed settings are

ry test was carried out to

the parameters of the Web

ses. The client invoked the

(interval: 1000ms) without

m, minimum, and average

T) received by the client

57ms respectively.

ound Trip Response Times

e three Web services logged

sting to note that the three

TT at the very beginning of

he RTT could have been

hing mechanisms employed

worth noting although the

have identical hardware,

etc, WS3 constantly had

WS2. However, the RTT

and between different Web

when comparing with the

tFIS, and therefore can be

T of WS1, WS2 and WS3

e average client RTT was

ecause it always uses the

Web services.

provided the benchmarking

and Web services involved

in the experiment. Then NetFIS was added

client and the Web services, and the clien

invocations in each setting.

TABLE 1. RESPONSE TIME OVERH

The statistics of the results shown in T

indicated the effectiveness of the emulation

different networks between the system com

average RTT of the Fast WAN, without injec

error faults, is 59ms, where the average RTT

without using our tool, is 57ms. That me

overhead introduced by NetFIS to the system

clearly insignificant. However the differences

response time between the Fast WAN and the

indeed large. With the Heterogeneous WAN

response time is almost between the average r

of the Fast and Slow WANs. That is due to H

WAN is configured of a combination of

WANs (Fast and Slow).

Section 2: The NetFIS injects various ty

faults between the client and the Web servic

emulated network conditions. The combin

injected faults are shown in Table 2.

TABLE 2. DROP AND RANDOM ERROR

Network

Emulated

Injected Drop rate Inj

Target

%

Achieved (total

messages)

Tar

%

Fast WAN
0.1 1 0.

1 9 1

Slow WAN
0.1 1 0.

1 10 1

Hetero.WAN
0.1 1 0.

1 9 1

 The client invoked the Web services via

times in each setting. Table 2 shows the st

results in each test case. The results indicate

coped well with the settings and injected e

correctly. When “drop” is injected, the c

“timeout” exception after 10 seconds waiting

the response was lost. When errors are inje

find

methodfor{http:%/webservices.calibayes.ncl.a

ableSimMethods” exception messages were

client which indicates corrupted SOAP m

received but the JAX-WS framework w

correctly deal with the responses.

Network

Bandwidth

(Mb/s)

Response

Max,

ms

Min,

ms

LAN N/A 102 8

Fast WAN 4000 488 35

Slow WAN 512 698 110

Hetero.WAN Fast and Slow 870 99

d between the

nt made 1000

HEAD

Table 1 clearly

n on the three

mponents. The

cting drop and

T of the LAN,

eans the delay

m under test is

of the average

 Slow WAN is

N, the average

response times

Heterogeneous

the other two

ypes of timing

ces in different

nations of the

INJECTED
jected Error rate

rget

%

Achieved

(total

messages)

.1 1

1 10

.1 1

1 10

.1 1

1 10

a NetFIS 1000

tatistics of the

e that the tool

expected faults

client threw a

; this indicates

ected, “Cannot

dispatch

ac.uk/}getAvail

thrown by the

messages were

was unable to

Figure 3. RTT to Web Servi

configurat

Figure 3 shows the RTT of W

the WS-Mediator client) at differe

network conditions. The ‘injecti

the invocation Round Trip Time

time

Average,

ms

57

59

190

104

ice 1 for various network

tions

Web Service 1 (monitored at

ent drop and error rates and

ion modes’ axis represents

of each injection mode. As

expected, the overall average RTT of the fa

much smaller than of the other two network c

figure clearly shows greater RTT varia

heterogeneous network than in the slow

timeout value has been bounded at 3000ms

plots more readable.

Figure 4 shows the comparison of the RT

Web services where the fastest response messa

fast network is

conditions. The

ations in the

network. The

s to make the

TT of all three

age is counted.

The ‘clients’ axis represents the

at each client thread (which resp

WS2, WS3) and the client applica

Mediator to deal with the resu

threads. We chose the 1% drop

show the comparison since this

most. As the faults were injecte

Web services, the 3-version first

Figure 4: Round Trip Response tim

replicated web services under diffe

invocation RTT monitored

pectively deals with WS1,

ation that employs the WS-

ults received by the client

p rate injection scenario to

test case affects the RTT

ed arbitrarily into the three

response mechanism in the

mes from the fastest of the 3

erent network configurations

6. Conclusions and Future Work

In this paper, we have introduced a methodology and

built a tool that can inject faults into any Web service

application without touching the code of the application.

The tool can inject value or timing faults into application.

Furthermore, we can control the network that is used and

can add background traffic. The network emulation may not

exactly mirror the real world environment. However, it is a

significant advance on testing using a single machine or a

LAN. In particular, sample traffic recorded from a real

network can be used in the emulation as well as self-similar

traffic patterns. Our experiment has clearly demonstrated the

network emulation and fault injection capacities of NetFIS

and an example of how to use the functionalities of the tool

for testing the Fault Tolerance Mechanisms of the

application. In this case, the WS-Mediator has demonstrated

its fault tolerance capacity with service diversity. The client

application only threw exceptions when the three Web

services failed simultaneously. WS-Mediator successfully

dealt with the faults in most test cased and masked the

reliability problems from the client.

7. References

 [1] Papazoglou, M., & van den Heuvel, W. J. (2006). Service-Oriented

Design and Development Methodology. International Journal on Web
Engineering and Technology, 2(4), 412–442.

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, Fault Injection Techniques and

Tools. IEEE Computer, vol. 30, pp 75-82, 1997.

[3] Z. Zheng and M. R. Lyu. Ws-dream: A distributed reliability

assessment mechanism for web services. In DSN, pages 392–397,

Anchorage, Alaska, USA, June 2008.

[4] Y. Chen and A. Romanovsky. Improving the dependability of web

services integration. IT Professional, 10(3):29–35, 2008.

[5] S. Han, K. G. Shin, and H. A. Rosenberg, "DOCTOR:

An IntegrateD SOftware Fault InjeCTiOn EnviRonment for Distributed

Real-time Systems," International Computer Performance and

Dependability Symposium, Erlangen; Germany, pp.204-213, 1995.

[6] S. Dawson, F. Jahanian, T. Mitton and T.-L. Tung, Testing of Fault-

Tolerant and Real-Time Distributed Systems via Protocol Fault Injection,

in Proc. 26th Int. Symp. on Fault-Tolerant Computing (FTCS-26), Sendai,
Japan, 1996, pp.404-414.

[7] de Almeida, L.F. and S.R. Vergilio. Exploring Perturbation Based

Testing for Web Services. in Web Services, 2006. ICWS '06. International
Conference on. 2006.

[8] Siblini, R. and N. Mansour. Testing Web services. in Computer

Systems and Applications, 2005. The 3rd ACS/IEEE International
Conference on. 2005.

[9] Sneed, H.M. and H. Shihong. WSDLTest - A Tool for Testing Web

Services. in Web Site Evolution, 2006. WSE '06. Eighth IEEE International
Symposium on. 2006.

[10] Jeff, O. and X. Wuzhi, Generating test cases for web services using
data perturbation. SIGSOFT Softw. Eng. Notes, 2004. 29(5): p. 1-10.

[11] Looker, N. and J. Xu. Assessing the Dependability of SOAP RPC-

Based Web Services by Fault Injection. in Object-Oriented Real-Time
Dependable Systems, 2003. WORDS 2003 Fall. The Ninth IEEE

International Workshop on. 2003.

[12] Zhang, J. and R.G. Qiu. Fault injection-based test case generation for
SOA-oriented software. in 2006 IEEE International Conference on Service

Operations and Logistics, and Informatics, SOLI 2006. 2006.

[13] Looker, N., M. Munro, and J. Xu. WS-FIT: A tool for dependability
analysis of web services. in Proceedings - International Computer Software

and Applications Conference. 2004. Hong Kong, China.

[14] F. Bessayah, A. Cavalli, W. Maja, E. Martins, A. Willik Valenti, A
Fault Injection Tool for Testing Web Services Composition, Proc. 5th

Testing Academic and Industrial Conference -- practice and research

techniques (TAIC PART 2010), Windsor, UK, (LNCS 6303), 2010, pp.
137-146.

[15] E. Marsden, J.-C. Fabre, J. Arlat, “Dependability of CORBA Systems:

Service Characterization by Fault Injection”, 21st IEEE Int. Symp. on
Reliable Distributed Systems (SRDS-2002), (Osaka, Japan), pp.276-285,

IEEE CS Press, 2002.

[16] P. Reinecke, A. P. A. van Moorsel, and K. Wolter. The Fast and the
Fair: A Fault-Injection-Driven Comparison of Restart Oracles for Reliable

Web Services. In QEST ’06: Proceedings of the 3rd International

Conference on the Quantitative Evaluation of Systems, pages 375–384,
Washington, DC, USA, 2006. IEEE Computer Society

[17] Mohammad Alsaeed , Neil A. Speirs, “A Wide Area Network

Emulator for CORBA Applications”, Proceedings of the 10th IEEE
International Symposium on Object and Component-Oriented Real-Time

Distributed Computing, p.359-364, May 07-09, 2007.

[18] Chen, Y., Lawless, C., Gillespie, C.S., Wu, J., Boys, R.J., Wilkinson,
D.J., 2009, CaliBayes and BASIS: integrated tools for the calibration,

simulation and storage of biological simulation models. Briefings in

Bioinformatics.

[19] Mark E. Crovella and Azer Bestavros, “Self-similarity in World Wide

Web traffic: Evidence and possible causes,” IEEE/ACM Transactions on

networking, vol. 5, no. 6, pp. 835-846, Dec. 1997.

[20] C. Fraleigh and S. Moon, et al. “Packet-Level Traffic Measurements

from the Sprint IP Backbone”, In: IEEE Network, Volume 17, Number 6:
November 2003.

[21] OASIS. (2010). 'OASIS Web Services Reliable Messaging (WSRM)

TC'. [Retrieved: 30 Jun 2010]; Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrm.

