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Abstract  

Testing Web services performance and their Fault 

Tolerance Mechanisms (FTMs) are crucial for the 

development of today's applications. Testing the 

performance and FTMs of composed service systems is hard 

to measure at design time because service instability is often 

caused by the nature of the network. Using a real internet 

environment for testing is difficult to set up and control. We 

have developed a fault injection toolkit that emulates a WAN 

within a LAN environment between composed service 

components and offers full control over the emulated 

environments in addition to the ability to inject network-

related and application specific faults. The tool also 

generates background workloads on the tested system for 

producing more realistic results. We describe an experiment 

that has been carried out to test the impact of fault tolerance 

protocols deployed at a service client by using our fault 

injection toolkit. 

1. Introduction 

Web services technology is becoming progressively more 

important in service oriented computing and applications. 

Web services are software programs that offer services over 

the Internet to other software programs, including web 

applications and other Web services. They have changed the 

way we look at the Internet from being a repository of data 

into a repository of services. 

Web services play critical roles in developing 

information systems that rely on integration of 

heterogeneous data and autonomous component services. 

Web service technology is being used to allow the creation 

of complex systems, composed of simple Web services, 

which exchange messages to form complex conversation 

schemas [1]. These services are usually developed and 

administrated by different service providers, running on 

different platforms, and distributed over the Internet in 

different geographic locations.  

The quality of such complex systems depends both on 

the quality of the network environment and on the quality of 

the Web service applications participating in forming such 

systems. One of the obstacles of the adoption of the Web 

service paradigm in such composed systems is the problem 

of assessing their overall quality. Web services are 

inherently distributed and heterogeneous, and in real-world 

practice, are often invoked with little understanding of their 

reliability and performance. 

In many applications, service composition often relies on 

dynamic service integration, meaning that very possibly the 

component services are discovered, selected, and composed 

at runtime. Thus it becomes more difficult to assess the 

behaviour and performance of these component services, 

especially in the presence of transient faults. Therefore, 

there is no guarantee that all parts of the composite service 

are highly reliable. In [15] it is reported that communication 

faults such as message loss, duplication reordering, or 

corruption have an effect on traditional distributed systems 

such as CORBA applications. Moreover it has been found 

that unstable Internet environments and server connections 

can lead to unreliability of Web service applications [3].  

Web services are subject to many network faults such as 

delaying, dropping, damaging, and reordering messages and 

also to software faults within the services.  

Testing the performance and fault tolerance of Web 

services has become an active research area. Software Fault 

injection is a well-proven method of assessing the reliability 

of a system [2]. In this paper we describe a tool for testing 

the performance and fault tolerance of either a single Web 

service or composed service, without modification to the 

component services being tested. No recompiling or 

patching is necessary. Furthermore, the tool will generate 

background workload to more accurately emulate real 

networks. Our tool is also independent of the hosting 

environment for portability. In Section 2, we describe 

existing tools for injecting faults into web services. In 

Section 3 and 4, we describe the design and implementation 

of our Network Fault Injector service (NetFIS). In Section 5, 

we describe an example experiment that uses NetFIS to 

assess the dependability of a Bioinformatics Web service. 



This Web service employs an off-the-shelf Mediation [4] 

framework to provide fault tolerance. We demonstrate how 

to apply the NetFIS tool in evaluating the performance and 

the fault tolerance mechanisms of a service. Section 6 

describes our conclusions and future work. 

2. Related work 

There are many Software Fault Injection tools for testing 

general distributed systems. Some of these are specifically 

designed for testing Web services. Well-known fault 

injection tools, such as DOCTOR [5] and Orchestra [6], 

support network level fault injection and could potentially 

be used to inject faults into Web services. These two tools 

however have been designed for testing network protocols 

without decoding complete middleware message sequences. 

Therefore they are not wholly suitable for debugging Web 

services in which message integrity is a big concern.  

In Almeida and Vergilio [7] a tool is proposed for 

generating and validating test cases. The tool interprets 

WSDL schema, and then introduces some operator to 

generate a request with random data and a test script that 

manipulates the request parameters. Paper [8] proposes a 

technique for testing Web services using mutation analysis. 

A mutant WSDL document is generated by applying mutant 

operators to the original WSDL document. A test tool called 

WSDLTest [9] generates Web service requests from the 

WSDL schemas and tunes them in accordance with the pre-

conditions written by the user, and then verifies the 

responses against the post-conditions offline. In [10] a 

testing tool is proposed based on some rules defined in 

XML schema or DTD. The tool modifies the value of the 

parameters in requests by using boundary value testing, and 

on interaction perturbation, using mutation analysis. 

Another tool [11] introduces a framework intercepting and 

perturbing SOAP messages by injecting faults by corrupting 

the encoding schema address, dropping messages, and 

inserting random text in the SOAP Body. The work 

described in [12] helps service requesters to create test cases 

so as to select suitable and correct Web services from public 

registries. It proposes a method where faults are injected 

into SOAP messages to test boundaries of the parameters, as 

specified in the WSDL document. The WS-FIT tool [13] 

injects faults by modifying SOAP messages using scripts. 

The user may define the value boundaries that the tool uses 

for manipulating the function parameters. The WSInject [14] 

tool injects both communication and interface faults and can 

WS-RM WS-RM be used for testing a single Web service or 

composed service system.   

A common characteristic of the work discussed above is 

that their focus is largely on testing single services in 

isolation (such as WSInject); furthermore, most of them 

focus on injecting faults by modifying the SOAP message. 

We argue that  such a strategy is only sufficient for 

debugging simple Web services and communication 

between a client and a Web service, but is hard to extend to 

testing composite services. Many Web service applications 

employ dynamic service integration and service redundancy, 

and may involve multiple autonomous component services. 

In order to test the dependability of such application as a 

whole, many more parameters have to be considered. For 

instance, the workload of the component systems and 

networks, the quality of the network environment etc. may 

greatly influence the overall dependability of a Web service 

application. Different workloads could lead to different 

testing results, due to cause different system activation 

patterns [15]. System testing becomes an even more difficult 

task when dealing with composed Web services, in which a 

component service may also act as a client of other services.  

In this paper, we propose a fault injection method that, 

adopting the architecture of a Wide Area Network emulator 

used for testing other distributed systems, extends it to test 

composed service systems. In addition, two classes of faults 

are injected, communication faults and software-specific 

faults without any modification to the system under test. The 

method also generates additional workload on the tested 

system in order to produce more realistic results. 

3. Network fault injection method 

The Network Fault Injector Service (NetFIS) is a Web 

service system that implements our fault injection methods 

for testing Web service performance and FTMs. The tool 

acts as a fault injection proxy and network emulator 

between the Service Client and the Service Provider. It 

manipulates the invocation and response messages to 

emulate incorrect behaviours of faulty networks and 

services. It intercepts the request from the Service Client, 

injects appropriate faults (if any), and then forwards the 

request to the Service Provider. Similarly, it intercepts the 

response from the Service Provider, injects faults (if any), 

and then forwards it to the Service Client.  

NetFIS is able to emulate WAN behaviours and inject 

network faults such as message dropping and delaying, and 

randomly corrupting SOAP messages. There are existing 

tools for inject networking faults in Web service 

applications. For example, [16] proposes a tool to inject 

faults at the IP level to investigate the effect of the TCP 

retransmission mechanisms on Web services.  This allows 

examining the relationship between the time-out and 

retransmission mechanisms implemented in the TCP and the 

WS-ReliableMessaging protocol. By contrast, our tool can 

drop a whole SOAP message which may consist of more 

than one packet. In this way the consequences of faults 

injection can be propagated to the application level so as to 

examine whether the application level FTMs can effectively 

handle such faults. In addition, the tools can interpret Web 

services parameters definitions (including data types) from 

WSDL files to inject software faults into RPC parameters 

based, however this class of faults will not be detailed in this 

paper.   

The network emulation mechanisms implemented in the 

NetFIS are configurable. This gives the ability to control 

every property of the emulated networks. The tool 



implements a graphical user interface to allow users to 

control the emulator at runtime for simulating dynamic 

networking environments. The tool uses the network 

topology configuration file, network traffic trace files and 

the GUI to measure and test the performance and FTMs of 

composed service systems in an emulated WAN.  

3.1 Application level and network level 

Before going through more details about the proposed 

system architecture, it is worthwhile to go over some of the 

major design issues. 

Networking faults typically involves packet corruptions, 

reordering, and dropping. Faults may be present in the 

physical media and all the layers in the network stack. It is 

logical to inject intentional network related faults at the 

network level in networking emulation. Traditionally, it has 

been done for assessing the reliability and performance of 

networking protocol stacks. Such faults are normally 

automatically dealt with by the actual underlying network 

protocols [15]. Consequently, the application or middleware 

will not notice the presences of the faults, and therefore will 

not be tested. Moreover network level fault injection 

tampers with packets, but not application level messages.   

NetFIT is intended to inject communication faults and 

tests their impact on the performance and FTMs of a 

composed service system. Therefore it is more efficient and 

desirable to inject faults at the application/middleware level 

instead of the network level. Communications between the 

component services are intercepted at application level and 

faults are injected by using proxies. We elaborate on the 

architecture of this choice in later sections. 

3.2 Network emulation 

In composed services, the component services in the 

system are usually deployed over the Internet. The 

performance and fault tolerance of an application with 

composed services are very difficult to be measured at 

design time. In order to test such systems, a distributed 

testing environment is required, such as a WAN or the 

Internet. However, it is usually impractical to use the real-

world Internet or WAN for system tests. It is very costly and 

time consuming to set up a WAN or use the Internet for the 

sake of testing. It is impossible to control such dynamic 

environment as networks such as putting more stress, load, 

or errors. Moreover, errors may take a long time to occur. 

Some errors may not occur without applying a certain chain 

of events.  

A realistic approach is to run the system in one machine 

or over a LAN using a WAN emulation system which can 

provide the sense that the system is running over a WAN 

and provides all the properties of a dynamic WAN like the 

Internet. That will help the testers to test the performance 

and fault tolerance of a system by running the system under 

different circumstances such as different network traffic 

load, delays, loss rate, and so on. By using network 

emulation, not only the performance of the whole system 

can be measured under different circumstances, but also the 

contribution of each service to the overall composed service 

system can be measured, and a bottleneck service can be 

discovered. Such runtime environment should also be able 

to inject faults to the system under test. 

Based on the discussion above, the proposed solution we 

present in this paper is emulating customizable and 

controllable WANs over LANs. This way the Web service 

systems are tested on virtual WANs that are very similar and 

comparable to a real world WAN environment. Testing over 

these virtual WANs will not be suffering the problems of the 

real WANs as previously discussed. The assumption made 

in this work is that the actual LANs used for hosting the 

virtual LANs are very reliable and very fast thus making 

uncontrolled faults and delays negligible. We argue this 

assumption applies to most well maintained LANs. 

Our network emulation is based on the architecture of a 

fault injection testing method with successful results for 

testing CORBA Applications [17]. The original testing 

method is for emulating the behavior of WAN and injecting 

network faults at the application level. The messages 

exchanged between CORBA components are intercepted 

(using CORBA Interceptors), and then network faults are 

injected.  

However, there are some shortcomings of the CORBA 

fault injection approach [17]. In CORBA interceptor level, 

the messages are already coded in binary code. The method 

does not target any particular elements in the message to 

inject faults, such as function parameters, in the case of 

RPC. Also message corruption and dropping faults are only 

injected by throwing exceptions. That means the CORBA 

fault injection method can only inject the mentioned faults 

to test only the system’s ability of dealing with such 

exceptions, whereas it is more logical to inject explicitly the 

faults and observe the effects on the system. Injecting faults 

such as dropping and delaying messages can help 

developers to assign a reasonable time period before the 

system times out. The CORBA approach cannot help in 

distinguishing between message delays and message losses. 

If the time-out interval is made too short, then there is a risk 

of duplicating messages and also reordering in some cases. 

If the interval is made too long, then the system’s 

performance will suffer.  

All the discussed issues above have been taken into 

account in order to produce a WAN Emulation design for 

our fault injection method. As discussed in the previous 

section, the messages are intercepted at application level by 

using proxies, so at this level the complete message entities 

are captured and any particular part of the messages can be 

manipulated. In addition, the network faults may be injected 

explicitly (dropping or corrupting messages). The time out 

period setting issue is tackled by testing the system under 

different real delay rate and drop rate scenarios. By 

explicitly assigning the best timeout period, the risk of 



confusing between the normal network delays and the 

message losses can be minimized. 

3.3 Scalability and overhead 

There are some other key issues have been considered in 

order to design our fault injection method. In order to 

emulate a large multi-hop network, scalability and overhead 

issues need to be addressed. The emulator must scale well 

for networks with hundreds or more of nodes while 

maintaining an acceptable emulation overhead. It is intended 

that the emulation be hosted over a LAN where every 

physical node is responsible for a clique of virtual nodes. 

This reduces the chances of uncontrollable faults caused by 

the underlying hardware or networking devices and allows 

accurate emulation of other traffic sources. The design 

assumes that the emulated WAN is large enough so that the 

emulation overhead is negligible compared to the actual 

network delays.  

3.4 System monitoring (failure detection) 

Many failure modes affecting distributed systems have 

been classified. For example, in [15], failure modes, which 

can occur in CORBA applications, have been classified. In 

[11], failure modes affecting Web service systems are also 

explained. Based on the those failure modes classifications, 

we summarize the failure modes of composed service 

systems as follows: 1) crash of a service instance/hosting 

environments, 2) service hang, 3) corruption of data coming 

into the system, 4) corruption of data coming out of the 

system, 5) duplication of messages, 6) omission of messages 

and 7) delay of messages.  

   The effect of the above failure modes depends on the 

capability of the FTMs of the system that detects the faults 

and prevents the system from deviating from its specified 

behavior. Corrupted data coming into the system should be 

detected by the middleware (or the Web service 

application), rejected, and then raise an appropriate error 

exception as a response. Corruption of data coming out of 

the system should be handled by the middleware at the 

client side. Undetected corrupted data can cause failures 

when being propagated from the middleware to the 

application level. In such cases, a mechanism must be 

deployed at application level to deal with the issue.  

Duplication and omission of messages should also be 

handled by the middleware layer of the service and raise 

appropriate exceptions. However omission of messages 

from client to service must be detected by the middleware of 

the client since the service would have no mechanism for 

knowing the message had been sent.   

If an application server is crashed, it will not be able to 

accept invocations and the client will get exceptions from 

the transport layer.  If the application server hangs, it may 

not respond to invocations, making it hard for the client to 

discover what has happened.  

Delayed messages may cause timing faults. Timing faults 

should be detected by the middleware at client side when a 

response message is not received in a specified time. 

However at the service client there is a problem of 

distinguishing between a lost request message and the 

message experience a long delay in the network. A 

reasonable time span should be deployed before raising 

timeout exception at service client to minimize this issue.   

Because of all the problems above, some of the failure 

modes are very difficult to detect. For example as discussed 

above, it is difficult to distinguish between crash and hang 

failure modes in some cases. In addition, some other failure 

modes are also difficult to detect.  For example, it is difficult 

to distinguish if a client request is lost before reaching to the 

service provider or the acknowledgement packet is lost 

before reaching to the client.  

To face these problems, we rely on the logging 

mechanism of the proposed methods and the logging of the 

client as well. The failure modes mentioned before can be 

observed by analyzing the log files to detect exceptions 

caused by corruption and omission of messages. Crashes of 

services/hosting environments and hanging services can be 

detected by  receiving exceptions or via time-out 

mechanisms applied at the client side.  

4. NetFIS Implementation 

 

Figure 1. NetFIS Architecture for a 2 Node System 

 

The NetFIS tool has been implemented for SOAP based 

composed service systems. However, the architecture is 

generally applicable to most SOA distributed computing 

platforms (e.g. Open Grid Services Architecture). The 
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emulator is transparent to the applications and requires no 

modifications, recompiling or patching to the middleware. It 

is also independent of the hosting environment for 

portability. Finally, it emulates other synthetic application 

traffic running at the same time and sharing the networking 

resources.  The architecture of NetFIS is shown in Figure 1 

for a 2 node system 

4.1 Fault injection service 

The Fault Injection Service (FIS) is a Web service which 

has the capability to generate a proxy Web service to one or 

more Web services of the system under test.  More 

importantly, it injects the proper faults into the system under 

test with its sub-components. 

At the client side, FIS generates a proxy WSDL from the 

actual Web service WSDL needed to be called by client. As 

a result, all client requests are processed by the FIS. 

Thereafter, the FIS sends the request to its internal 

subcomponent, the Fault Injection Controller (FIC) to inject 

faults. Then the request is sent to another FIS that is 

deployed on the site where the actual Web service is 

running. When the client side FIS receives a response from 

the Web service, it forwards it to the client. 

At the Web server side, messages received from the 

client side FIS are forwarded to the actual Web service by 

the FIS. When the response is received, it is redirected to the 

internal FIC for fault injection, and then the response, if 

any, is sent back to the FIS deployed at the client site. 

In the case of composed services, where a component 

service acts as both a service and a client in the same 

system, a single FIS can perform both of the roles explained 

above. By using this way of intercepting messages, no 

modification is made to the system under test.  

4.2 Fault injection controller 

 The Fault Injection Controller (FIC) is a component 

inside the FIS which is responsible for controlling the tool 

and injecting the proper faults into the messages. Faults are 

injected into the SOAP messages based upon decisions 

coming from two other components of the tool – the 

Network Emulation Service (NES) and the Script Fault 

Model (SFM). These two components can either be turned 

on or off at the choice of the user. The SFM is a java 

program written by the user. The function parameters may 

be modified by using the value boundaries specified by the 

tester. When both SFM and NES are active, the SFM 

decision can only be applied if the decision from NES is not 

to drop or corrupt the message. The FIC gives network 

faults higher priority. The FIC also logs SOAP messages to 

be analyzed offline. The message, if it has not been dropped, 

is sent back to the interceptor to complete its journey to the 

corresponding FIS. 

4.3 Network emulator service  

The Network Emulator Service (NES) is a WAN 

Emulator Web service, which gives the applications the 

sense that there are other synthetic applications running at 

the same time and sharing the networking resources. In 

addition, it provides the ability to inject network faults (loss, 

delay, corruption, reordering, etc.). All the generated 

workload traffic and the faults injected use SOAP messages. 

The system is deployed and exposed as composed Web 

services. The NES consists of one centralized Network 

Controller Service (NCS), controlling the emulated network 

and a set of NES’s deployed at each node in the system 

which emulates the nodes of the targeted network. The NCS 

and every NES communicate with each other by exchanging 

SOAP messages and also communicate with the FIC using 

SOAP messages as required. 

4.4 Setting up the tool 

The first stage consists of building a description of the 

target network using a topology file and to describe the 

traffic load to generate on all network nodes. The next stage 

is to start the NCS and load the topology. The third step is to 

start the NES’s for all the network nodes. Then to start the 

FIS for every node which will generate a proxy service for 

each service to be called, and finally, to order the NEC to 

start the emulation and then start the system to be tested.  

The Topology file is a simple configuration XML file 

that describes the target network topology. It lists the nodes 

in the network together with their configurations. In addition, 

a trace file also must be provided for each node to describe 

its traffic load. It shows packet counts per unit time and can 

either be created by hand, captured from real traffic traces or 

produced using network traffic modelling algorithms. Then, 

the NCS, which is a Web service itself, is started. NCS is 

used by NES’s to provide node configuration parameters and 

locations of neighbouring NES’s. Each node of the emulated 

network is represented by one FIS and one NES. 

Each FIS at the client side needs to be provided with an 

XML file containing the URL(s) of the Web service(s) 

under test. The client needs to call this, in order to generate 

a Web service proxy which will be called by the client 

instead of the actual Web service under test. The XML file 

also contains the URL of the NES emulating the same node. 

As the tool does not require any modifications to the 

system under test, the only job for the client is to start 

calling the proxy service generated by the FIS instead of 

calling the actual Web service. 

5. Example experiment 

 

In this section we describe an example experiment that 

injects a number of networking faults (delaying, dropping 

and randomly corrupting SOAP messages) into a collection 

of Bioinformatics BLAST  Web services [18]. BLAST is an 

algorithm which is commonly used in silico experiments in 

bioinformatics to search for gene and protein sequences that 

are similar to a given input query sequence. We needed a 

fault tolerant mechanism to test so we deployed the WS-

Mediator [4] at the client side to invoke a three times 



replicated Bioinformatics Web services [18
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tion messages) during the 

ed by the NetFIS and the 

sed for quantitative result 

different types of network 

ad. The detailed settings are 

ry test was carried out to 

the parameters of the Web 

ses. The client invoked the 

(interval: 1000ms) without 

m, minimum, and average 

T) received by the client 

57ms respectively.  

 

ound Trip Response Times 

e three Web services logged 

sting to note that the three 

TT at the very beginning of 

he RTT could have been 

hing mechanisms employed 

worth noting although the 

have identical hardware, 

etc, WS3 constantly had 

WS2. However, the RTT 

and between different Web 

when comparing with the 

tFIS, and therefore can be 

T of WS1, WS2 and WS3 

e average client RTT was 

ecause it always uses the 

Web services.   

provided the benchmarking 

and Web services involved 



in the experiment. Then NetFIS was added

client and the Web services, and the clien

invocations in each setting.  
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The statistics of the results shown in T

indicated the effectiveness of the emulation

different networks between the system com

average RTT of the Fast WAN, without injec

error faults, is 59ms, where the average RTT

without using our tool, is 57ms. That me

overhead introduced by NetFIS to the system

clearly insignificant. However the differences 

response time between the Fast WAN and the

indeed large. With the Heterogeneous WAN

response time is almost between the average r

of the Fast and Slow WANs. That is due to H

WAN is configured of a combination of 

WANs (Fast and Slow). 

Section 2: The NetFIS injects various ty

faults between the client and the Web servic

emulated network conditions. The combin

injected faults are shown in Table 2. 

 

TABLE 2.  DROP AND RANDOM ERROR 

Network 

Emulated 

Injected Drop rate Inj

Target 

% 

Achieved (total 

messages) 

Tar

%

Fast WAN 
0.1 1 0.

1 9 1

Slow WAN 
0.1 1 0.

1 10 1

Hetero.WAN 
0.1 1 0.

1 9 1

 The client invoked the Web services via

times in each setting. Table 2 shows the st

results in each test case. The results indicate

coped well with the settings and injected e

correctly. When “drop” is injected, the c

“timeout” exception after 10 seconds waiting

the response was lost. When errors are inje

find 

methodfor{http:%/webservices.calibayes.ncl.a

ableSimMethods” exception messages were 

client which indicates corrupted SOAP m

received but the JAX-WS framework w

correctly deal with the responses.  

Network 

 

Bandwidth 

(Mb/s) 

Response 

Max, 

ms 

Min, 

ms 

LAN N/A 102 8 

Fast WAN 4000 488 35 

Slow WAN 512 698 110 

Hetero.WAN Fast and Slow 870 99 

d between the 

nt made 1000 

HEAD 

Table 1 clearly 

n on the three 

mponents. The 

cting drop and 

T of the LAN, 

eans the delay 

m under test is 

of the average 

 Slow WAN is 

N, the average 

response times 

Heterogeneous 

the other two 

ypes of timing 

ces in different 

nations of the 

INJECTED 
jected Error rate 

rget 

% 

Achieved 

(total 

messages) 

.1 1 

1 10 

.1 1 

1 10 

.1 1 

1 10 

a NetFIS 1000 

tatistics of the 

e that the tool 

expected faults 

client threw a 

; this indicates 

ected, “Cannot 

dispatch 

ac.uk/}getAvail

thrown by the 

messages were 

was unable to 

Figure 3. RTT to Web Servi

configurat

Figure 3 shows the RTT of W

the WS-Mediator client) at differe

network conditions. The ‘injecti

the invocation Round Trip Time 

time 

Average, 

ms 

57 

59 

190 

104 

 

 

ice 1 for various network 

tions  

Web Service 1 (monitored at 

ent drop and error rates and 

ion modes’ axis represents 

of each injection mode. As 



expected, the overall average RTT of the fa

much smaller than of the other two network c

figure clearly shows greater RTT varia

heterogeneous network than in the slow 

timeout value has been bounded at 3000ms

plots more readable. 

Figure 4 shows the comparison of the RT

Web services where the fastest response messa

  

fast network is 

conditions. The 

ations in the 

network. The 

s to make the 

TT of all three 

age is counted. 

The ‘clients’ axis represents the 

at each client thread (which resp

WS2, WS3) and the client applica

Mediator to deal with the resu

threads. We chose the 1% drop

show the comparison since this 

most. As the faults were injecte

Web services, the 3-version first 

 

Figure 4: Round Trip Response tim

replicated web services under diffe

 

invocation RTT monitored 

pectively deals with WS1, 

ation that employs the WS-

ults received by the client 

p rate injection scenario to 

test case affects the RTT 

ed arbitrarily into the three 

response mechanism in the 

 

mes from the fastest of the 3 

erent network configurations 



6. Conclusions and Future Work  

In this paper, we have introduced a methodology and 

built a tool that can inject faults into any Web service 

application without touching the code of the application. 

The tool can inject value or timing faults into application. 

Furthermore, we can control the network that is used and 

can add background traffic. The network emulation may not 

exactly mirror the real world environment. However, it is a 

significant advance on testing using a single machine or a 

LAN. In particular, sample traffic recorded from a real 

network can be used in the emulation as well as self-similar 

traffic patterns. Our experiment has clearly demonstrated the 

network emulation and fault injection capacities of NetFIS 

and an example of how to use the functionalities of the tool 

for testing the Fault Tolerance Mechanisms of the 

application. In this case, the WS-Mediator has demonstrated 

its fault tolerance capacity with service diversity. The client 

application only threw exceptions when the three Web 

services failed simultaneously. WS-Mediator successfully 

dealt with the faults in most test cased and masked the 

reliability problems from the client. 
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