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Abstract— Wireless Sensor Networks (WSNs) have the po-
tential of significantly enhancing our ability to monitor and
interact with our physical environment. Realizing a fault-
tolerant operation is critical to the success of WSNs. The
main challenge is providing fault tolerance (FT) while con-
serving the limited resources of the network. Many schemes
have been proposed in this area. Our main contribution
in this paper is to propose a general framework for fault
tolerance in WSNs. The proposed framework can be used
to guide the design and development of FT solutions and to
evaluate existing ones. We present a comparative study of
the existing schemes and identify potential enhancements.
A primary module of the framework is the learning and
refinement module which enables a FT solution to be adap-
tive and self-configurable based on changes in the network
conditions. We view this as vital to the resource-constrained
and highly dynamic WSNs. Up to our knowledge, we are
the first to propose the implementation of such module in
FT solutions for WSNs.

Index Terms— Networked sensor systems, Fault tolerance,
Checkpoint/Restart

I. INTRODUCTION

Wireless Sensor Networks (WSNs) provide a bridge

between the digital world and the physical world. Typi-

cally, a WSN is comprised of numerous tiny sensor nodes

(or sensors for short) deployed in an environment for

monitoring and tracking purposes. Sensed data are ag-

gregated and, at times, stored ”in-network” at sink nodes

which may themselves be sensors or other nodes richer

in capabilities and resources. Data are then communicated

to the end users either periodically or on-demand through

the sinks or a higher order node; the base station. Clearly,

WSNs find numerous applications ranging from health-

care to crisis management and warfare. Many of these

applications require a continual stream of dependable data

with specific quality of service (QoS) requirements such

as bounded delay or minimal packet drop.

This paper is based on “A Fault Tolerance Management Frame-
work for Wireless Sensor Networks,” by I. Saleh, H. El-Sayed, and
M. Eltoweissy, which appeared in the Proceedings of the 3rd IEEE
Conference on Innovation in Information Technology (IIT06), Dubai,
UAE, November 2006. c© 2006 IEEE.

4300 Wilson Blvd., Suite 750.Arlington, VA 22203.Tel: (703) 528-
5500, Fax:(703) 528-5543

While WSNs inherit most of the dependability and

QoS provisioning issues of wireless networks [3], [8],

[17], their characteristics pose unique challenges that

make present-day dependability and service differentia-

tion schemes unsuitable. Sensors are battery operated and

possess limited computing and communication capabili-

ties. In addition, when deployed, these sensors are likely

to operate unattended, closely interacting with their physi-

cal environment that may be hostile (for example, enemy

territory or hazardous terrain). These limitations render

WSNs more prone to failure than other wireless networks

and mandate numerous tradeoffs, for example between

safe mobility and performance, buffer space/bandwidth

and data redundancy, Energy consumption and Quality of

Data (QoD). We define QoD as the number of readings

received by the user divided by total number of readings

generated by the network during an observation period.

Realizing a fault-tolerant operation is critical to the

success of a WSN. In addition to resource preservation

and achieving high QoD, we identify the following as key

requirements for FT in WSNs:

1) Awareness of the network main operation and the

status of the network resources.

2) Adaptability to the frequent changes in WSNs con-

ditions.

While several schemes satisfy the first requirement,

only a few address the second requirement and to a limited

extend. In addition, There is no common framework for

a comprehensible comparison of FT schemes. The main

contribution of this paper is proposing a general frame-

work for fault tolerance (FT) in WSNs. The framework

achieves the following:

• Provide general guidelines for the design and devel-

opment of solutions for FT in WSNs.

• Present a unified approach for FT which can be used

to identify main modules and compare and contrast

different solutions.

To provide adequate adaptability to the network changes,

a learning and refinement mechanism is needed. However,

existing solutions were found to lack such mechanism.

We present CRAFT (Checkpoint/Recovery-bAsed scheme
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for Fault Tolerance), a fault-tolerant scheme for data

collection and dissemination in WSNs. CRAFT applies

in-network data checkpointing and recovery in order

to achieve high Quality of Data (QoD) with minimum

energy overhead. CRAFT integrates the FT tasks with

the network main operation. The scheme is also adaptive

to the changes in the network conditions, specially the

energy level of the sensors. Based on the proposed frame-

work, we present a comparative study of representative

schemes including CRAFT. To the best of our knowledge,

our work is the first to provide such handling of FT in

WSNs.

The remainder of the paper is organized as follows.

In section II, we describe the WSN model and basic

definitions. In Section III, we describe the fault toler-

ance framework. In Section IV we overview the CRAFT

scheme. In Section V, we discuss and compare related

work. Finally, we conclude this work in section VI with

future directions.

II. SYSTEM MODEL AND DEFINITIONS

Sensors are scattered in a sensor field as presented in

Figure 1. We consider a homogeneous network in terms of

node capabilities. The role of aggregating and forwarding

data to the end user can be assumed by any sensor in the

field with sufficient energy. Such a node is termed sink.

Initially, sensors are operational having the capabilities

to collect data and route data back to the sink. However,

due to lack of energy, a sensor may die and become non-

operational and cannot participate in any activity in the

system.

We assume a homogeneous network; the sink function-

ality could be located in any sensor in the sensor field

and hence the sink has the same limited capability as

other sensors in the field. Assuming sinks with limited

resources allows us to study more basic WSNs.

: operational: Source sensor : Sink node

E1 E2

En

Boundary of event

: Data path: Non-operational

USER

Figure 1. An example of a WSN

The sensors communicate unreliably via a multihop

wireless connections. Usually, to reduce the energy con-

sumption and improve network throughput, not all the

sensors send data to the sink. A sensor that sends data

to the sink is called a source sensor. In addition, as

presented in Figure 1, WSNs may have different locations

of sensors for the same desired event. Each location has

its boundaries where there is at least one source sensor

that sends source packets to the sink [16]. We denote the

source sensors by E1, · · · , En. We define Ui,j to be the

jth source packet from a source sensor in Ei.

As presented in the pseudo code of Figure 2, the main

functionality of the sink is to collect source packets and

route the packets back to the end user. An end user could

be a human, satellite, or stationary computer [2]. The sink

can be invoked to send source packets to the user either

periodically, e.g., every T seconds, or on demand when

the user sends a query to the sink asking for an update.

As presented in Figure 2, U is a data structure that

maintains the source packets in the sink. In addition, we

assume that U keeps the packets history up to h packets

for each source sensor s. For n different source sensors,

U will be a h × n matrix for maintaining these packets.

U = ∅
do //An infinite loop
settime(T ) //Install a timeout

upon recv(Ui,j , s)
add(U , Ui,j)

upon (recv(REQ, USER) OR timeout(T ))
Send (U , USER)

Until (”The sensing is done”)

Figure 2. The functionality of the sink

In our WSN model, we assume three possible failures.

The first failure is a fail-stop failure in sensors. Due to

a lack of power in the battery, a sensor becomes non-

operational. The second failure is due to losing data dur-

ing communication. We assume that each sensor knows

the percentage of the remaining power of its battery. To

help us predict the fail-stop failure in sensors, we define a

percentage threshold τ1 such that if the percentage of the

remaining power reaches τ1, then the sensor cannot be an

operational sensor that participates in any communication

or sensing activity. In addition, we define another percent-

age threshold τ2, τ1 < τ2, such that if the percentage of

the remaining power reaches τ2, the sensor cannot be a

sink. We assume that the sink consumes more power than

an operational sensor. The third type of failure that we

consider is the sudden hardware failure. Hardware failure

is unpredictable by the sensor.

III. THE FAULT TOLERANCE FRAMEWORK

The FT process in WSNs consists of two main mod-

ules; namely the FT System Management and the FT

System Operations. The process is depicted in Figure 3

and is described as follows.

The FT System Management takes as input the Fault

Specification, which includes information provided by

the system engineer (or their proxy) on the expected

faults and their estimated frequencies. It also includes

information about the valuable resources that need to be

fault-tolerant as no FT system will tolerate all faults.

For example, a FT system may be designed to tolerate

data loss due to unreliable communication. Also, this
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Figure 3. The Architecture of the fault tolerance Framework for WSNs

specification includes a description of the system’s normal

operation. A rule of the form ”the network delivers 98% of

the collected readings” can be used to define the system’s

normal operation in the absence of faulty components.

Next, we describe in more detail, the functionalities that

should be supported by a FT process.

The FT System Management module consists of the

following:

- Defining Roles and Structures: A role defines a set

of tasks and a task may be executed by one or more role.

We refer to roles sharing one or more task as cooperative

roles. Data Replicator, Resource Monitorer, Fault Dis-

coverer, Damage Assessor are examples of roles. A FT

structure is any special setting used for FT operations. For

example, this could be a replicated set of data, or a special

clustering structure used to provide hardware redundancy.

The definition of such tasks, roles and structures differ

from one scheme to another and depends on the fault

specification provided by the system engineer. It should be

noted that the tasks, roles and structures definition can be

done once at system initialization, or they can adaptively

change based on the network conditions or feedback from

the FT operations as will be detailed shortly.

- Generating FT Schedule: The tasks within a role are

scheduled based on network conditions and performance

considerations. Dependence between schedules should be

exploited to achieve high performance while preserving

resources. For example, a schedule for data replication is

set based on the frequency at which new data is acquired

by the network and the user update schedule.

- Assignment of Roles: The assignment of roles

defines the mapping between the roles and the network

components. We classify FT schemes into in-network

or off-network. An in-network scheme assigns the FT

operations to one or more sensors within the network,

the scheme is hence aware of the network main operations

and adapts to the changes in the network conditions. Some

of the network resources are consumed by the FT tasks.

An off-network scheme assigns the FT operation to an

entity outside the network, a powerful station for example.

The scheme is hence oblivious to the network main

operation. However, some information may be needed to

be sent from the network to the outside entity to maintain

the FT environment, which again consumes some of the

network resources. A scheme may be hybrid; applying

both in-network and off-network assignment of roles.

- Executing FT Schedule: refers to applying tasks

needed to maintain a fault-tolerant environment. These

tasks can be done once, for example, through hardware

redundancy by initially deploying extra sensors. Or, it

can be done periodically, for example, a periodical data

replication.

The FT System Operations consist of the following:

- Fault Discovery: refers to the detection of faulty

behaviors and the identification of faulty components.

A faulty behavior is detected when the actual system

behavior is different than the normal expected behavior.

- Cost Assessment: refers to the damage estimation

and the evaluation of different recovery alternatives. The

goal of this module is to deduce a recovery plan that

optimizes the use of resources to recover from fault.

- Fault Containment and Recovery: Once a recovery

plan is set, the plan is applied to contain the fault,

eliminate its effect and restore the network to its normal

operation. This module uses the maintained FT structures

to achieve these goals. For example, a replicated set data

may be used to recover from data loss due to a sensor

failure.

- Analysis and Refinement: This module is critical

to the operation of the WSN as it enables the network

to self-configure based on changes in its conditions or

based on a feedback from the FT operations. For example,

based on the fault frequency, a rescheduling may be

triggered. Roles Assignment may also be re-applied to

cope with a change in the sensors’ energy levels. FT

schemes in WSNs can be classified into static or dy-

namic solutions based on whether the Analysis/Refinment

module is implemented. The refinement module renders

the solution self-configurable and adaptive to the changes

in the network conditions or the changes in the FT

operations. To the best of our knowledge, all solutions

proposed so far are static, this opens up a new direction

for enhancement.
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IV. CRAFT: A FAULT-TOLERANT SCHEME FOR

WSNS

In this section, we apply our framework to CRAFT,

our FT scheme for data collection and dissemination in

WSNs. CRAFT is based on Checkpoint/Recovery to re-

alize high QoD in the presence of faults. A more detailed

description of the scheme and its performance study can

be found in [18]. The scheme assumes a homogeneous

network where a sink is hosted on any sensor with enough

energy. The main idea of CRAFT is to tolerate failure of

the sink by applying periodical data checkpointing. The

checkpointed data is used to recover lost data at sensor

failure.

A. CRAFT Explained

Figure 4 presents the new behavior of the sink ac-

cording to our FT scheme. As presented in the figure,

the sink inserts the new source packet Ui,j to Um. In

addition, it has a h×n matrix Dm that contains the most

updated source packets since the latest checkpoint. The

message CK represents the checkpointed data with the

following fields: (1) the message type, which is CHKPT

in this case, (2) the most updated source packets since that

last checkpoint, and (3) the percentage of the remaining

battery power.

As presented in Figure 4, upon a checkpoint, the sink

sends Dm, but not Um to the checkpoint sensor. This

is because Dm contains the new source packets that

have not been sent yet since the previous checkpoint. By

sending Dm, actually, we implement here the incremental

checkpointing approach rather than a full checkpointing

as described in [12]. As a result, we reduce the power

consumption in the sink and reduce the number of trans-

mitted packets in the network as well.

By our FT scheme, the main new modification in

the sink functionality is to send the CHKPT and TAU2

messages to the checkpoint sensor. The CHKPT message

contains the checkpointed data. Notice here that the

checkpointed data is saved in the memory of another

sensor. This is because in many WSNs, secondary storage

may not be available in the sensor field. Moreover, by

saving the checkpointed data in more than one node, we

make the checkpointed data more persistent and available.

Regarding the TAU2 message, the sink sends this message

to the checkpoint sensor if it is not able to continue

running the sink task due to lack of battery power.

The sensor takes the checkpoint periodically every Tm

seconds. The time between two consecutive checkpoints

is called the checkpoint interval. In any checkpointing

approach, the length of the checkpoint interval affects the

tradeoff between the reliability and the performance of

the system [1], [15]. Similarly, in our approach, the value

of the checkpoint interval affects the system reliability

and performance. For example, if we set small values for

Tm, then we gain frequent saving of the most updated

U that cause better reliability for the sink. However,

due to the frequent checkpoints, the sensors involved

in checkpointing consume more energy and overhead.

In order to gain maximum benefits of the checkpoints

to provide FT in the sink, the checkpoint interval Tm

should be less than the interval time of the user update

(T ), but more than the interval time of sensing update,

which is the rate of sending the source packets. As we

mentioned before, we consider a fail-stop failure, due to

a loss of battery power, in which a faulty sensor stops

its operations. In our scheme we are mostly interested

in monitoring the sensors along the checkpoint path. In

general, the sensor Si monitors its successor sensor Si+1

for all i, 1 ≤ i < m.

The main indication of failure detection that we use

is by letting Si to send its percentage of the remaining

battery power to its predecessor sensor in the checkpoint

path. In addition, the checkpoint sensor (Sm−1) uses

the periodic checkpoints from the sink to monitor the

sink. By the first indication, once the battery of the

sink Sm reaches the threshold τ2, Sm sends a control

message to its predecessor indicating that Sm would not

be able to run the sink. Potentially, as part of the recovery

mechanism, the checkpoint sensor Sm−1 will take over

and run the sink instead. In order that Sm−1 runs the

sink, the percentage power of its battery should be more

than τ2.

Similarly, we use the threshold τ1 to detect failures in

all the sensors in the checkpoint path. Once the battery

of the sensor Si, 1 ≤ i < m, reaches the threshold τ1, Si

sends a control message to its predecessor Si−1 indicating

that Si would not be able to be in the checkpoint path, the

control message also includes reference to Si+1. Conse-

quently, the checkpoint path shrinks itself to exclude Si.

Therefore, Si−1 informs Si+1 that Si is excluded from the

path and Si−1 is its new predecessor. Notice here that we

mostly concern about the checkpoint sensor Sm−1 which

will be the sink if Sm fails.

The second indication of failure detection is by letting

the checkpoint sensor Si trace the checkpoint interval in

Si+1. Since every Tm, Si+1 saves its checkpointed data in

Si, Si can estimate the time of arriving the checkpointed

data of Si+1. Therefore, if the communication delay

between Si+1 and Si is di+1, then Si can set a timeout

that is great or equal of di+1 + Tm. Upon an expiration

of the timeout, Si suspects that Si+1 is faulty. Upon a

suspicion, Si performs a recovery as mentioned above.

Notice here that since the checkpoint message contains

the percentage power of the battery, Si can predict in

a high probability if the missing checkpoint is due to a

message loss in the wireless network or a failure that has

occurred in Si+1.

Figure 5 presents a pseudo code of the behavior of

a checkpoint sensor Si on the checkpoint path. Si uses

the timeout t for monitoring the incoming messages from

the successor sensor Si+1. An expiration of the timeout

is due to an expected message from Si+1 that did not

arrive in time. By our system model, a message may not

arrive because of either Si+1 is faulty or the message is

lost in the unreliable wireless network. In this case, Si

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 41

© 2007 ACADEMY PUBLISHER



Um = ∅; Dm = ∅
settime(T ) //For user update
settime(Tm) //Tm is the checkpoint interval
do //An infinite loop

αm = myPerPower() // Percentage power of battery
upon recv(Ui,j , s)

add(Um, Ui,j); add(Dm, Ui,j)
upon (recv(REQ, USER) OR timeout(T )) //Send update to user

Send (Um, USER); Um = ∅
upon timeout(Tm) // Do checkpoint

CK = 〈CHKPT, Dm, αm〉; Send (CK, Sm−1)
Dm = ∅

if (αm < τ2)
Send (〈TAU2〉, Sm−1) // inform about my energy

Until (”The sensing is done”)

Figure 4. The new behavior of the sink

suspects Si+1. Upon a suspicion, Si invokes the function

suspect(). This function uses the value of αi+1, that is

obtained from the latest checkpoint, to predict the cause

of the timeout expiration.

Ui = ∅
settime(t = di+1 + Tm) // For detecting lost messages
do // An infinite loop

αi = myPerPower()
upon recv(msg, Si+1)

case (msg.type)
CHKPT: //This is a checkpointed data

add(Ui, msg.D)
αi+1 = msg.α

TAU1: // Sent by a checkpoint node
successor(Si+2)
settime(t = di+2 + Tm)

TAU2: // Sent by the sink node
if (αi > τ2)

recoverSink(Si)
else

Si+1 = newSink()
notify(Si+1)

upon timeout(t)
suspect(Si+1, αi+1)

if (αi < τ1) // inform about my energy
Send (〈TAU1, Si+1〉, Si−1)

Until (”The sensing is done”)

Figure 5. The behavior of Si

By Figure 5, Si may receive three different types of mes-

sages from its successor Si+1. The first type is CHKPT.

This message indicates the receiving of the checkpointed

data from Si+1. Upon receiving a CHKPT message, Si

saves this data in its data structure Ui. The second

type of messages is TAU2. This message is sent by the

sink (in this case i = m − 1), when the percentage

power of its battery is less that the threshold τ2 (see

Figure 4). Upon receiving TAU2, Si becomes the sink

if it has enough power in its battery. In this case, Si

invokes recoverSink(Si) before running the sink task.

In this function, Si informs the source sensors and the

user about the new sink location. Notice here that by

recovering the sink in Si, we minimize the period time

in which the system does not have a sink. However, if Si

cannot run the sink, it selects a new sensor to act as a

the new sink (see Figure 5). We are currently exploring

alternatives for sink selection. The third type of messages

is TAU1. The checkpoint node Si+1 sends the control

message TAU1 if the percentage power of its battery

is less that the threshold τ1. Upon receiving TAU1, Si

excludes the checkpoint node Si+1 from the checkpoint

path and indicates that Si+2 is its successor in the path.

Then, Si updates the value of t to be di+2 + Tm.

We can see here the main two benefits of our FT

scheme due to Checkpoint/Recovery. The first benefit is

reducing the loss in collected source packets upon a sink

failure. Due to checkpoints, some source packets that

have not sent yet to the user are saved in the checkpoint

sensor. Therefore, these packets are recovered from the

checkpoint at sink failure. The second benefit is to reduce

the time in which the NSS runs without sink. Since

the checkpoint sensor monitors the sink, it is ready to

recover the sink immediately upon any failure detection.

In Section IV-E we quantify the benefits of our FT scheme

in the quality of data arriving at the user. We also study

the energy consumption.

B. CRAFT within the FT Framework

- Defining Roles and Structures: CRAFT defines

the following roles; Data Replicator: replicates the data

possessed by the sink. The replicated data is used to

recover from a sink failure. Damage Assessor: evaluates

the damage by inspecting the replicated data and deciding

whether some data packets have to be recovered from the

source nodes. Fault Discoverer: discovers a sensor fault

by monitoring the energy level or detecting a response

timeout. The checkpointed data is a structure used by the

scheme to recover from a fault. It consists of the set of

data packets collected by the sink since the latest user

update. It also contains the sink energy level which is

used to predict a power failure.

- Generating FT Schedule: A static schedule is

defined for the periodical update of the checkpointed

data structure. The schedule is set based on the data

generation rate and the user update frequency. A possible
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enhancement on the current version of CRAFT is to adapt

the schedule to the changes in the network conditions.

- Assignment of Roles: All roles defined before are

assigned to a checkpoint sensor, which is a previous sink

that has reached a defined energy threshold. Also, by

monitoring its energy level, a sink predicts its own failure.

- Executing FT Schedule: The checkpointed data is

periodically updated by including new data packets, and

the latest energy level of the sink.

- Fault Discovery: A checkpoint sensor detects a

failure when a response from the sink is timed out. Also,

a sink may predict its own failure when its energy level

reaches a certain threshold.

- Cost Assessment: The current version of CRAFT

recovers from a fault regardless of the cost.

- Fault Containment and Recovery: Once a failure

is detected by a checkpoint sensor, the replicated data is

used for recovery, packets may be also recovered from

the source nodes.

- Analysis and Refinement: This module is not

currently implemented by CRAFT.

We compared our proposed CRAFT scheme with a

NOFT scheme where there is no data checkpointing. In

the NOFT case, when the sink fails, the user selects a

new sensor to act as a sink. Data lost due to sink failure

cannot be recovered in this case. In both schemes, we

measured the QoD achieved and the corresponding energy

consumption.

C. The SAN Model

Our evaluation of the CRAFT and NOFT schemes

was carried through model-based simulation. We modeled

both CRAFT and NOFT as a Stochastic Active Net-

works (SANs) using the Möbius modeling tool [4]. SANs

are a convenient and high-level language for capturing

the stochastic behavior of a system. Möbius is a tool

dedicated to creating and simulating (or solving) SAN-

based models. A SAN has the following components:

places (denoted by circles), which contain tokens; tokens,

which indicate the ”value” or ”state” of a place; activities

(denoted by vertical ovals), which change the number

of tokens in places; input arcs, which connect places

to transitions; output arcs, which connect transitions to

places; input gates (denoted by triangles pointing left),

which are used to define complex enabling predicates and

completion functions; output gates (denoted by triangles

pointing to the right), which are used to define com-

plex completion functions; and instantaneous activities

(denoted by vertical lines), which are used to specify

zero-timed events. An activity is enabled if for every

connected input gate, the enabling predicate contained

in it is true, and for each input arc, there is at least

one token in the connected place. When an activity

completes, one token is added to each place connected by

an output arc, and functions contained in connected output

gates and input gates are executed. The output gate and

input gate functions are usually expressed using pseudo-C

code. The times between enabling and firing of activities

can be distributed according to a variety of probability

distributions, and the parameters of the distribution can

be a function of the state.

The sensor and the sink operations are modeled using

the two subnets shown in Figure 6 and 7, respectively. The

source sensor subnet is replicated as many times as the

number of source sensors in the network. The experiments

settings are listed in TableI. We will refer to the number

of tokens at a place p as mark(p).

The SAN model is constructed as follows:

• The sensing act activity is fired every Ts simulat-

ing a new sensing event, mark(newSensing) is set

to 1 indicating that a new packet is generated and

mark(sensingPacket) is incremented to keep track

of the current packet id. Mark(src) is updated to

simulate the energy consumed by a source node for

sensing.

• This marking fires frwdSink act, if mark(enPLost)

is equal to 1, mark(PLost)is incremented indicating

that a packet is lost, otherwise, the packet id is

added to msgQ and mark(inTransit) is incremented to

indicate the number of packets ready to be collected

by the sink.

• If mark(inTransit) is greater than 1, and

mark(sinkRecovery) is equal to 0, the sinkRec act

is fired, a packet is consumed from the msgQ

and added to the sink, and mark(inTransit) is

decremented.

• user act is fired deterministically every T , and the

packets collected at sink are moved to the user

place. mark(sink) is updated accordingly to reflect

the energy consumption.

• chkpt act is fired every Tm, and the data held by the

sink place is copied into the chkpt place to simulate

a checkpoint event.

• When mark(sink) reaches τ2, fd act is fired, and

mark(sinkRecovery) is set to 1 indicating that the

sink is being recovered, the delay to recover a sink

is simulated within the recovery act activity.

• The fh act simulates a sink hardware failure.

When fired, mark(sinkRecovery) is set to 2 indi-

cating that the sink failed. After a sink recovery

delay, simulated within the recovery act activity,

mark(sinkRecovery) is reset to 0 indicating that the

sink is alive again. in case of the FT scheme, the

data recovery is simulated by copying the data from

chkpt to the sink. In case of NOFT, sink is initialized

with empty data. Mark(sink) and mark(chkpt) are up-

dated to reflect the energy consumed in the recovery

process. A similar recovery process is modeled for

the chkpt according to the scheme described before.

D. Reward Assignment

The QoD is measured by comparing the number of

packets received in the place user, to the number of

packets generated. The total number of generated packets

is equal to the number of times the sensing act activity
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Figure 6. The SAN model simulating the operation of a source sensor

Figure 7. The SAN model simulating the operation of a sink and checkpoint sensors

is fired. The energy consumption is measured by keeping

track of the energy marking of the places src, sink and

chkpt.

E. Experiments and Results

We assume that a sensor consumes one energy unit

when sensing a packet, sending a packet consumes three

units and receiving a packet consumes one packet. The

sink incurs 30 energy units consumption per packet sent

to the user as the user is assumed to be far away from

the sensors’ field. Table I summarizes the environment

settings of our experiments. First, we study the effect of

the checkpoint path length on the performance of the FT

scheme compared to the NOFT scheme for different fail-

ure rates.We consider the case where the checkpoint path

consists of three nodes, we call this setting FT CPP3.

The path consists of the sensors denoted S3, S2 and S1.

As described before, S3 acts as a sink and periodically

checkpoints its state to S2 which in turn checkpoints

its state to S1. When S3 fails, S2 takes over acting as

the new sink, and again extends the checkpoint path by

adding new sensor. Similarly, when S2 fails, S1 takes

Number of Source Nodes 5

Node Initial Energy 10000 units

Packet drop rate 0.0001

τ1 0.125

τ2 0.25

Ts 30 sec

Tm 90 sec

TABLE I.

SIMULATION ENVIRONMENT SETTINGS

over. When S1 fails, its failure is detected by S2, which

recover by selecting a new sensor. We compare this setting

by the case where we have only two sensors on the

checkpoint path, we denote it by FT CPP2. In this case,

the path consists of the sink S3 and a checkpoint sensor

S2. When the sink fails, the failure is detected by S2

which acts then as sink and selects a new sensor to act

as checkpoint. When S2 fails, its failure is detected by

the sink which recover it by selecting a new checkpoint

sensor and sending the latest checkpointed states to this

new sensor. The results of simulating the two schemes
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and the NOFT are shown in Figure 8 and 9.

Figure 8. The effect of the checkpoint path length on the QoD achieved
by the FT scheme

Figure 9. The effect of the checkpoint path length on the energy
consumption of the FT scheme

As shown by the results, the QoD achieved by both

FT CPP2 and the FT CPP3 are approximately the

same as they both recover from checkpoint failure. How-

ever, FT CPP3 increases the energy overhead by about

14.5% compared to FT CPP2. This increase is due

to the checkpointing activity from S2 to S1. Hence,

the recovery mechanism applied by FT CPP2 is more

efficient than FT CPP3. In the following experiments,

we will implement the FT scheme using a sink path of

length two.

Next, we will study the effect of the checkpointing on

the QoD and the energy consumption per data packet, we

have compared the FT (i.e. the application of CRAFT)

and NOFT schemes under different values of the sensors’

failure rate. Figure 10 and Figure 11 show the QoD and

the corresponding energy consumption, for both FT and

NOFT, at user update interval T of 180. We have plotted

the difference on performance (FT-NOFT) at different

values of T in Figure 12 and Figure 13. The results show

that the FT scheme is less sensitive to the failure rate and

it always achieves a better QoD than the NOFT. From

Figure 12, the QoD achieved by the FT is higher than the

NOFT and the difference becomes more significant as T

increases and at higher failure rates. As T increases, more

packets are lost by the NOFT scheme, and unlike the FT

scheme, these packets cannot be recovered. For higher

probability of sink failure, the number of lost packets

is further increased. At high failure rates, the number

of lost packets increases which decreases the QoD of

both schemes but still the FT performs better. Due to

the checkpointing, FT is expected to be more energy

consuming than the NOFT scheme. However, the energy

overhead of the FT decreases compared to the NOFT as

the failure rate increases. This is due to the fact that, at

high failure rate, the NOFT scheme is sending smaller

percentage of the generated packets to the user, which

increases its energy overhead per packet. Consequently,

for very large values of failure rates, the FT scheme is

actually consuming less energy per packet than the NOFT

scheme while achieving higher QoD at the same time.

For example, at failure rate of 0.008 and T of 180 sec,

the FT scheme achieved about 14.4% enhancement in the

QoD and saved about 2.16% of the energy consumed per

packet.

Figure 10. The QoD achieved by the FT and the NOFT schemes at
T =180 under different failure rates

Figure 11. The energy consumption of by the FT and the NOFT schemes
at T =180 under different failure rates

Figure 12. The increase in the QoD achieved by the FT scheme
compared to the NOFT scheme for different T and failure rates

In our next set of experiments, we study the effect of

the checkpointing interval Tm on the QoD and the energy

consumption of both schemes; the FT and NOFT. We have

set T to 130, and the failure rate to 0.004. As shown in

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 45

© 2007 ACADEMY PUBLISHER



Figure 13. The energy overhead of the FT scheme compared to the
NOFT scheme for different T and failure rates

Figure 14, as Tm increases, the percentage of data packets

that are lost before being sent to the user increases,

which decreases the QoD achieved by the FT scheme.

Also, as Tm increases, the energy consumed by the FT

decreases as the chekpointing is done less frequently

(refer to Figure 15). However, for large values of Tm,

the number of packets sent to the user decreases which

increases the energy consumed per packet. Hence, for a

certain settings of failure rate and user update interval,

an optimal value of Tm can be found where FT achieves

the maximum increase in the QoD with minimum energy

consumption overhead.

Figure 14. The effect of the checkpointing interval Tm on the QoD
achieved by the FT scheme compared to the NOFT scheme [FT-NOFT]

Figure 15. The effect of the checkpointing interval Tm on the energy
consumed per packet by the FT scheme compared to the NOFT scheme
[FT-NOFT]

V. RELATED WORK

Fault tolerance in measurements by a group of sensors,

was first studied by Marzullo [11] who proposed a model

that tolerates individual sensor failures. In this model,

a processor receives inputs from several sensors whose

outputs are connected intervals and gives a fault tolerant

algorithm that takes these intervals as inputs and gives the

output as a connected interval representing the sensor val-

ues. The work in [13] and [9] extend Marzullo’s model

by reducing the output interval estimate and relaxing the

assumption on the number of faulty nodes, respectively.

Unlike Marzullo’s work, we focus on providing fault

tolerance in WSNs focusing on performance, but not the

sensor values.

In [6] an algorithm is developed that guarantees reliable

and fairly accurate output from a number of different

types of sensors when at most k out of n sensors are

faulty. The results of the scheme are applicable only to

certain individual sensor faults and traditional networks.

They are not generalizable to the reliability needs in

complex network levels and most importantly; they do

not address the reliability issues that are induced by the

ad-hoc nature of the wireless sensor networks.

A fault tolerance technique is proposed in [7] where

a single type of resource backs up different types of

resources. For example, if communication bandwidth is

reduced and all of the computation power is available,

the system can compress data using more computationally

intensive compression schemes.

The Geographic Hash Table (GHT) [14] for data dis-

semination uses data replication for tolerating faults in

WSNs. GHT defines a home node and a home perimeter

of an event. The home node stores all data readings related

to that event. These readings are replicated on a set of

neighboring nodes that constitute the home perimeter.

Data on the home perimeter is periodically refreshed and

when a home node fails, a node on the perimeter is

selected as the new home. If we consider our source

nodes as home nodes, then this solution and ours may

be viewed as complementary. Alternatively, home nodes

may be viewed as stationary sinks. In this latter case, we

present a different approach that relies on a fewer number

of mobile sinks.

RideSharing [19] is a fault-tolerant data aggregation

scheme. In RideSharing, when a packet sent from a child

node to its parent is lost, the packet is recovered by a

backup parent. A backup parent is assumed to be a node

in the child transmission range and hence it overhears the

packets sent by the child. Figure 16 highlights the main

differences between the different schemes based on our

proposed framework.

VI. CONCLUSION

WSNs enable a microscopic view of our surroundings.

Dependable and efficient data collection and dissemina-

tion in WSNs are important for numerous applications.

Realizing a fault-tolerant operation is therefore critical

to the success of a WSN. Many FT solution for WSNs

have been proposed with diverse approaches. In this

paper, we identified key FT requirements and presented

a new framework for FT in WSNs. We demonstrated

a partial application of our framework to CRAFT; a

Checkpoint/Recovery scheme that we proposed in [18].

By employing this framework, we highlighted similarities
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Figure 16. Different schemes compared based on FT Framework

and differences among existing schemes and identified

directions for enhancements.

In a sequel to this paper, we will implement the

learning and refinement module in CRAFT. This will

render the solution adaptive to the changes in the networks

conditions and self-configurable based on feedback from

the FT operations.
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