
A Fault-Tolerant and Consistent SDN Controller

Andres J. Gonzalez

Telenor Research

Telenor ASA

Trondheim, Norway

andres.gonzalez@telenor.com

Gianfranco Nencioni, Bjarne E. Helvik

Department of Telematics. Norwegian

University of Science and Technology

Trondheim, Norway

{gianfranco.nencioni, bjarne}@item.ntnu.no

Andrzej Kamisiński

Department of Telecommunications. AGH

University of Science and Technology

Kraków, Poland

kamisinski@kt.agh.edu.pl

Abstract—Software-Defined Networking (SDN) is a new
paradigm that promises to enhance network flexibility and
innovation. However, operators need to thoroughly assess its
advantages and threats before they can implement it. Robustness
and fault tolerance are among the main criteria to be considered
in such assessment. The currently available SDN controllers
offer different fault tolerance mechanisms, but there are still
many open issues, especially regarding the trade-off between
consistency and performance in a fault-tolerant SDN platform.
In this paper, we describe existing fault-tolerant SDN controller
solutions, and propose a mechanism to design a consistent and
fault-tolerant Master-Slave SDN controller that is able to balance
consistency and performance. The main objective of this paper
is to bring the performance of an SDN Master-Slave controller
as close as possible to the one offered by a single controller.
This is obtained by introducing a simple replication scheme,
combined with a consistency check and a correction mechanism,
that influence the performance only during the few intervals when
it is needed, instead of being active during the entire operation
time.

Index Terms—Master-Slave Controller; SDN performance;
SDN dependability; Fault Tolerance; Controller Consistency.

I. INTRODUCTION

SDN is a new paradigm that promises better network flex-

ibility, programmability, and innovation. However, due to the

demanding carrier grade requirements, operators must assess

the potential risk and the involved drawbacks carefully, as well

as explore successful ways to overcome them, before moving

on to the implementation phase. In this context, availability

and fault tolerance are essential criteria that must be evaluated.

This issue has been previously studied in several papers in

which the problem has been addressed in two different fault

tolerance domains: 1) The data plane and 2) The control

plane. The fault tolerance of the data plane includes such

proposals as [12], where a mechanism to obtain path failure

recovery times below 50 milliseconds is presented. The work

presented in [11] is also focused on the data plane by providing

fast-failover mechanisms to react to link or switch failures.

On the other hand, the basic SDN architecture depicts the

control plane as a potential single point of failure. Therefore,

the design of a fault-tolerant control plane is a must. The

straightforward solution is to have redundant controllers that

can take responsibility in the case of a failure. However, as

Section II-B will explain, the mechanisms used to implement

such a solution are complex and pose challenges that cannot

be neglected.

This paper is focused on the fault tolerance of the control

plane with an assumption that consistency and performance

are important criteria and must be considered. We define the

performance of a controller according to the following two

concepts: 1) Controller Latency: The time that an incoming

request has to spend waiting once it is delivered at the ingress

switch, until the respective new data plane rules are established

in the respective switches. 2) Controller Throughput: The

maximum number of new flows handled within a time unit. In

addition, we define consistency as the ability to have exactly

the same view of a network at all controllers, which is an exact

mapping of the network state, at any time.

Maintaining a consistent view of a network among all

controllers is challenging. The existing mechanisms used for

this purpose tend to affect negatively the performance of the

controller platform. Thus, having mechanisms that achieve

fault tolerance and consistency by keeping the performance

consequences low is a clear goal in the research community.

In this context, the main questions addressed by this paper are:

1) How to bring the performance of a fault-tolerant controller

close to that of a non-redundant (single) controller? 2) How

to implement consistency-guard mechanisms without affecting

the system during its entire operation time?

A fault-tolerant controller platform may be implemented by

distributing the load among separate controller units, which

means that the responsibility has to be spread over several

domains [8], [13]. On the other hand, there are simpler ap-

proaches known as Master-Slave, where a single controller is

in charge of all decisions. It is supported by backup controllers

having a synchronized view of the network, which can take the

responsibility for future decisions in the case of a failure [2],

[7], [10]. Further details on the load-distributed and Master-

Slave approaches will be provided in Section II-C. This paper

is focused on Master-Slave scenarios, since we believe that

due to their simpler structure, they offer a better possibility to

improve the trade-off between consistency and performance.

To the best of our knowledge, all previous proposals rely

on consistency-guard mechanisms that decrease the overall

performance during the entire controller operation period.

Based on that, there are two important remarks that motivate

our paper: 1) Failures are very serious events that should

always be addressed and quickly solved. 2) Failures are rare

events whose failure handling times represent a very small

fraction relative to the entire operation time. In conclusion,

 i. S/C

 ii. C

 C/S iii.

Fig. 1. Operation of a Single SDN Controller.

failures should be handled properly, but at the same time, the

mechanisms necessary for the handling should not affect the

performance during the entire operation time. Having this as

a guideline, the main contributions of this paper are:

• Proposing a Master-Slave fault-tolerant controller that

achieves consistency and fault tolerance, with perfor-

mance close to the single controller scheme.

• Proposing mechanisms that guarantee consistency with-

out affecting the controller performance during ordinary

operation.

This paper is organized as follows. In Section II, we

present performance-related shortcomings of the single SDN

controller and previous works on the design of fault tolerant

controllers, in order to define the problem and challenges

addressed in this paper. Section III describes our proposed

fault tolerant Master-Slave SDN controller, and provides de-

tails on the different steps executed under different operation

modes. In Section IV, we evaluate the performance (latency

and throughput) of the proposed model. Finally, Section V

concludes the paper.

II. PERFORMANCE, CONSISTENCY AND FAULT

TOLERANCE IN AN SDN CONTROLLER

Before presenting our Mater-Slave controller, in this section

we mention all the concepts needed for its elaboration. We

start by describing the main features and concerns of a Single

SDN controller, continuing with the description of previous

works on the design of a fault tolerant control plane. Finally,

we define the open challenges that this paper addresses, as a

guideline and motivation for Section III.

A. The Single SDN Controller and its Performance

In a single SDN controller, when a new flow with no

specified forwarding instructions comes into an SDN switch,

the following actions are performed:

i. A packet representing a new flow is received at a network

ingress switch and it is sent to the controller.

ii. The controller computes the forwarding path, depending

on the flow request, the network policies and its current

network view.

iii. The controller updates the respective switches by sending

entries to be added to the flow tables.

After these steps, all subsequent packets of the new flow are

forwarded, based on the pre-calculated forwarding decisions

and do not need any control plane action. The mentioned

steps are presented in Figure 1, and it is the simplest and

conventional way to operate new flows in an SDN network.

Since the launch of the first SDN solutions, there has been

a huge interest in modeling and analyzing the controller

performance, motivated by the requirements of a large-scale

deployment. For instance, [6] and [9] evaluate how a single

controller architecture will perform under certain parameters,

in order to foresee potential implementation issues. Their

results show that the performance of an SDN network has a

strong dependency on the processing speed of the controller. If

it is not fast enough, the capability of the network to handle

new flows is limited considerably, affecting the overall user

experience.

In spite of its potential limitations and consequences, the

model presented in this section (Figure 1) is the simplest

and best performing SDN architecture. Therefore, the main

point of this paper is to develop a consistent and fault-tolerant

Master-Slave controller, with performance as close as possible

to the one offered by a single controller.

B. Fault Tolerant SDN Controllers

A single controller is a single point of failure, and hence

unacceptable. Having a fault-tolerant SDN controller is a well

identified need addressed in several previous works. Among

them, one of the first and most relevant proposals is ONIX [8].

They elaborate the main concepts and pillars to be considered

in the implementation of a general fault-tolerant controller

platform, which have been used as a reference in most of the

further related works. ONIX also provides a general frame-

work where several important open issues have been identified,

such as the trade-off between consistency, durability, and

scalability. Although the specific solution remains open and

up to the specific implementation needs. One of the most

important concepts that our paper takes from ONIX is the

Network Information Base NIB. They defined the NIB as

a copy of the current network state which contains relevant

information from all network entities within the topology. We

follow the same definition, and from now on, we assume the

NIB as all information that the control plane must know in

order to perform network operations, modifications and all

related decisions. Hyperflow [13] is another widely used fault-

tolerant controller proposal. It is a distributed event-based

control plane for OpenFlow that is logically centralized but

physically distributed. The platform localizes decision-making

to individual controllers, ensuring that all the instances are

synchronized, considering inconsistency problems due to the

synchronization speed.

As mentioned in [8], the design of a distributed SDN

controller needs to take into account conventional best prac-

tices from standard distributed systems. After some years of

addressing this issue, one of the solutions that have got good

acceptance in real implementations for the coordination of

distributed controllers is Zookeeper [5]. It uses state machine

replication methods (SMR), where all write requests are

forwarded to a single server, called the leader. It offers strong

consistency and can achieve high throughput and low latency.

Network

Image B

Network

Image A

A

B ≠

t

Fig. 2. Potential inconsistency scenario under conventional Active Replica-
tion.

On the other hand, in the literature of fault-tolerant SDN

controllers, Master-Slave controllers are a subclass that ad-

dress the problem in a simplified way, since there is one

central unit (the master) in charge of taking the decisions

to be implemented on the data plane. A simple Master-

Slave approach was given in [3], where active and passive

replication methods are proposed to provide fault tolerance.

However, this approach does not consider consistency issues.

On the contrary, two papers on the master-slave architecture

that consider the consistency problem are [2] and [10]. Both

propose an architecture that uses a shared datastore on top

of the controllers, in order to keep a global common NIB.

Consistency is kept by replicating every NIB change, but this

has a high impact on the controller’s performance, given the

time overhead produced by each replication. Finally, a recent

work [7] (Ravana) proposes a fault-tolerant Master-Slave SDN

controller that processes incoming messages transactionally

and exactly once. Ravana implements replicated state machine

methods by using ZooKeeper, but extends its scope by im-

plementing switch-side mechanisms to guarantee correctness.

This work is novel and solid, and hence we will follow some

of its approaches. However, we propose some variations in

order to address the challenges that will be presented bellow.

C. Problem Definition and Main Challenges

The SDN controller must be fault-tolerant and highly avail-

able. In virtualized environments, active and passive replica-

tion are two common techniques used to achieve this [4].

Since active replication is a solution that offers high resilience

and negligible downtime, its use may be seen as the primary

alternative [3]. One intuitive solution is to duplicate all the

messages sent by a switch, with the intention that both

controllers receive a copy and perform identical operations.

This approach may easily create inconsistencies between the

network image of the controllers due to reordering of events

generated by delay differences, as Figure 2 illustrates. Even

if we were able to enforce a strict order, non determinism in

the processing poses an additional huge challenge. This is the

root problem of the performance/consistency balance, and it

leads to the definition of the first challenge:

Challenge 1: Avoid single point of failure, considering

synchronization problems between replicas caused by non-

deterministic delays and processing.

There are many approaches used to design a fault-tolerant

SDN controller, as pointed out in Section II-B. Here, we want

DISTRIBUTED - LOAD MASTER - SLAVE

Fig. 3. Two Different Fault-Tolerant Controller Approaches.

to highlight the fundamental difference between a distributed-

load and a Master-Slave approach, as illustrated in Figure 3.

The distributed-load approach targets large scale networks

where a single controller has difficulties to manage the entire

load, and hence the operation has to be split into several

domains with the corresponding dedicated controllers. In this

design, fault tolerance may be provided by making the appro-

priate load redistribution in the case of controller failures. In

this way, the controllers can act independently and in parallel,

as long as they share a common network view, i.e., same

NIB. For this; shared data stores, state machine replication

techniques and consensus protocols are commonly used, such

as those provided by Zookeeper [5]. In these scenarios, if

consistency is prioritized, the performance degradation is

unavoidable [8].

On the other hand, a Master-Slave SDN controller is a

simpler concept in which only one controller (the master) is in

charge of all decisions, while the backup controllers (slaves)

are used to provide fault tolerance. This approach may be im-

plemented in small or medium scale networks. However, one

of the main challenges of this kind of design is to guarantee the

consistency between the network image (NIB) of the master

and slave controllers. Even though this is a much simpler

design, the available solutions use similar tools to those used in

the distributed-load case, where the performance is drastically

affected. For instance, the implementation presented in [2]

shows that the controller throughput may be reduced almost

five times when the datastore is used regularly. This leads to

the second challenge:

Challenge 2: Implement a simpler and less performance-

expensive Master-Slave platform that guarantees NIB consis-

tency.

Having a consistent NIB is important to guarantee the

appropriate operation of a Master-Slave controller. This is

achieved in previous works using two different approaches.

The first one proposes that any change in the NIB is processed

only by the master controller, but before sending the update to

the switches, the NIB-update is replicated and synchronized

on all the backup controllers. The second approach consists of

the use of a common datastore that imposes a rigorous order

on the incoming request messages sent by switches, and after

a consistency check, they are processed independently by each

replica, assuming deterministic controller processes (such as

the one presented in [7]). This brings the third challenge:

Challenge 3: Find which approach is better. Having repli-

Distributed DataStore

(SMR)

FAULT TOLERANT CONTROLLER

MASTER

 Fast

Bs

Bc Strict

Order

Fig. 4. Proposed Master-Slave SDN Controller.

cation of NIB updates, or having replication of incoming

messages.

An important dependability issue may occur during the

SDN controller recovery, as some requests may be lost. This

will degrade user experience, but also some critical messages

such as failure recovery requests may be omitted, creating

catastrophic consequences. A solution to this problem has been

proposed in [7]. They use a switch-runtime buffer on every

ingress node in the data-plane, and when a new packet is

sent to the controller, the switch buffers the event temporarily.

This enables a recapture of events lost during controller

recovery. The process includes the following five steps: i.)

The packet is buffered in the switch and a copy is sent to

the master controller. ii.) The incoming packet is replicated in

the datastore. iii.) After the replication, the master controller

processes the message. iv.) The master sends a response to

each of the involved switches, and the switch-buffered copy is

deleted v.) Switches acknowledge the received message. This

leads to the fourth challenge:

Challenge 4: Is it viable to simplify the no-lost-event

mechanisms proposed in [7], without scarifying resilience and

consistency?

III. A FAST, CONSISTENT AND FAULT-TOLERANT

MASTER-SLAVE SDN CONTROLLER

The Master-Slave controller proposed in this paper is pre-

sented in Figure 4. It is composed of a master controller and a

distributed datastore used by backup SDN controllers to keep

the NIB information.

Our work follows a hybrid Master-Slave approach, in the

context of the previous works presented in II-B and Challenges

3 and 4, where: i.) The controller-NIB-updates are replicated.

ii) The switch stores the requests sent to the controller in a

buffer named BS (as proposed in [7]), and NIB-Updates are

buffered by the Master in BC . According to the previously

identified challenges, our goal is to keep the processing of the

master controller (red box in Figure 4) as fast as possible,

without scarifying consistency. Our proposal may be summa-

rized as follows. The master attends messages in the same

way that a single controller does it, but with two differences:

………..

Correcting

Consistency

Normal

Operation

3

12

9

2
1

6

2 3

4

10

4

11

BS

BC

5
7

1

8

Fig. 5. Sequence Diagram during the normal operation (Fig. 5) of the
controller and during a consistency correction routine.

1.) After processing an incoming message, each NIB update

is immediately split, stored, and sent to the common datastore

with an additional and consecutively-increased ID used for

consistency checks. 2.) Consistency assurance procedures rely

on the communication between switch buffers BS and the

slave platform, as well as on NIB-updates split and buffered

from a unique reference point, providing some degree of

Master independence. With the proposed modifications, our

intention is to keep the overhead on the master operation as

low as possible.

Under normal operation, the following steps are performed

(see upper part of Figure 5).

1) A message is sent from the switch to the controller,

denoting a new flow arrival, a switch state change, an

error, or in general a controller incoming message.

2) A copy of the sent message is kept in BS .

3) The master controller processes the incoming message

(process with expected time duration µM).

4) When the master finishes to process the message, a copy

of the answer (NIB update) is sent to the datastore and

also stored in the controller buffer BC , in both cases with

the respective incremental ID.

5) Consecutive to Step 4, the master sends the answer to the

respective network switches.

6) In parallel (Steps 6 and 7), the datastore leader receives

the message and checks the consecutive ID to prevent

against potential NIB update losses.

7) The datastore replicates the NIB update.

8) The slave platform confirms the synchronization of the

NIB update, and the respective entry in BC can be

deleted.

9) Consecutive to Step 5, the respective data plane rules are

recorded on the switches.

10) A successful data plane change message is sent from the

switches to the datastore.

11) The datastore confirms the successful end-to-end data

plane modification by comparing the register obtained

after Step 7, and it sends a confirmation to the switch.

 …………..
NORMAL OPERATION

Controller

Recovery
1

2

3 4 5

8

7

13

10

BS

6

0. DETECT

9
11 12

Fig. 6. Sequence Diagram during a master failure recovery routine.

12) The message is removed from the switch buffer BS .

As presented in Challenge 1, the non-determinism in delay

and controller processing is the core problem to solve. Our

scheme guarantees a strict and universal-controller order of

processed messages to be set in the network, by having the

master output-point as reference, as illustrated in Figure 4

(’Strict Order’). Packet losses may generate inconsistencies

on the performed ID check (Step 6). When this is detected,

the following steps are performed (See lower part of Figure 5).

1) The master sends to the datastore a copy of the message

with an incremental ID (Same step 4 in Fig. 5).

2) The consecutive ID checking raises a flag of a potential

inconsistency.

3) The datastore leader requests again the identified missed

messages.

4) The controller buffer BC provides the requested message.

Previous works agree that the most effective way to detect

controller failures is through a distributed datastore system

([1], [2], and [7]). For instance, [1] mentions the use of

ZooKeeper [5] to detect and react to controller failures. In

this paper, we present the recovery routines performed after

the failure is detected, as Figure 6 illustrates.

1) A new master is selected.

2) The new master notifies the network switches about its

new role.

3) The unattended messages stored in the switch buffers BS

are sent to the new master.

4) Steps 4 to 9 in the recovery process are the same Steps

3 to 8 under normal operation, but here, the incoming

requests are the remaining unattended messages on the

different BS’s. In Step 10, the respective data plane rules

are recorded on the switches. Finally, in Steps 11, 12

and 13 confirms the successful end-to-end data plane

modification in order to safely delete the messages from

the BS buffers.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

controller and compare it with a single controller and other

Master-Slave approaches. In order to do this, we use Discrete

Event Simulation.

CONTROLLER LATENCY (Seconds)

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

C
D

F

0

0.2

0.4

0.6

0.8

1

SINGLE CONTROLLER

PROPOSED M-S CONTROLLER. L=0.00001

PROPOSED M-S CONTROLLER. L=0.05

OTHER M-S. Overhead 0.3

OTHER M-S. Overhead 0.5

OTHER M-S. Overhead 0.7

(a) CDF of the Latency of the Controllers.

0

10

20

30

40

50

SINGLE PROP.

L = 1E-5

L= 0.05

PROP.

OTHER

O = 0.3

OTHER

O = 0.5

OTHER

O = 0.7

Th
ro

ug
hp

ut
 (k

 fl
ow

s
/

se
c)

(b) Throughput of the different Controllers

Fig. 7. Performance evaluation of different existing controllers and the
proposed solution.

In all the analyzed controllers (Single controller, the pro-

posed solution, and other Master-Slave controllers), the pro-

cessing phase of the incoming message (Step 3 in Figure 5)

is common, and it is the core process that will affect the

performance of all controllers. Here, we assume this as a

stochastic process with expected time duration µM . For the

Single Controller case, we only consider Steps 1,3,5 and 9

of the sequence diagram under normal operations. The simu-

lation of our Master-Slave proposal follows all the concepts

previously presented in Section III. Finally, since we lack

specific technical details in order to have a fair comparison

under exactly the same circumstances with other Master-Slave

controllers such as [2], and [7], we use the following approach.

The key difference of our proposal is that each new flow

that arrives to the controller can be attended directly, being

the time used on splitting and buffering routines, the only

regular overhead. Consistency check routines may represent

an important overhead, but they are not applied on each

controller operation. On the other hand, other Master-Slave

approaches such as [2], and [7] impose an additional overhead

on each incoming request, due to synchronization routines.

Therefore, for the simulation of other Master-Slave controllers,

we assume that the average overhead OM per request is a

percentage of the time needed for only processing that request,

i.e., if the expected processing time of a single request is µM ,

and OM = 1 (100% overhead), the expected time needed to

process a new request would be 2µM .

Figure 7(a) shows the Cumulative Distribution Function

(CDF) of the latency, after simulating the three different types

of controllers previously mentioned. For the evaluation, we

assume the following scenario. For common parameters such

as the core controller processing time, we assume a negative

exponential distribution (n.e.d) with expected value of 20

microseconds. We emulate a network with 12 OpenFlow-

compatible switches, each with a n.e.d arrival process of new

flows (addressed by the SDN controller) with a mean value of

400 microseconds in all the cases. The transmission delay in

the OpenFlow channel is assumed to be uniformly distributed

with a minimum of 4 microseconds and a maximum of 16

microseconds, based on the results presented in [6]. For the

case of our proposal, Figure 7(a) evaluates two different packet

loss probabilities L between the master and the datastore,

representing the probability that the consistency correction

mechanisms is applied. The first is a packet loss probability

of 0.00001 and the second one is 0.05 (not realistic in real

operational networks, but just for the sake of illustration).

Finally, for the evaluation of other Master-Slave controllers,

we test different overhead values. We observe that among

all the evaluated controllers, the latency of our Master-Slave

controller has the closest performance to those from a single

controller. We also observe that the probability of losing a

packet does not have a strong influence on the controller

latency. However, in Figure 7(b) will be shown that its effect

on the throughput is more noticeable. Finally, other Master-

Slave approaches may operate with latency values close to the

single controller, if the overhead possed on each replication is

very low. However, obtain small overhead values (e.g. lower

than 0.3) poses a huge technical challenge.

Figure 7(b) shows the controller throughput in terms of the

number of flows per second attended by the controller. Here,

we consider the same controllers, i.e. single, our proposal

with a packet loss probability of 0.00001 and 0.05 and other

Master-Slave controllers with overhead values of 0.3, 0.5 and

0.7. We observe that under typical conditions, i.e., low packet

loss probability, our approach is the one that provides the

closest throughput to the one offered by a single controller.

The throughput of the proposed Master-Slave can be affected

if the packet loss increases to very high values. However, this

is not realistic in operational scenarios. On the other hand, the

overhead presented in other Master-Slave controllers reduces

considerably the throughput that they can offer.

V. CONCLUSION

Answer to Challenge 1: Our proposal does not have a sin-

gle point of failure and overcomes synchronization problems

caused by delay differences and non determinism in control

processes. This is done, by having a unique reference point

complemented by additional tools to keep consistency.

Answer to Challenge 2: The proposed solution takes advan-

tage of the potential simplification opportunities of a Master-

Slave solution by proposing consistency aware routines, ex-

ecuted when they are needed, instead of having them active

during the entire controller operation.

Answer to Challenges 3 and 4: Our final solution is a

hybrid approach based on NIB updates replication, but it

is complemented by routines proposed by Ravana [7] (such

as the use of BS) that guarantee consistency and allow a

higher independence between the master and the slaves. It

is important to clarify that our scheme under a controller

recovery routine may present a small probability that some

messages are attended twice. This implies that some rules

may be rewritten, but at the same time, customers will not

experience additional downtime.

In order to deliver a competitive performance, our Master-

Slave controller needs a very reliable communication channel

between the master controller and the datastore. However, this

is by default one of the most important criteria for providers

when implementing a fault-tolerant controller system. There-

fore, we assume that this is a must, regardless of the fault-

tolerant controller approach used.

REFERENCES

[1] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y., KOBAYASHI, M.,
KOIDE, T., LANTZ, B., O’CONNOR, B., RADOSLAVOV, P., SNOW, W.,
ET AL. ONOS: towards an open, distributed SDN OS. In Proceedings of

the third workshop on Hot topics in software defined networking (2014),
ACM.

[2] BOTELHO, F., BESSANI, A., RAMOS, F., AND FERREIRA, P. On the
design of practical fault-tolerant SDN controllers. In Software Defined

Networks (EWSDN), 2014 Third European Workshop on (2014), IEEE,
pp. 73–78.

[3] FONSECA, P., BENNESBY, R., MOTA, E., AND PASSITO, A. Resilience
of SDNs based On active and passive replication mechanisms. In Global

Communications Conference (GLOBECOM), 2013 IEEE (2013), IEEE,
pp. 2188–2193.

[4] GONZALEZ, A. J., AND HELVIK, B. E. System management to comply
with SLA availability guarantees in cloud computing. In Cloud Comput-

ing Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on (Dec 2012), pp. 325–332.
[5] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. ZooKeeper:

Wait-free Coordination for Internet-scale Systems. In USENIX Annual

Technical Conference (2010), vol. 8.
[6] JARSCHEL, M., OECHSNER, S., SCHLOSSER, D., PRIES, R., GOLL,

S., AND TRAN-GIA, P. Modeling and performance evaluation of
an openflow architecture. In Teletraffic Congress (ITC), 2011 23rd

International.
[7] KATTA, N., ZHANG, H., FREEDMAN, M., AND REXFORD, J. Ra-

vana: Controller fault-tolerance in software-defined networking. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined

Networking Research (2015), ACM.
[8] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J., POUTIEVSKI,

L., ZHU, M., RAMANATHAN, R., IWATA, Y., INOUE, H., HAMA,
T., ET AL. ONIX: A Distributed Control Platform for Large-scale
Production Networks. In OSDI (2010), vol. 10.

[9] MAHMOOD, K., CHILWAN, A., STERB, O., AND JARSCHEL, M. Mod-
elling of openflow-based software-defined networks: the multiple node
case. Networks, IET 4, 5 (2015), 278–284.

[10] PASHKOV, V., SHALIMOV, A., AND SMELIANSKY, R. Controller
failover for SDN enterprise networks. In Science and Technology

Conference (Modern Networking Technologies)(MoNeTeC), 2014 Inter-

national (2014), IEEE.
[11] REITBLATT, M., CANINI, M., GUHA, A., AND FOSTER, N. FatTire:

declarative fault tolerance for software-defined networks. In Proceedings

of the second ACM SIGCOMM workshop on Hot topics in Software

Defined Networking (2013), ACM, pp. 109–114.
[12] SHARMA, S., STAESSENS, D., COLLE, D., PICKAVET, M., AND DE-

MEESTER, P. Openflow: Meeting carrier-grade recovery requirements.
Computer Communications 36, 6 (2013), 656–665.

[13] TOOTOONCHIAN, A., AND GANJALI, Y. HyperFlow: A distributed
control plane for OpenFlow. In Proceedings of the 2010 internet network

management conference on Research on enterprise networking (2010).

