
Appears in Dependable Systems and Networks (DSN), July 2001
Abstract
We propose a fault-tolerant approach to reliable micropro-

cessor design. Our approach, based on the use of an on-line
checker component in the processor pipeline, provides signifi-
cant resistance to core processor design errors and opera-
tional faults such as supply voltage noise and energetic
particle strikes. We show through cycle-accurate simulation
and timing analysis of a physical checker design that our
approach preserves system performance while keeping area
overheads and power demands low. Furthermore, analyses
suggest that the checker is a fairly simple state machine that
can be formally verified, scaled in performance, and reused.
Further simulation analyses show virtually no performance
impacts when our simple checker design is coupled with a
high-performance microprocessor model. Timing analyses
indicate that a fully synthesized unpipelined 4-wide checker
component in 0.25um technology is capable of checking Alpha
instructions at 288 MHz. Physical analyses also confirm that
costs are quite modest; our prototype checker requires less
than 6% the area and 1.5% the power of an Alpha 21264 pro-
cessor in the same technology. Additional improvements to the
checker component are described which allow for improved
detection of design, fabrication and operational faults.

1 Introduction
High-quality verification and testing is a vital step in the

design of a successful microprocessor product. Designers must
verify the correctness of large complex systems and ensure that
manufactured parts work reliably in varied (and occasionally
adverse) operating conditions. If successful, users will trust
that when the processor is put to a task it will render correct
results. If unsuccessful, the design can falter, often resulting in
serious repercussions ranging from bad press, to financial
damage, to loss of life. There have been a number of high-pro-
file examples of faulty microprocessor designs. Perhaps the
most publicized case was the Intel Pentium FDIV bug where
an infrequently occurring functional design error caused erro-
neous results in some floating point divides [1]. Functional
design errors are not the only source of problems; the MIPS
R10000 microprocessor was recalled due to manufacturing
problems that resulted in unreliable operation [2].

1.1 Reliability Challenges

The challenges that must be overcome to build a reliable
microprocessor design are great. There are many sources of
errors, each requiring careful attention during design, verifica-
tion, and manufacturing. We broadly classify the faults that can
reduce reliability into three categories: design faults, manufac-
turing faults, and operational faults.

1.1.1 Design faults
Design faults are the result of human error, either in the

design or specification of a system component, that renders the
part unable to correctly respond to certain inputs. The typical
approach used to detect these bugs is simulation-based verifi-
cation. A model of the processor being designed executes a
series of tests and compares the model’s results to expected
results. Unfortunately, design errors sometimes slip through
this testing process due to the immense size of the test space.
To minimize the probability of undetected errors, designers
employ various techniques to improve the quality of verifica-
tion including co-simulation [4], coverage analysis, random
test generation [5], and model-driven test generation [6].

Another popular technique, formal verification, uses equal-
ity checking to compare a design under test with the specifica-
tion of the design. The advantage of this method is that it
works at a higher level of abstraction, and thus can be used to
check a design without exhaustive simulation. The drawback
to this approach is that the design and the instruction set archi-
tecture it implements need to be formally specified before the
process can be automated.

Complex modern designs have outpaced the capabilities of
current verification techniques. For example, a microprocessor
with 32 32-bit registers, 8k-byte instruction and data caches,
and 300 pins cannot be fully examined with simulation-based
testing. The design has a test space with at least 2132396 start-
ing states and up to 2300 transition edges emanating from each
state. While formal verification has improved detection of
design faults, full formal verification is not possible for com-
plex dynamically scheduled microprocessor designs [7,8,9].
To date, the approach has only been demonstrated for in-order
issue pipelines or simple out-of-order pipelines with small
window sizes. Complete formal verification of complex mod-
ern microprocessors with out-of-order issue, speculation, and
large instruction windows is currently an intractable problem
[10,11].

1.1.2 Manufacturing defects
Manufacturing defects arise from a range of processing

problems that manifest during fabrication. For example, step
coverage problems that occur during the metallization process
may cause open circuits, or improper doping in the channel of
CMOS transistors may cause a change in the threshold voltage
and timing of a device. Nonconcurrent testing techniques,
which place the part into a special testing mode, are the pri-
mary vehicle for diagnosing these type of errors. Testing of the
system is accomplished by adding special test hardware.

Scan testing adds a MUX to the inputs of flip-flops that
allow for reading and writing of latches during test mode. This
method provides direct checking of flipflop operation and indi-

A Fault Tolerant Approach to Microprocessor Design

Chris Weaver
Todd Austin

Advanced Computer Architecture Laboratory
University of Michigan

{chriswea, taustin}@eecs.umich.edu

Appears in Dependable Systems and Networks (DSN), July 2001
rect checking of combination logic connected to the scan latch.
Using the scan chain, test vectors are loaded into the flipflops
and then combinational logic is exercised to determine if the
implementation is faulty. Built in self test (BIST) adds special-
ized test generation hardware to reduce the time it takes to load
latches with test vectors. BIST test generators typically employ
modified linear shift feedback register (LSFR) or ROMs to
generate key test vectors that can quickly test for internal logic
defects such as single-stuck line faults [12]. To obtain suffi-
cient design coverage in current designs, BIST can take as
much as 15% of the design area[14,15,16]. A more global
approach is taken by IDDQ testing, which uses onboard cur-
rent monitoring to detect if there are any short-circuits. During
testing, power supply currents are monitored while the system
is exercised; any abnormally high current spikes are indicative
of short-circuit defects [13]. The advantage of Iddq is that it is
straightforward to test a large area all at once, however, it
requires careful regulation to get the correct current limits.

1.1.3 Operational faults
Operational faults are characterized as sensitivity of the

chip to environmental conditions. It is useful to subdivide
these type of errors into categories based on their frequency
[17]: permanent, intermittent, and transient faults. Permanent
faults occur consistently because the chip has experienced an
internal failure. Electrometal migration [18] and hot electrons
[19][20] are two examples of permanent faults that can render
a design irrevocably damaged. We also classify latch-up,
which is caused by a unity gain in the bipolar transistor struc-
tures present in a CMOS layout, as a permanent fault; how-
ever, this fault can be cleared by powering down the system.

Unlike permanent faults, intermittent faults do not appear
continuously. They appear and disappear, but their manifesta-
tion is highly correlated with stressful operating conditions.
Examples of this type of fault include power supply voltage
noise [21] or timing faults due to inadequate cooling [19].
Data-dependent design errors also fall into this category. These
implementation errors are perhaps the most difficult to find
because they require specific directed testing to locate.

Transient faults appear sporadically but cannot be easily
correlated to any specific operating condition. The primary
source of these faults are single event radiation (SER) upsets.
SER faults are the result of energized particle strikes on logic
which can deposit or remove sufficient charge to temporarily
turn the device on or off, possibly creating a logic error
[24][25]. While shielding is possible, its physical construction
and cost make it an unfeasible solution at this time[26].

Concurrent testing techniques are usually required to detect
operational faults, since their appearance is not predictable.
Three of the most popular methods are timers, coding tech-
niques and multiple execution. Timers guarantee that a proces-
sor is making forward progress, by signaling an interrupt if the
timer expires. Coding techniques, such as parity or ECC, use
extra information to detect faults in data. While primarily used
to protect storage, coding techniques also exist for logic [27].
Finally, data can be checked by using a k-ary system where
extra hardware or redundant execution is used to provide a
value for comparision[17,28,29,30].

Deep submicron fabrication technologies (i.e., process
technologies with minimum feature sizes below 0.25um)
heighten the importance of operational fault detection. Finer
feature sizes result in smaller devices with less charge, increas-
ing their exposure to noise-related faults and SER. If designers
cannot meet these new reliability challenges, they may not be
able to enjoy the cost and speed advantages of these denser
technologies.

1.2 Contributions of this Paper
In this paper, we detail a novel on-line testing approach,

called dynamic verification, that addresses many of the reli-
ability challenges facing future microprocessor designs. Our
solution inserts an on-line checking mechanism into the retire-
ment stage of a complex microprocessor. The checker moni-
tors the results of all instructions committed by the processor.
If no error is found in a computation, the checker allows the
instruction result to be committed to architected register and
memory state. If any results are found to be incorrect, the
checker fixes the errant result and restarts the processor core
with the correct result. We show in this paper that the checker
processor is quite simple, lending itself to high-quality formal
verification and electrically robust designs. In addition, we
demonstrate through simulation and timing analysis of a phys-
ical design that checker costs are quite low. The addition of the
checker to the pipeline causes virtually no slowdowns to the
core processor, and area and power overheads for a complete
checker design are quite modest.

The simple checker provides significant resistance to
design and operational faults, and provides a convenient mech-
anism for efficient and inexpensive detection of manufacturing
faults. Design verification is simplified because the checker
concentrates verification onto itself. Specifically, if any design
errors remain in the core processor, they will be corrected
(albeit inefficiently) by the checker processor. Significant
resistance to operational faults is also provided. We introduce
in this paper a low-cost and high-coverage technique for
detecting and correcting SER-related faults. Our approach uses
the checker processor to detect energetic particle strikes in the
core processor; for the checker processor we’ve developed a
re-execute-on-error technique that allows the checker to check
itself. Finally, we demonstrate how the checker can be used to
implement a low-cost hierarchical approach to manufacture
testing. Simple low cost BIST tests the checker module, then
the checker can be used as the tester to test the core processor
for manufacturing errors. The approach could significantly
reduce the cost of late-stage testing of microprocessors, while
at the same time reducing the time it takes to test parts.

In Section 2, we detail dynamic verification including the
architecture of the checker processor and its operation. Section
3 gives results of a detailed analysis of our prototype checker
processor design for the Alpha instruction set. These analyses
include performance impacts on the core processor, and area
and power overheads due to the addition of the checker proces-
sor. Section 4 introduces simple extensions to our prototype
design that provide additional resistance to operational errors
and improved manufacturing test capabilities. Section 5 details
related work, and Section 6 gives conclusions and suggests
future directions.

2 Dynamic Verification
2.1 System Architecture

Recently we proposed the use of dynamic verification to
reduce the burden of verification in complex microprocessor
designs [31][32][33]. Dynamic verification is an on-line
instruction checking technique that stems from the simple
observation that speculative execution is fault tolerant. Con-
sider for example, a branch predictor that contains a design
error, e.g., the predictor array is indexed with the most signifi-
cant bits of the PC (instead of the least significant PC bits).
The resulting design, even though the branch predictor con-
tained a design error, would operate correctly. The only effect
on the system would be significantly reduced branch predictor

Appears in Dependable Systems and Networks (DSN), July 2001
accuracy (many more branch mispredictions) and accordingly
reduced system performance. From the point of view of a cor-
rectly designed branch predictor check mechanism, a bad pre-
diction from a broken predictor is indistinguishable from a bad
prediction from a correct predictor design. Moreover, predic-
tors are not only tolerant of permanent errors (e.g., design
errors), but also manufacturing defects and operational errors
(e.g., noise-related faults or natural radiation particle strikes).

Given this observation, the burden of verification in a com-
plex design can be decreased by simply increasing the degree
of speculation. Dynamic verification does this by pushing
speculation into all aspects of core program execution, making
the architecture fully speculative. In a fully speculative archi-
tecture, all processor communication, computation, control
and forward progress is speculative. Accordingly, any perma-
nent (e.g., design error, defect, or failure) and transient (e.g.,
noise-related) faults in this speculation do not impact correct-
ness of the program. Figure 1 illustrates the approach.

To implement dynamic verification, a microprocessor is
constructed using two heterogeneous internal processors that
execute the same program. The core processor is responsible
for pre-executing the program to create the prediction stream.
The prediction stream consists of all executed instructions
(delivered in program order) with their input values and any
memory addresses referenced. In a baseline design, the core
processor is identical in every way to the traditional complex
microprocessor core up to (but not including) the retirement
stage. In this baseline design, the complex core processor is
“predicting” values because it may contain latent bugs that
could render these values incorrect.

The checker processor follows the core processor, verifying
the activities of the core processor by re-executing all program
computation in its wake. The high-quality stream of predic-
tions from the core processor serves to simplify the design of
the checker processor and speed its processing. Pre-execution
of the program on the complex core processor eliminates all
the processing hazards (e.g., branch mispredictions, cache
misses, and data dependencies) that slow simple processors
and necessitate complex microarchitectures. Thus is possible
to build an inorder checker without speculation that can match
the retirement bandwidth of the core. In the event the core pro-
duces a bad prediction value (e.g., due to a design errors), the
checker processor will fix the errant value and flush all internal
state from the core processor, and restart it after the errant
instruction. Once restarted, the core processor will resynchro-

nize with the correct state of the machine as it reads register
and memory values from non-speculative storage.

To eliminate the possibility of storage structural hazards,
the checker processor has its own register file and instruction
and data caches. A small dedicated data cache for the checker
processor, called the L0 cache, is loaded with whatever data is
touched by the core processor; it taps off the output port of the
L1 cache. This prefetching technique greatly reduces the num-
ber of misses experienced by the checker. However, if the
checker processor misses in the L0 cache, it blocks the entire
checker pipeline, and the miss is serviced by the core L2
cache. Cache misses are rare for the checker processor even for
very small caches, because the high-quality address stream
from the core processor allows it to manage these resources
very efficiently. Store Queues are also added to both the core
and checker (cSTQ and dSTQ in Figure 1) to increase perfor-
mance.

The resulting dynamic verification architecture should ben-
efit from a reduced burden of verification, as only the checker
needs to be completely correct. Since the checker processor
will fix any errors in the instructions that are to be committed,
the verification of the core is reduced to simply the process of
locating and fixing commonly occurring design errors that
could affect system performance. Since the complex core con-
stitutes a major testing problem, relaxing the burden of correct-
ness of this part of the design can yield large verification time
savings. To maintain a high quality checker processor, we
leverage formal verification to ensure correct function and
extensive checker processor Built-In-Self-Test (BIST) to guar-
antee a successful implementation.

2.2 Checker Processor Architecture

For dynamic verification to be viable, the checker processor
must be simple and fast. It must be simple enough to reduce
the overall design verification burden, and fast enough to not
slow the core processor. A single-issue two-stage checker pro-
cessor is illustrated in Figure 2a). The design presented
assumes a single-wide checker, but scaling to wider or deeper
designs is a fairly straightforward task (discussed later).

In the normal operation (as shown in Figure 2b), the core
processor sends instructions (with predictions) at retirement to
the checker pipeline. These predictions include the next PC,
instruction, instruction inputs, and addresses referenced (for

Core Pipeline Checker Pipeline CTCT

L1 cache

 L2 cache

 cSTQ dSTQ
 core RF Checker RF L0 cache

Core Processor Checker ProcessorPrediction Stream:
insts, inputs,
addrs and results

Figure 1: Dynamic Verification System Architecture.

Appears in Dependable Systems and Networks (DSN), July 2001
loads and stores). The checker processor ensures the correct-
ness of each component of this transfer by using four parallel
stages, each of which verifies a separate component of the pre-
diction stream. The separation shown is done in a manner sim-
ilar to the classic Hennessy and Patterson five stage
pipeline[34]. The IFCHECK unit verifies the instruction fetch
by accessing the instruction memory with the checker program
counter. IDCHECK verifies that the instruction was decoded
correctly by checking the input registers and control signals.
EXCHECK re-executes the functional unit operation to verify
core computation. Finally, the MEMCHECK verifies any loads
by accessing the checker memory hierarchy.

If each prediction from the core processor is correct, the
result of the current instruction (a register or memory value) as
computed by the checker processor is allowed to retire to non-
speculative storage in the commit (CT) stage of the checker
processor. In the event any prediction information is found to
be incorrect, the bad prediction is fixed, the core processor is
flushed, and the core and checker processor pipelines are
restarted after the errant instruction. Core flush and restart use
the existing branch speculation recovery mechanism contained
in all modern high-performance pipelines.

As shown in Figure 2b) and 2c), the routing MUXes can be
configured to form a parallel checker pipeline or a recovery
pipeline, respectively. In recovery mode the pipeline is recon-
figured into a serial pipeline, very similar to the classic H&P
five-stage pipeline. In this mode, stage computations are sent
to the next logical stage in the checker processor pipeline,
rather than used to verify core predictions. Unlike the classic
H&P five-stage pipeline, only one instruction is allowed to
enter the recovery pipeline at a time. As such, the recovery
pipeline configuration does not require bypass datapaths or

complex scheduling logic to detect hazards. Processing perfor-
mance for a single instruction in recovery mode will be quite
poor, but as long as faults are infrequent there will be no per-
ceivable impact on program performance [31]. Once the
instruction has retired, the checker processor re-enters normal
processing mode and restarts the core processor after the errant
instruction.

Figure 2 also illustrates that the checking and recovery
modes use the same hardware modules, thereby reducing the
area cost of the checker. Each stage only requires intermediate
pipeline inputs - whether these are from the core processor pre-
diction stream or the previous stage of the checker processor
pipeline (in recovery mode) is irrelevant to the operation of the
stage. This attribute serves to make the control and implemen-
tation of individual stages quite simple. In recovery mode, the
check logic is superfluous as the inputs will always be correct,
however, no reconfiguration is required to the check logic as it
will never declare a fault during recovery.

Pipeline scheduling is trivial, if any checker pipeline is
blocked for any reason, all checker processor pipelines are
stalled. This simplifies control of the checker processor and
eliminates the need for instruction buffering or complex non-
blocking storage interfaces. Since there are no dependencies
between instructions in normal processing, checker processor
pipeline stalls will only occur during a cache miss or structural
(resource) hazard. This lack of dependencies makes it possible
to construct the checker control as a three stage (Idle, Check
and Execute) Moore state machine. The pipeline sits in the Idle
state until the arrival of a retired core processor instruction.
The pipeline then enters normal Check mode until all instruc-
tions are exhausted or an instruction declares a fault. If a fault
is declared the pipeline enters the Execute state, reconfiguring

IF CHECK

ID CHECK

EX CHECK

MEM CHECK

CONTROL

CT

instruction
 valid and stall

“routing”
 mux
 control

Memory

Architected
 State

Register
File

Instruction
Memory

Register A # and value
Register B # and value
Destination # and value
Alu Result
Instruction
PC
NPC

Inputs From Core

<PC, Instruction>

<PC, Instruction>

<Address, Data, Stall>

<RA #, RA Val
 RB #, RB Val>

<IFCORRECT, STALL>

 signals

<IDCORRECT>

<EXCORRECT>

<MEMCORRECT,

<Address, Data, Stall>

 STALL>

<PC, Instruction, Regs>

<Registers, Instruction>

<Registers, Alu Result,

<AluResult, Registers, Instruction>

 Instruction>

<Registers, Alu Result,
 Instruction, NPC>

0

1

1

0

1

0

IF CHECK

ID CHECK

EX CHECK

MEM CHECK CT

Core Values

CONTROL

IF CHECK

ID CHECK

EX CHECK

MEM CHECK CT

CONTROL

 a)

b)

c)

Figure 2: Checker Processor Pipeline Structure for a) a single wide checker processor, b) a checker processor in
Check mode, and c) a checker processor in Execute mode

Appears in Dependable Systems and Networks (DSN), July 2001
the pipeline to single serial instruction processing. Once the
faulty instruction has completed, the pipeline returns to Idle or
Check mode, depending on the availability of instructions
from the core.

Certain faults, especially those affecting core processor
control circuitry, can lock up the core processor or put it into a
deadlock or livelock state where no instructions attempt to
retire. For example, if an energetic particle strike changes an
input tag in a reservation station to the result tag of the same
instruction, the processor core scheduler will deadlock. To
detect these faults, a watchdog timer (WT) is added. After each
instruction commits, the watchdog timer is reset to the maxi-
mum latency for any single instruction to complete. If the
timer expires, the processor core is no longer making forward
progress and the core is restarted. At that time, pipeline control
transitions to recovery mode where the checker processor is
able to complete execution of the current instruction before
restarting the core processor after the stalled instruction.

3 Performance Implications
In this section we detail the performance of a complex out

of order processor that is enhanced with a checker. Cycle accu-
rate simulation of a number of benchmarks is used to demon-
strate that the performance impacts are minimal.

3.1 Experimental Framework
The simulators used in this study are derived from the Sim-

pleScalar/Alpha 3.0 tool set [35], a suite of functional and tim-
ing simulation tools for the Alpha AXP ISA. The timing
simulator executes only user-level instructions, performing a
detailed timing simulation of an aggressive 4-way dynamically
scheduled microprocessor with two levels of instruction and
data cache memory. A 4-wide 3-stage checker with 4k data
cache and 0.5K instruction cache was used for the analysis.
Simulation is execution-driven, including execution down any
speculative path until the detection of a fault, TLB miss, or
branch misprediction. To perform our simulation experiments,
we collected results for nine of the SPEC95 benchmarks [36]
and six of the SPEC2000 benchmarks. Of these program nine
are primarily integer codes and six use floating point exten-
sively.

Physical designs were constructed in synthesizable Verilog
code. The code was compiled and simulated using Cadence’s
VERILOG-XL 2.1.3. The waveform data generated from the
simulation was viewed using DAI Signalscan Version 6.4s4.
Once the design had been debugged it was synthesized using
Synopsys Version 2000.05, using the 0.25um Leda library.
Synopsys designs were derived using a wire load from this
library as well. The design was synthesized with timing as its
primary optimization objective, and area as a secondary con-
cern. After synthesis was complete, Synopsys timing, area and
power reports were generated to assess the design.

3.2 Performance Impacts
With dynamic verification, there are two ways the checker

processor can slow the progress of the core processor. First,
checker processor stalls delay the retirement of instructions in
the core processor, forcing the core processor to hold specula-
tive state longer, possibly creating back pressure at core pro-
cessor decode. If speculative state resources in the core
processor fill, the decoder will have to stall as it will not be
able to allocate re-order buffer and load/store queue resources
to new instructions. The checker processor only stalls when an
access to its data cache misses or when there are insufficient

functional unit resources. Second, fault recovery will delay
core progress as the core processor must be flushed and
restarted after the errant instruction.

The performance impacts of dynamic verification are sum-
marized in Table 1. These results reflect performance impacts
without any core faults incurred during the simulation. The
processor model with dynamic verification exhibits modest
performance gains over the baseline model without a checker
processor. This is due to the additional checker store queue
(cSTQ), which eliminates store writeback misses at commit
that can slow the baseline architecture (without a checker pro-
cessor). This effect is demonstrated in the average decoder
stalls percentage which went from 10.128% in the baseline to
only 7.744% in the dynamically verified model.

An analysis of fault rates in a previous work indicated that
recovery from faults had no perceivable impact on perfor-
mance provided the faults were less than one every 1000
cycles [31]. Considering that faults are the result of design
errors or infrequent transient faults, we don’t expect fault rates
to approach this threshold.

To summarize the performance results from [31,32,33], the
checker processor keeps up with the core processor because
the core processor clears the many hazards that would other-
wise slow this very simple design. Branch hazards are cleared
by the high quality next PC predictions from the core proces-
sor, generated using pre-execution of the program. Data haz-
ards from long latency instruction are eliminated by the input
value predictions supplied by the core processor. With these
inputs values, instruction need not wait for earlier dependent
operations to finish. As such, dependent long latency operation
may execute in parallel in the checker pipeline. Finally, data
hazards from cache misses are virtually non-existent in the
core processor since the core processor runs ahead of the
checker initiating cache misses (and tolerating their latency) in
advance of checker execution. The checker cache need only
hold the working set of the pipeline, i.e., data elements from
the time they are first touched in the core processor pipeline
until the time they are checked by the checker processor.

Indeed, it is this lack of pipeline hazards that also makes the
checker processor design quite scalable. A deeper (or super-
pipelined) checker processor will process instructions faster
because it can employ a higher clock rate. The lack of depen-
dences makes increasing the depth of the checker processor
pipe stages fairly straightforward. A wider (or superscalar)
checker processor design will process instruction faster by
allowing more instructions to be processed in a single cycle.
For the most part, widening the checker processor stages
requires only replicating the resources such that more instruc-

Integer
Benchmark

Slowdown
(Checked Vs

Base)

Floating Point
Benchmark

Slowdown
(Checked Vs

Base)

compress95 0% applu00 -1.2779%

crafty00 0.013561% hydro2d -0.46554

gap00 -0.73826% lucas00 0%

gcc 0.015443% mesa00 -0.09291%

go 0% tomcatv 0.19605%

ijpeg -0.25113% turb3d -3.16497%

li 0.0556%

perl 0%

twolf00 0.05295

average -.095% average -.800%

OVERALL AVERAGE -0.3771%

Table 1: Performance Results of a Processor
Checker.

Appears in Dependable Systems and Networks (DSN), July 2001
tions can be processed in a single cycle. Input value checks
(for registers or memory) are somewhat more complicated,
however, as multiple instructions may attempt to read from
memory or registers in a single cycle while at the same time
creating values that may be visible to later instruction in the
same cycle. Fortunately, this is no more difficult than the
dependence checks that occur during instruction issue, renam-
ing, and commit. We are currently investigating the full
impacts of scaling on the checker processor and will report on
these findings in the future.

4 Physical Design
When considering any type of testing technique it is impor-

tant to quantify its costs in addition to its benefits. This section
will analyze the performance, area and power costs of a proto-
type checker processor.

 To assess the performance impacts of a checker processor,
a Verilog model for the integer subset of the Alpha instruction
set was constructed. The design was tested with small hand

coded assembly programs to verify correct checker operation.
Floating point instructions were not implemented due to the
time constraints. We do, however, estimate floating point over-
heads using measurements from an unrelated physical design
in the same technology. The Synopsys toolset was used in con-
junction with a 0.25um library to produce an unpipelined fully
synthesized design that ran at 288MHz. Our high level simula-
tions show that pipelining of the checker does not have a
severe impact on performance. We are considering this
approach as well as semi-custom designs as means to matching
the speed of current microprocessors.

The Synopsys toolset will generate area estimates for a syn-
thesized design given the cells used and the estimated inter-
connect. Boundary optimization, which exploits logical
redundancy between modules, was turned off so that an assess-
ment of each module’s contribution to the overall area could be
determined. A 1.65mm^2 single-wide checker size was pro-
duced by the toolset, which is fairly small in comparison to the
205mm^2 size of the Alpha 21264 microprocessor. A single-
wide checker only amounts to 0.8% of the area of the Alpha

Module Size Comparison

205

0.01

0.1

1

10

100

re
gis

te
r f

ile

ifc
he

ck

idc
he

ck

ex
ch

ec
k

m
em

ch
ec

k

co
m

m
it

co
nt

ro
l

int
er

co
nn

ec
t/m

ux
es

dc
ac

he

ica
ch

e

to
ta

l c
he

ck
er

Alph
a

21
26

4

S
iz

e
(m

m
^2

) Single Wide

Four Wide

Four Wide (FP
estimate)

Module Sizes (No cache) 205

0.01

0.1

1

10

re
gis

te
r f

ile

ifc
he

ck

idc
he

ck

ex
ch

ec
k

m
em

ch
ec

k

co
m

m
it

co
nt

ro
l

int
er

co
nn

ec
t/m

ux
es

to
ta

l c
he

ck
er

Alph
a

21
26

4

S
iz

e
(m

m
^2

)

Figure 4 Physical Characteristics: a) The area of the various checker modules. b) A breakdown of the area used in a
single wide checker. c) A comparison of the sizes for a single wide checker, quad wide checker, quad wide check with
floating point estimate and an Alpha 21264.

a) b)

c)

Checker Area Breakdown with Cache
Memories

7%

1%

1%

32%

6%

33%

17%

1%
1%

1%

register f ile
ifcheck
idcheck
excheck
memcheck
commit
control
interconnect/muxes
dcache
icache

Appears in Dependable Systems and Networks (DSN), July 2001
chip. However, as mentioned before only a subset of the
instruction set was implemented. The checker area breakdown
chart shows that the excheck module, which houses the func-
tional units, contributes the most to the overall size. The float-
ing point modules should be slightly larger then their integer
counterparts due to the need to track the exponents. The mem-
ory elements in the checker design were estimated using the
Cacti 2 cache compiler[43]. The estimates produced by Cacti
were slightly pessimistic, but within a factor of 2 of known
layouts. Cacti projected that the I-cache and D-cache would be
0.57mm2 and 1.1408mm2 respectively. These values are for
the 512 byte I-cache and 4K byte D-cache that are described in
previous section. Accounting for caches, total checker area
rises to roughly 10mm2, still much smaller than a complete
microprocessor in the same technology.

4.1 Power Analysis

As transistor counts grow, power is a growing concern
since adequate distribution and cooling can create design prob-
lems. Thus, checking mechanisms must budget their power
usage to meet overall system goals. Synopsys tools are also
able to model power usage at a high level. It estimates switch-
ing frequencies for logic to determine the power consumed. A
50% switching estimate is the default. Generally, this produces
a slight overestimate of the power, but it is useful for a coarse
grain analysis. Synopsys estimates the power of our Verilog
design at 941mW, small in comparison to the 75 watts that are
consumed by a typical core processor design like the Compaq
Alpha 21264[42]. While this is a pessimistic estimate, we have
isolated a few mechanisms to improve the power usage. To
speed up the checker processor we are sending our operands to
all the functional units at the same time, then selecting the
result from the one we want. By increasing the depth of the
checker pipeline, we can predecode the functional unit used
and only change the inputs to that module. This will decrease
the switching in the checker and thereby decrease the power
required to process an instruction.

5 Design Improvements for Additional
Fault Coverage

The design presented thus far is targeted at design faults.
While the checker inherently aids in the detection of opera-
tional and manufacturing faults due to its checking capability
and simplification of critical circuitry, it has not been the pri-
mary focus thus far. We will now explore how dynamic verifi-
cation can further aid in the detection of operational and
manufacturing faults.

5.1 Operational Errors

Several mechanisms reduce the probability of operational
errors affecting functionality, especially those errors that can
arise from SER particle strikes. If the checker is properly
designed, the system is guaranteed to function correctly given
any error in the core. This guarantee can be safely made
because the checker will detect and correct any operational
faults in the core. Ensuring correct operation is more challeng-
ing when we consider the possibility of operational errors in
the checker circuits. Ideally, the checker would be designed
such that its lifetime and radiation tolerance is higher then the

core. However this may be too costly or impossible due to
environmental conditions.

Table 2 enumerates the possible fault scenarios that may
occur during the checking process. Case A represents the false
positive situation where the checker detected a fault that did
not really occur. To solve Case A, we have added additional
control logic that causes the checker to re-check core values
when an error is detected, before recovery mode is entered.
This reduces the likelihood of this case occurring, at the
expense of slightly slower fault recovery performance.

Case B can occur in one of two ways; the first is when an
operational error causes an equivalent error to occur in both
the core and the checker. This is the product of two small prob-
abilities. Given a good design, the likelihood of this event is
probabilistically small. However, replication of the functional
units may be applied to further reduce this probability. The
other possibility is that either the comparison logic or the con-
trol logic suffer an error. We can employ TMR on the control
logic to help reduce the probability that this error occurs. In a
system with a checker, the probability of a failure, shown in
the following equation, is always the product of at least two
unlikely events. For systems that require ultra-high reliability
the checker can be replicated until the probability is acceptable
for the application. This is a low cost redundant execution
approach as only the small checker needs to be replicated.

Pfailure = Pdesign error core * P masking strike in checker
 + Pdesign error core * Pstrike checker control

Figure 5 illustrates how TMR can be applied to the control
logic of the checker to provide better reliability in the event of
an operational error in the checker control. Again, a design
analysis was done by synthesizing a Verilog model. The areas
estimates previously given show that the simple control logic
of the checker only contributes a small portion to the overall
checker size. The addition of two more control logic units and
voting logic only consumes an extra 0.12 mm2. TMR still has a
single point of failure within the voter logic, but the chance of
a strike is reduced due to the area difference as compared to the
control unit logic. Additionally, the voter logic can be
equipped with transistors that are sized large enough to have a
high tolerance of environmental conditions.

5.2 Manufacturing Errors
The checker processor can improve the success rate of man-

ufacturing test, because the checker design lends itself to these
tests, and only the checker must be completely free of defects
for correct program operation. The structure of the checker,
where values are latched in and compared to hardware,
enhances the checkers suitability for nonconcurrent testing
techniques. A simple scan chain can be synthesized in latches

error occurred error did not occur

error
detected

Functioning ok
checker detects error
that occurred

Case A
checker will re-check
and realize instruction
is correct

error not
detected

Case B
Small probability of
occurring see equation
in text

Functioning ok
core is working cor-
rectly and checker does
not find any errors

Table 2: Operational Faults in Checker Circuitry.

Appears in Dependable Systems and Networks (DSN), July 2001
that supply the data to the checker. This type of testing can
achieve enhanced fault coverage over the core, since the
checker circuitry is significantly simpler. BIST is another
option that holds great potential for this type of circuit.

As shown in Figure 6, built-in-self-test (BIST) hardware
can be added to test for checker manufacturing errors. The
BIST hardware uses a Test Generator to artificially stimulate
the checker logic and it passes values into the checker stage
latches that hold the instruction for the checker to validate. The
most effective test generator will be a ROM of opcodes, inputs
and expected results. Using this data and the error signals
already present in the system, an efficient nonconcurrent test
can be performed. Obviously, the ROM should have both good
and bad sets of data such that the check modules are fully
tested. The number of tests required to test for all faults is a
function of the checker logic size and structure. Memories
make up another huge portion of the design; fortunately, sig-
nificant research has been done in how to effectively test mem-
ory. Marching ones and zeros is just one simple way to test a
memory.

To assess the potential of applying BIST to the checker, we
ran our synthesized design through Tetramax. Tetramax is an
ATPG tool that is part of the Synopsys suite. Verilog models of
the gates in the synthesized design are read into the Tetramax,
allowing it to activate and propagate faults. The Verilog design
is then entered into the tool and analyzed. Statistics and pat-
terns are reported from the analysis. In addition, the ATPG tool
will try to compress the vectors so that redundant patterns are
deleted. The ATPG statistics are summarized in Table 3. The
total ROM usage of 51.8KB was plugged into the Cacti 2 tool,
which estimated the area at 0.057mm2 (assuming a density of
10 ROM cells per RAM cell).

IF CHECK

ID CHECK

EX CHECK

MEM CHECK

CONTROL

CT

instruction valid and stall signals
“routing”
 mux
 control

Memory

Architected
 State

Register
File

Instruction
Memory

Register A # and value
Register B # and value
Destination # and value
Alu Result
Instruction
PC
NPC

Inputs From Core

<PC, Instruction>

<PC, Instruction>

<Address, Data, Stall>

<RA #, RA Val
 RB #, RB Val>

<IFCORRECT, STALL>

<IDCORRECT>

<EXCORRECT>

<MEMCORRECT,

<Address, Data, Stall>

 STALL>

<PC, Instruction, Regs>

<Registers, Instruction>

<Registers, Alu Result,

<AluResult, Registers, Instruction>

 Instruction>

<Registers, Alu Result,
 Instruction, NPC>

0

1

1

0

1

0

CONTROL CONTROL
Voter

Figure 5: Checker Processor Pipeline Structure
with TMR on the Control Logic.

Module Name
of

faults
test

coverage
test

patterns
pattern

size
memory

IFCHECK 2108 100% 204 97 2.4KB

IDCHECK 6063 100% 366 215 9.6KB

EXCHECK 82810 99.96% 764 327 30.5KB

MEMCHECK 5024 100% 290 194 6.9KB

COMMIT 388 100% 26 140 455B

CONTROL 2038 100% 80 97 790B

Total 51.8KB

Table 3: BIST Analysis.

IF CHECK

ID CHECK

EX CHECK

MEM CHECK

CONTROL

CT

instruction valid and stall signals
“routing”
 mux
 control

Memory

Architected
 State

Register
File

Instruction
Memory

Register A # and value
Register B # and value
Destination # and value
Alu Result
Instruction
PC
NPC

Inputs From Core

<PC, Instruction>

<PC, Instruction>

<Address, Data, Stall>

<RA #, RA Val
 RB #, RB Val>

<IFCORRECT, STALL>

<IDCORRECT>

<EXCORRECT>

<MEMCORRECT,

<Address, Data, Stall>

 STALL>

<PC, Instruction, Regs>

<Registers, Instruction>

<Registers, Alu Result,

<AluResult, Registers, Instruction>

 Instruction>

<Registers, Alu Result,
 Instruction, NPC>

0

1

1

0

1

0

CONTROL CONTROLVoter

Latches

BIST CONTROL

0

1

 BIST Inputs

Test
Generator

Figure 6: Checker Processor Pipeline Structure with
TMR on Control Logic and BIST.

Appears in Dependable Systems and Networks (DSN), July 2001
Although difficult to quantify, it is likely that the manufac-
turing process could benefit from the checker processor as
well. In a fab where part production is limited by the band-
width and latency of testers, the checker processor could
improve testing performance. Once the checker is fully tested
using internal BIST mechanisms, the checker itself can test the
remaining core processor circuitry. No expensive external
tester is required, only power and a simple interface with ROM
to hold core testing routines and a simple I/O interface to
determine if the checker passed all core processor tests.

6 Related Work
Rotenberg’s AR-SMT[29] and more recently Slip-

stream[30] processors use multiple threads to eliminate haz-
ards and verify correct operation. In Slipstream an advanced
stream (A-stream) is used to aid a redundant stream (R-stream)
by providing future knowledge to the trailing stream. As a
result, performance can be increased and the redundancy can
be used to detect transient faults. However, this technique does
not provide total coverage or resistance to design errors. Other
techniques for obtaining reliability include the redundant hard-
ware approach, as in the IBM S/390 G5 microprocessor [38]
and the redundant thread (or SRT) approach. In the SRT
approach proposed in [10], redundant threads run concurrently
and compare results for fault detection. Performance in SRT
processors is improved with one thread prefetching cache
misses and computing branch outcomes for other threads, sim-
ilar to the core prefetching that the checker processor lever-
ages.

A number of fault-tolerant processor designs have been
proposed and implemented, in general, they employ redun-
dancy to detect and/or correct transient errors. IBM's G4 pro-
cessor[39] is a highly reliable processor design similar to the
design in this paper in that it checks all instructions results
before committing them to architected state. Checking is
accomplished by fully replicating the processor core. An R-
Unit is added to compare all instruction results, permitting
only identical results to commit. If a failure in the processor is
detected, it is addressed at the system level through on-line
reconfiguration. The ERC32 is a reliable SPARC compatible
processor built for space applications [40]. This design aug-
ments the microarchitecture with parity on all register and
memory cells, some self-checking control logic, and control
flow checking. In the event a fault is detected, a software inter-
rupt is generated and the host program initiates recovery.

Unlike these designs, the checker can keep costs lower by
only checking the function of the program computation. The
G4 and ERC32 designs check both the function of the program
and the mechanisms used to optimize program performance.
This results in more expensive checkers, typically two times as
much hardware in the core processor. Additionally, the checker
can detect design errors. Simple redundant designs cannot
detect design errors if the error is found in each of the redun-
dant components.

Tamir and Tremblay [41] proposed the use of micro roll-
back to recover microarchitecture state in the event of a
detected fault. The approach uses FIFO queues to checkpoint a
few cycles of microarchitectural state. In this work, we use a
similar parallel checking approach, but employ a global check-
ing strategy to reduce checker cost. In addition, we use the
existing control speculation mechanism to restore correct pro-
gram state.

Blum and Wasserman discussed checkers with respect to
the Pentium Division Bug [1]. In addition to describing com-
plete checkers, they discussed how a partial checker could be
utilized to achieve checking accuracy that was almost perfect.

They also postulate that if error rates are kept small enough,
correcting procedures can be very time consuming without
impacting the performance of the system.

7 Conclusions and Future Directions
Many reliability challenges confront modern microproces-

sor designs. Functional design errors and electrical faults can
impair the function of a part, rendering it useless. While func-
tional and electrical verification can find most of the design
errors, there are many examples of non-trivial bugs that find
their way into the field. Additional faults due to manufacturing
defects and operation faults such as energetic particle strikes
must also be overcome. Concerns for reliability grow in deep
submicron fabrication technologies due to increased design
complexity, additional noise-related failure mechanisms, and
increased exposure to natural radiation sources.

To counter these reliability challenges, we proposed the use
of dynamic verification, a technique that adds a checker pro-
cessor to the retirement phase of a processor pipeline. If an
incorrect instruction is delivered by the core processor the
checker processor will fix the errant computation and restart
the core processor using the processor's speculation recovery
mechanism. Dynamic verification focuses the verification
effort into the checker processor, whose simple and flexible
design lends itself to high-quality functional verification and a
robust implementation.

We presented detailed analyses of a prototype checker pro-
cessor design. Cycle-accurate architectural simulation of our
design monitoring an Alpha 21264-like core processor resulted
in virtually no performance penalties due to on-line instruction
checking. The simple checker can easily keep up with the com-
plex core processor because it uses pre-computation in the core
processor to clear the branch, data, and communication haz-
ards that could otherwise slow the simple checker pipeline.

We presented analyses of our prototype physical checker
design. Timing analyses indicate a fully synthesized and
unpipelined 4-wide checker processor design in 0.25um tech-
nology is capable of running at 288 MHz. We are currently
hand optimizing this design through better layout and stage
pipelining. We fully expect our follow on efforts will demon-
strate that the checker design is also quite scalable. In addition,
area and power analyses of our physical design were pre-
sented. Overall, the checker processor requires less than 6%
the area and 1.5% the power of an Alpha 21264, confirming
that our approach is low cost. Finally, we presented novel
extensions to our baseline design that improve coverage for
operational faults and manufacturing fault detection.

We feel that these results strengthen the case that dynamic
verification holds significant promise as a means to address the
cost and quality of verification for future microprocessors.
Currently, we continue to refine our physical checker proces-
sor design, optimizing its layout and investigating technique to
scale its performance through pipelining. In parallel with this
effort, we are also examining how we might further leverage
the fault tolerance of the core processor to improve core pro-
cessor performance and reduce its cost. One such approach is
to leverage the fault tolerance of the core to implement self-
tuning core circuitry. By employing an adaptive clocking
mechanism, it becomes possible to overclock core circuitry,
reclaiming design and environmental margins that nearly
always exist. We will report on this and other optimizations in
future reports.

Appears in Dependable Systems and Networks (DSN), July 2001
8 References
[1]M. Blum and H. Wasserman,“Reflections on the Pen-

tium Division Bug”, Intel Corporation, Oct. 1997.
[2]M. Kane, “SGI stock falls following downgrade,recall

announcement.” PC Week, Sept. 1996
[3]M. Williams, “Faulty Transmeta Crusoe Chips Force

NEC to Recall 300 Laptops.” The Wall Street Journal, Noc
30,2000

[4] P. Bose, T. Conte, and T. Austin, “Challenges in proces-
sor modeling and validation,” IEEE Micro, pp. 2-7, June 1999.

[5] A. Aharon,“Test program generation for functional veri-
cation of PowerPC processors in IBM,” in Proceedings of the
32nd ACM/IEEE Design Automation Conference, pp. 279-
285, June 1995.

[6] R. Grinwald, “User defined coverage, a tool supported
methodology for design verication,” in Proceedings of the
35nd ACM/IEEE Design Automation Conference, pp. 1-6,
June 1998.

[7]Anonymous “Scalable Hybrid Verification of Complex
Microprocessors,” submitted for publication

[8]M. K. Srivas and S. P. Miller,“Formal Verification of an
Avionics Microprocessor,” SRI International Computer Sci-
ence Laboratory Technical Report CSL-95-04, June 1995.

[9]M. C. McFarland, “Formal Verification of Sequential
Hardware: A Tutorial,” IEEE Transaction on Computer-Aided
Design of Integrated Circuits and Systems, Vol 12, NO. 5. May
1993.

[10]J. Burch and D. Dill, “Automatic verication of pipe-
lined microprocessors control,” Computer Aided Verication,
pp. 68-80, 1994. 24

[11] J. Sawada, “A table based approach for pipelined
microprocessor verification,” in Proc. of the 9th International
Conference on Computer Aided Verication, June 1997.

[12] H. Al-Asaad and J.P. Hayes, “Design verification via
simulation and automatic test pattern generation.” In Proceed-
ings of the International Conference on Computer-Aided
Design. IEEE Computer Society Press, Los Alamitos, CA,
174-180 1995.

[13]E. Bohl, Th. Lindenkreuz, R. Stephan, “The Fail-Stop
Controller AE11,” International Test Conference, pp 567-577,
1997.

[14] B. T. Murray and J.P. Hayes, “Testing ICs: Getting to
the Core of the Problem,” Computer, Vol. 29, No.11, pp.32-45,
Nov. 1996.

[15] M. Nicolaidis, “Theory of Transparent BIST for
RAMs,” IEEE Trans. Computers, Vol. 45, No. 10, pp. 1141-
1156, Oct. 1996.

[16]M. Nicolaidis, “Efficient UBIST Implementation for
Microprocessor Sequencing Parts,” J. Electronic Testing: The-
ory and Applications, Vol. 6, No. 3, pp. 295-312, June 1995.

[17]H. Al-Asaad, B.T. Murray and J.P. Hayes, “Online
BIST for Embedded Systems,” IEEE Design and Test of Com-
puters, pp.17-24, October-December 1998.

[18]D. G. Pierce and P. G., “Electromigration: A review,”
Microelectronic Reliability, Vol. 37. No. 7, pp. 1053-1072,
1997.

[19]R. S. Muller and T.L. Kamins, “Device Electronics for
Integrated Circuits Second Edition,” John Wiley&Sons, New
York, NY 1986.

[20]S. Wolf, “Silicon Processing for the VLSI Era Volume
3- Submicron MOSFET” Lattice Press, Sunset Beach, CA
1995.

[21] K. Seshan, T. Maloney, and K. Wu, “The quality and
reliability of Intel's quarter micron process.” Intel Technology
Journal, Sept. 1998.

[22] M. Bohr, “Interconnect scaling: the real limiter to
high-performance ULSI,” in Proceedings of the International
Electron Devices Meeting, pp. 241-244, Dec. 1995.

[23] N. Weste and K. Eshragian, Principles of Cmos VLSI
Design: A Systems Perspective. Addison-Wesley Publishing
Co., 1982.

[24] J. Z. et al, “IBM experiments in soft fails in computer
electronics,” IBM Journal of Research and Development, vol.
40, pp. 3-18, Jan. 1996.

[25] P. Rubinfeld, “Managing problems at high speed,”
IEEE Computer, pp. 47-48, Jan. 1998.

[26] J. Ziegler, “Terrestrial cosmic rays,” IBM Journal of
Research and Development, vol. 40, pp. 19-39, Jan. 1996.

[27] D. P. Siewiorek, R. S. Swarz, “Reliable Computer Sys-
tems, Design and Evaluation Second Edition,” Digital Press,
Burlington MA 1992.

[28]S.K. Reinhardt and S. S. Mukherjee “Transient Fault
Detection via Simultaneous Multithreading,” Proceedings 27th
Annual Int’l Symp. on Computer Architecture (ISCA), June
2000.

[29]E. Rotenberg, “AR-SMT: A Microarchitectural
Approach to Fault Tolerance in Microprocessors,” Proceedings
of the 29th Fault-Tolerant Computing Symposium, June 1999.

[30]Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A
Study of Slipstream Processors,” 33rd International Sympo-
sium on Microarchitecture, December 2000.

[31]T. Austin. “DIVA: A Reliable Substrate for Deep Sub-
micron Microarchitecture Design”. In Micro-32, Nov 99.

[32]T. Austin. “DIVA: A Dynamic Approach to Micropro-
cessor Verification.” The Journal of Instruction-Level Paral-
lelism Volume 2, 2000.

[33]S. Chatterjee, C. Weaver and T. Austin. “Efficient
Checker Processor Design.” In Micro-33, Dec 2000.

[34]J. Hennessy and D. Patterson. Computer Architecture a
Quantitative Approach. Morgan Kaufmann Publishers, Inc.
1996.

[35]SPEC newsletter. Fairfax, Virginia, Sept. 1995.
[36]D. C. Burger and T. M. Austin. The SimpleScalar tool

set, version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin, Madison, June 1997.

[37]H. Al-Assad, J.P. Hayes and B.T. Murray “Scalable test
generators for high-speed datapath circuits,” Journal of Elec-
tronic Testing:Theory and Applications, Vol. 12, Nos. 1/2, Feb-
ruary/April 1998

[38]T.J Slegel et al. “IBM’s S/390 G5 Microprocessor
Design.” IEEE Micro, pp 12-23, March/April 1999.

[39]L. Spainhower and T. Gregg, “G4: A fault-tolerant
CMOS mainframe,” in Proceedings of the 28th Fault-Tolerant
Computing Symposium, June 1998.

[40]J. Gaisler, “Evaluation of a 32-bit microprocessor with
built-in concurrent error detection,” in Proceedings of the 27th
Fault-Tolerant Computing Symposium, June 1997.

[41]Y. Tamir and M. Tremblay, “High-performance fault
tolerant VLSI systems using micro rollback,” IEEE Transac-
tions on Computers, vol. 39, no. 4, pp. 548-554, 1990.

[42] Cahners Microprocessor Report, vol 15, pp. 50,
August 2000.

[43]Glenn Reinman, Norm Jouppi. “An Integrated Cache
Timing and Power Model.” http://research.compaq.com/wrl/
people/jouppi/cacti2.pdf

	Abstract
	A Fault Tolerant Approach to Microprocessor Design
	1 Introduction
	1.1 Reliability Challenges
	1.1.1 Design faults
	1.1.2 Manufacturing defects
	1.1.3 Operational faults

	1.2 Contributions of this Paper

	2 Dynamic Verification
	2.1 System Architecture
	2.2 Checker Processor Architecture
	Figure 2: Checker Processor Pipeline Structure for a) a single wide checker processor, b) a check...

	3 Performance Implications
	3.1 Experimental Framework
	3.2 Performance Impacts

	4 Physical Design
	4.1 Power Analysis

	5 Design Improvements for Additional Fault Coverage
	5.1 Operational Errors
	5.2 Manufacturing Errors

	6 Related Work
	7 Conclusions and Future Directions
	8 References

