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I ≥ 85% of all gates are ancilla production

I Efficient design requires managing ancilla production



Quantum Fault Tolerance

H

I Elements of fault tolerance:

I Encode qubits in quantum error correcting code (QEC)
I Add error correction modules

I 3 pieces to error correction operation:

I Ancilla (helper “parity” bit) production
I Error syndrome
I Qubit correction

I ≥ 90% of QEC gates are ancilla production

I ≥ 85% of all gates are ancilla production

I Efficient design requires managing ancilla production



Quantum Fault Tolerance

H

n

n

n

I Elements of fault tolerance:
I Encode qubits in quantum error correcting code (QEC)

I Add error correction modules

I 3 pieces to error correction operation:

I Ancilla (helper “parity” bit) production
I Error syndrome
I Qubit correction

I ≥ 90% of QEC gates are ancilla production

I ≥ 85% of all gates are ancilla production

I Efficient design requires managing ancilla production



Quantum Fault Tolerance

H

n

n

n

correct

correct

correct

correct

correct

I Elements of fault tolerance:
I Encode qubits in quantum error correcting code (QEC)
I Add error correction modules

I 3 pieces to error correction operation:

I Ancilla (helper “parity” bit) production
I Error syndrome
I Qubit correction

I ≥ 90% of QEC gates are ancilla production

I ≥ 85% of all gates are ancilla production

I Efficient design requires managing ancilla production



Quantum Fault Tolerance

H

n

n

n

correct

correct

correct

correct

correct

correct

QEC ancilla

factory

Syndrome

Extract

I Elements of fault tolerance:
I Encode qubits in quantum error correcting code (QEC)
I Add error correction modules

I 3 pieces to error correction operation:
I Ancilla (helper “parity” bit) production
I Error syndrome
I Qubit correction

I ≥ 90% of QEC gates are ancilla production

I ≥ 85% of all gates are ancilla production

I Efficient design requires managing ancilla production



Quantum Fault Tolerance

H

n

n

n

correct

correct

correct

correct

correct

correct

QEC ancilla

factory

Syndrome

Extract

I Elements of fault tolerance:
I Encode qubits in quantum error correcting code (QEC)
I Add error correction modules

I 3 pieces to error correction operation:
I Ancilla (helper “parity” bit) production
I Error syndrome
I Qubit correction

I ≥ 90% of QEC gates are ancilla production

I ≥ 85% of all gates are ancilla production

I Efficient design requires managing ancilla production



Quantum Fault Tolerance

H

n

n

n

correct

correct

correct

correct

correct

correct

QEC ancilla

factory

Syndrome

Extract

I Elements of fault tolerance:
I Encode qubits in quantum error correcting code (QEC)
I Add error correction modules

I 3 pieces to error correction operation:
I Ancilla (helper “parity” bit) production
I Error syndrome
I Qubit correction

I ≥ 90% of QEC gates are ancilla production

I ≥ 85% of all gates are ancilla production

I Efficient design requires managing ancilla production



Reducing FT Overhead

I 2 choices for reducing overhead:
I Improve ancilla supply/make more efficient
I Decrease demand for ancilla

I Our contributions:
I Qalypso: flexible, efficient ancilla production
I Error correction optimization to reduce correct steps

H

n

n

n

correct

correct

correct

correct

correct

correct

correctH

n

n

n



Reducing FT Overhead

I 2 choices for reducing overhead:
I Improve ancilla supply/make more efficient
I Decrease demand for ancilla

I Our contributions:
I Qalypso: flexible, efficient ancilla production
I Error correction optimization to reduce correct steps

H

n

n

n

correct

correct

correct

correct

correct

correct

correctH

n

n

n



Tiled Quantum Architectures

Ancilla

Compute

I Compute and QEC ancilla regions in a single tile

I Interconnection network connects tiles

I Previous work: QLA, LQLA

I Specialized memory and compute regions

I Previous work: CQLA, CQLA+

I Our contribution: Qalypso: flexible memory, compute, QEC

I Parameters: number of tiles, compute/memory distribution
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I Basic metrics:
I Probability no error in output: psuccess

I Area
I Delay of single run of circuit: Dsingle

I Tradeoff area, Dsingle , psuccess in design
I ADCR: Area-Delay to Correct Result

I E (Delay) = Dsingle × Ecorrect(runs) =
Dsingle

psuccess

I ADCR = Area× E (Delay) =
Area×Dsingle

psuccess
I Area efficiency of probabilistic circuits

I ADCRoptimal : best ADCR for over all possible configurations
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Architectural Evaluation on Random Circuits

I ADCRoptimal comparison on random circuits

I Compare best performing archs: Qalypso, LQLA, and CQLA+

I Qalypso has significantly lower ADCR than previous work

I 4x lower latency than LQLA
I 2x smaller area than CQLA+

Qalypso targets ancilla production to performance critical tiles
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Reducing FT Overhead

I 2 choices for reducing overhead:
I Improve ancilla supply/make more efficient
I Decrease demand for ancilla

I Our contributions:
I Qalypso: more flexible, efficient ancilla production
I Error correction optimization to reduce correct steps
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Simple Error Model for FT Circuits
I Identifying critical error paths

I Gates propagate max input error distance to all outputs
I Gates add 1 to error distance
I EDistmax corresponds to critical paths

I Corrections reduce error counts

I Similar to delay in synchronous circuits
I Apply classical retiming approach: recorrection

I Corrections balance EDist → Synch registers balance delay
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I 1024-bit Quantum Carry Lookahead Adder
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Shor’s Performance

I Full Shor’s factorization - billions of ops for 1024

I Include ripple carry adder design

I 2x reduction in latency for optimization (QCLA opt best)

I 5x reduction in area for optimization (QRCA opt best)
Best optimized Qalypso 1024-bit design is approx 0.01m2



Shor’s Performance

II Full Shor’s factorization - billions of ops for 1024

I Include ripple carry adder design

I 2x reduction in latency for optimization (QCLA opt best)
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Conclusion

I ADCR: New metric for evaluating FT quantum circuits
I Area efficiency metric including reliability, area, delay

I Qalypso outperforms other QC architectures
I Detailed layout and simulation allows accurate comparison
I CAD flow enables automated search of configuration space

I Error correction optimization reduces area and latency
I Minimal impact to reliability

I Together orders of magnitude area improvement for Shor’s
factoring
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