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1. INTRODUCTION

This study considers the design and digital simulation of an integrated fault
tolerant system (FTS) using analytic redundancy for avionics sensors on the NASA-
Langley Research Center Advanced Transport Operating Systems (ATOPS) Transport
Systems Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment.
The overall objective of the fault tolerant system is to provide reliable estimates for
aircraft position, velocity, and attitude in the presence of possible failures in ground-
based navigation aids, and on-—board flight control and mnavigation sensors. " The
estimates, provided by the fault tolerant system, are used by a fully automated
guidance and control system to land the aircraft along a prescribed path. Sensor
failures are identified by utilizing the analytic relationship between the various sensor

outputs arising from the aircraft equations of motion [1].

An aircraft sensor fault tolerant system design methodology is developed by
formulating the problem in the context of simulteneous state estimation and failure
identification in discrete time nonlinear stochastic systems. The resulting sensor fault
tolerant system consists of 1) a no—fail estimator, implemented as an extended Kalman
filter (EKF) based on the assumption of no failures, which provides estimates for
aircraft state variables and normal operating sensor biases; 2) a bank of detectors
which are first order filters for estimating bias jump failures in sensor outputs; 3)

likelihood ratio computers; and 4) a decision function which selects the most likely

1Integratod FTS refers to the capability of handling all of these three different sensor
subsets simultaneously in contrast to earlier studies in which onty one subset such as
flight control or novigation sensors are considered.



failure mode based on the likelihood ratios.

The operation of the fault tolerant system is as follows: First, the EKF computes
estimates for aircraft position, velocity, attitude, horizontal winds, and normal
operating sensor biases on the assumption of no sensor failures. The residuals of this
EKF drive a bank of detectors, where each detector has been designed to estimate a
postulated bias jump failure for a given sensor. Then, a multiple hypothesis testing
procedure is employed to decide whether the EKF is operating with healthy sensors or
under one of the hypothesized failed sensor modes. The multiple hypothesis test
selects the most likely failure mode based on the likelihood ratios which are computed
using the bias jump failure estimates from the detectors. When a failure is declared
by the decision logic, the filter—detector structure is reconfigured by eliminating the
failed sensor, making the appropriate changes in the no-—fail filter and detectors, and

reinitializing the likelihood ratios and a priori probabilities.

The no-fail filter is implemented in a rectangular coordinate system with origin
on the runway by using a new separated bias EKF algorithm which has been obtained
by extending the known results for the linear case to nonlinear systems. Body
mounted accelerometers and rate gyros form the inputs into the EKF, while MLS range,
azimuth, elevation measurements, IAS (indicated airspeed), and IMU (inertial
measurement unit) attitude outputs are utilized as measurements by the EKF.
Alternatively, an RSDIMU (dual fail-operational two-degree—of—freedom strapdown
inertial measurement unit [8]) can be used instead of a platform IMU and the body
mounted accelerometers and rate gyros. The function of the no—fail filter is similar

to that of a navigator coordinatized in a local runway frame of reference. Whereas



traditional navigation equations usually involve open loop integration of the body
accelerations in the runway frame with occasional position and velocity fixes, the no-
fail EKF in our study performs the position, velocity, and attitude updates

continuously in a closed loop fashion.

The proposed filter—detector structure is computationally feasible. The
integrated sensor FTS design requires a single high order EKF (no-fail filter)._ The
state estimation and failure detection’ performance of the developed sensor fault
tolerant system is analyzed by using a nonlinear six—degree-of~freedom simulation of

the TSRV aircraft.

In this report, we will discuss the failure detection and isolation (FDI)
performance of the system using a dual-redundant sensor configuration. In particular
the system will be shown capable of detecting failures even if only one sensor of a

given type remains.

The sensor fault tolerant algorithm developed here has been incorporated into a
computer program called FINDS (Fault Inferring Nonlinear Detection System) which is
described in detail in [2]. The simulation portion of the software is essentially an
integration of the NASA-LRC supplied TSRV and RSDIMU computer simulation programs.
Aircraft sensor models have been developed and appended into the simulation to
provide more realistic normal operating errors. Furthermore, sensor failure models for
increased bias, hardover, null, scale factor, ramp, and increased noise type sensor

malfunctions have also been assimilated into the software.



The simulation results indicate that the no-—fail EKF estimation errors compare
favorably to those obtained with other types of navigation filters employed in the same
MLS environment. Sensor failure detection performance of the fault tolerant system is
excellent for the EKF measurement sensors such as MLS, IAS, and IMU, while the failure
detection speed for the EKF input sensors such as accelerometers and rate gyros has

been found to be slower than that of measurement sensors.

1.1 Relation to Previous Work

Here, we will discuss the differences between the major aspects of FINDS and
earlier sensor failure detection studies such as the nonlinear multiple hypothesis
testing approach, reported in [20]-[21], F-8 DFBW [25], DIGITAC A7 [24], and the

RSDIMU [23] FDI studies.

o sensor complement

FINDS is an integrated FTS in the sense that failures in on-board flight control
as well as inertial sensors and ground—-based navigation—aid instruments are
considered. For instance, FINDS can detect not only a fault in an on—board MLS
receiver, but also a fault in the ground—based transmitting antenna for that receiver.
FINDS can operate without any hardware redundancy in that it can detect failures

even if there remains only one sensor of a given type.

In contrast, earlier studies are concerned with only a single subset of the sensor
complement considered here. For instance, the F-8 and DIGITAC A-7 studies deal with

flight control sensors only and the RSDIMU FDI considers failures only in inertial



sensors. F-8 FDI requires dual sensor redundancy so that, if only one sensor of a
given type remains in the configuration, then the failure of that sensor cannot be

detected.

o FDI algorithm structure

FINDS has a single large order estimator (no-fail filter) driven by all the sensor
outputs. Failures are identified by analyzing the signature of sensor faults on the
no—fail residuals by processing the residual sequence through a bank of first—order
detectors. The estimator/detector structure in FINDS is an extension of the structure

used in [27] to nonlinear dynamic systems.

In contrast, the nonlinear multiple hypothesis testing approach [21] requires the
implementation of M+1 (where M is the total number of sensors) large order estimators
(each of which has complexity equal to the no-—fail filter in FINDS). In F-8 FDI, each
sensor output is estimated by using a subset of the other available sensor types in
order to have three voting sensors (2 hardware/1 analytically constructed). Hence,
the number of filters (each with a different order depending on the analytic
relationships used) are equal to the number of sensor types. In DIGITAC A7, several

different filter assemblies of varying orders with comparators are used.

o0 treatment of nonlinearities

FINDS analyzes the residuals of a nonlinear no-fail filter by processing them
through nonlinear detectors to find sensor faults. One advantage of using nonlinear

filters is that the fault tolerant system is independent of the flight path so that it



does not need gain scheduling.

On the other hand, the nonlinear filter residuals in [21] are directly used in the
likelihood ratio computations without any processing. Similarly, in F-8 FDI, some

nonlinear filters are used but only for constructing sensor outputs.

o state estimation

FINDS supplies the vehicle state estimates used by the guidance and flight
control algorithms. That is to say, the no-fail filter in our application would have
been there even if there were no sensor fault monitoring system. Consequently, the
no-—fail filter should not be considered an additional requirement. Therefore, in
comparing the complexity of FINDS with other FDI applications, only the bank of first-
order detectors in FINDS should be .considered. For instance, the complexity of the
bank of first—order detectors are roughly equivalent to the bank of filters in the F-8

FDI study.

o normal operating errors

In FINDS, important normal operating sensor biases are estimated in order to
remove their false alarm effects. Sensor failures are modelled as bias jumps with
infinite uncertainty whereas a sensor normal operating error is modeled by a constant
random variable with a finite uncertainty (as defined by the sensor specifications).
Hence, the no-—fail filter attempts to distinguish between a normal operating sensor
bias and a bias jump failure in that sensor. On the other hand, in F-8 FDI, normal

operating sensor biases are considered only in the selection of decision thresholds.



In the RSDIMU work, the sensor operating errors (biases as well as scale factors and

misalignment) are used in the selection of thresholds.

o information pattern

Finally, FINDS loocks at all sensor outputs simultanecusly in deciding a sensor
fault, in contrast to other FDI studies in which only those sensors explicitly related to
a specific sensor are used in deciding whether that sensor is at fault or not. For
instance, in F—8 FDI study, a roll attitude sensor failure is decided by considering
only the roll rate, pitch, and yaw attitude sensors while ignoring the analytic
redundancy from the other sensors. On the other hand, FINDS looks at all of the rate
attitude sensors as well as other dynamically coupled sensors in deciding a roll
attitude sensor failure. Hence, FDI information contained in the dynamic redundancy
of all sensor outputs are simultaneously used in FINDS. Of the other studies, only the
detection and estimation algorithm of the multiple hypothesis testing approach would
be more optimal (least mean square sense) than that employed in FINDS, but only at

the expense of a severe computational burden.

The organization of the report is as follows. The developed fault tolerant system
methodology is described in Chapter II. A tutorial description of each major block of
the FTS is given in Section 2.1. Analytic description of the developed FTS is contained
in Sections 2.2-2.6. This chapter ends with Section 2.7 where an illustrative example
is given showing the exploited failure signature in the design. Chapter III examines
the simulated performance of the developed FTS. Conclusions are presented in

Chapter IV.






2. FAULT TOLERANT SYSTEM

In this chapter the analytical structure of the developed aircraft sensor fauit

tolerant navigation system will be discussed in detail.

The objective of the fault tolerant system is to provide reliable aircraft state
estimates to an automated guidance and control system which accomplishes automatic
landing in an MLS environment. The developed fault tolerant system can detect
failures in navigation—aid instruments (e.g. on—board navaid receiver as well as
ground—-based navaid antenna failures), on—board inertial, and flight control sensors.
Since the developed FTS uses the analytic redundancy between various sensor outputs
arising from aircraft equations of motion, sensor failures can be detected even if
there is only one sensor of a given type in the configuration. We envision the
practical use of our developed FTS in a triple or dual redundant (or combinations
thereof) sensor configuration. For instance, our FTS would improve the fail—op/fail—
safe capability of a triple redundant voting system to at least a fail~op/fail-op/fail—

safe capability.

Basically, the fault tolerant system consists of a navigation filter conditioned on
the assumption of no failures, followed by a bank of low—order failure detectors and
their companion decision and reconfiguration logic. The estimation, detection, decision
and reconfiguration algorithms are derived by using nonlinear aircraft point mass

equations of motion.

Although simpler linear filtering algorithms could have been used, the nomnlinear



filtering algorithms used in our FTS have the advantage of being independent of
landing path and selected trim conditions. In contrast, linear filtering zalgorithms2

would necessitate the scheduling of gains.

The outline of Chapter Il is as follows. An overall description of the fault-
tolerant system is given in Section 2.1 by going over the operation of each major
block. The aircraft point mass equations of motion and sensor dynamics, on which the
filter—detector development is based, is then discussed in Section 2.2. Section 2.2
also outlines the operation of the no-—fail filter. Failure detector implementation is
discussed in Section 2.3, and in Section 2.4, the employed decision rule is explained.
Tests for multiple simultaneous failures are discussed in Section 2.6. The next
section, 2.5, describes the operation of healing tests. In Section 2.6, the
reinitialization procedure is outlined. An example, designed to highlight the various
failure signature information contained in the no-fail filter residuals, is given in

Section 2.9.

2.1 Fault Tolerant System Overview

The design problem in our application can be broadly stated as follows: Given
redundant discrete—time measurements of various navigation—aid and on-board flight
control and inertial sensor measurements on an aircraft, generate estimates for the
vehicle states required by the automatic guidance and control laws in the possible

presence of failures in these sensors. The desired FTS qualities dictated by our

2Ext:ept. of course, if a constant gain linear navigation filter could be designed with
satisfoctory estimation performance.
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application are the following:

o use inherent analytic redundancy arising from a knowledge of the aircraft
dynamics so that hardware redundancy requirements are reduced for a given
mission reliability

o fast detection of hard failures, and detection of mid-— and soft—level failures
before their effects on system performance become significant

o ability to handle different types of failures (i.e. hardover, null, increased
inaccuracy, ramp, etc.

o acceptable false alarm/detection probability performance in the presence of
colored measurement noises (since MLS sensor noises are time-correlated in
our application and induce an unacceptably high false alarm rate if they are
not compensated)

o distinguish between normal operating sensor errors, such as biases, and
sensor failures (this issue is especially critical since most analytic FTS
techniques model failures as bias jumps in sensor outputs)

o ability to recover from false alarms which occur during aircraft maneuvers
due to misalignment and scale factor errors in body—mounted instruments

o feasible computational complexity enabling future on—-board real—time
implementation with appropriate modifications.

With these goals in mind, the aircraft sensor fault detection design problem was
formulated in the context of simultaneous state estimation and failure detection in
nonlinear discrete time stochastic systems. Figure 1 displays the major components of

the resulting filter—detector structure. The major parts of this system are as follows:

o a nonlinear no-—fail filter which estimates aircraft states and sensor biases
assuming no sensor failures

o a bank of first—order detectors which estimate hypothesized sensor failure
levels using the residuals of the no-—fail filter as inputs

o likelihood ratio computers, driven by the detector outputs, which perform
the necessary computations for the multiple failure hypotheses

o a decision rule which selects the most likely failure mode based on the
likelihood ratios

11
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o a reconfiguration module which performs the various reinitialization
procedures after the detection of a failure

o a healing test module which monitors the failed sensors to check their
possible recovery.

The fault tolerant system is concerned with failures in the sensor configuration

consisting of:

o body mounted accelerometers (Ax,Ay,Az)

o body mounted rate gyros (P,Q,R)

o microwave landing system (MLS)

o indicated airspeed (IAS)

o IMU attitudes from a stabilized platform (4,8,%)

o radar altimeter (RA)

The three body mounted accelerometers and rate gyros above are flight control
quality sensors, each of which is aligned along one of the body frame axes. An
alternative sensor complement, containing a prototype dual-fail operational Redundant
Strapped—Down Inertial Measurement Unit (RSDIMU), is also considered. In this sensor
configuration, body mounted accelerometers and angular rate gyros are replaced by
the navigation quality acceleration and rate measurements from the RSDIMU while the

RSDIMU attitude outputs replace the IMU Euler angle measurements.

The navigation aid is a ground-based Microwave Landing System (MLS) which
transmits position information to aircraft within its volumetric coverage at discrete
time intervals. The MLS (see Figure 2) consists of a Distance Measuring Equipment

(DME) providing aircraft range information, an azimuth antenna co-located with the
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DME provides the aircraft’s angle relative to the runway, and an elevation antenna,
located near the glide path intercept point provides the aircraft with its clevation

angle relative to the local horizon.

The radar altimeter replaces the MLS elevation measurement when the aircraft is
over the runway during which the elevation measurements are normally invalid. In the

next six subsections, we will describe each major block of the fault tolerant system.
2.1.1 No-Fail Filter

The no-fail filter shown in Figure 1 is an extended Kalman Filter (EKF) [15]
which is designed on the assumption of no failures. Although we have used an EKF in
our study, any other nonlinear filter could have been used without significantly
affecting the failure detection algorithms. We have chosen a nonlinear filtering
formulation in order to have a flight path independent estimator. The EKF
development is based on a discrete—time difference equation for the aircraft point
mass equations of motion mechanized in a ground-based, flat earth Cartesian
coordinate system with its origin located on the runway (Figure 3). This nonlinear,
stochastic difference equation is obtained by transforming the specific force measured
by the body mounted accelerometers into the runway frame, and integrating this
expression along with the differential equations for the Euler angles over a fixed

sampling interval.
The no-—fail filter provides estimates for the aircraft states, X(k), which consist

of aircraft position, velocity, attitude, and horizontal winds, and estimates for the

"normal operating” biases, B(k), associated with a specified subset of the sensors.
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State estimates provided by the no—fail filter are used by an automated guidance and

control system to land the aircraft along a prescribed path [4]-[5].[16]-[17).

The no-—fail filter functions essentially as a navigator in this system, estimating
the state of the aircraft and the “normal operating” biases on selected sensors.
However, unlike most navigators, this one continuously filters the navigation aid, IAS,
and attitude measurements, so as to constantly correct the propagated state
estimates. In addition, since the no-fail filter is based on the nonlinear aircraft
equations of motion, it is independent of flight path and trim conditions and does not

require any gain scheduling.

According to the manner processed by the no-fail filter, the replicated sensor
set is divided into two groups: 1) no—fail filter input sensors, u(k), consisting of body
acceleration and angular rate measurements, 2) no-fail filter measurement sensors,
y(k), formed by the MLS, IAS, IMU, and RA outputs. The input sensor outputs are
integrated in the no-—fail filter, without any closed-loop filtering, after they are
compensated by the "normal—operating” bias estimates. Only one set of the replicated
input sensors, uk), and the average of the replicated measurement sensors, ¥k), are
used by the no-—fail filter after being processed in the 'selection logic” and "summer
logic” blocks. Replicated input measurements are kept as standby equipment. Thus,

the filter size is kept to a minimum without a loss of generality.
We haeve employed a new separated EKF algorithm for the implementation of the

no—fail filter [6]-[7]. The separated EKF algorithm provides a numerical decomposition

procedure for obtaining the EKF filter gains. At each sampling instant, this algorithm
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sequentially computes: 1) a bias—free gain; 2) a bias correction matrix; 3) a bias
gain; and 4) a correction to the bias—free gain. The separated EKF also improves
numerical accuracy since lower order matrices are used in the numerical
decomposition, and finite variance for the plant state initial conditions, and infinite

uncertainty in the a priori bias estimates are easily handled.

2.1.2 Detectors

Since the no-—fail filter computes the residuals for the averaged measurement
sensor outputs, y(k), the residual sequences for the individual measurement sensors,
y(k). need to be computed. This is accomplished in the "residuals computation” block
by using the no-—fail filter's estimate, y(k), for the measurement sensor outputs. The
output of this block is the output measurehent ;'esidual sequence, ro(k), which is the
difference between the measurement sensor outputs and their corresponding predicted
estimates provided by the no-fail filter. This residual sequence is the same one that

would have been generated by an EKF formulated to use the unaveraged measurements,

y(k).

When the measurement noises are zero mean, white, and Gaussian, then the
residual sequence, ro(k). of the no—fail filter —— in the absence of input or output
sensor failures —— is approximately (exactly, in the linear case) a zero mean, white

Gaussian sequence of random vectors. The no-—fail filter was designed by making the
above assumptions for the measurement noises. However, the MLS noise in our
application is time correlated, rather than white. This necessitated the post—filtering
of the MLS residuals to remove these correlations. This was accomplished by passing

each MLS residual sequence through a first order filter also located in the residuals
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computation" block. The measurement residuals are then used by the bank of

detectors.

The bank of detectors, which follow the residuals computation block, are a set of
first order filters, each estimating the level of an hypothesized sensor failure. In the
case of single sensor failures, the total number of detectors is equal to the sum of
the number of input sensors and the number of measurement (replicated ones
included) sensors. For instance, with dual sensor redundancy, there would be twenty
of these first order detectors: three for the body mounted accelerometers, three for
the body mounted rate gyros, six for the MLS range, azimuth and elevation

measurements, two for the IAS outputs, and six for the IMU measurements.

Using the no-—fail filter residuals as measurements, each detector estimates the
failure level associated with that sensor. Failures are modelled as bias jumps in the
measurement equations. Failure bias jumps are assumed to be zero mean random
variables with infinite covariance {(equivalently zero information). In the linear case,
bias type sensor failures manifest themselves in an additive fashion onto the no-—fail
filter residuals. For the nonlinear problem considered, similar relations have been

derived by making suitable approximations.

Each detector puts out a compensated residual sequence, fr,(k).,ry(k)....,ry(k)},
such that the effects of the hypothesized sensor failure are removed from the no-fail
filter residuals by processing the estimated sensor failure level. Detectors operate
over a “window” of the residuals, with the initial failure level estimates and

uncertainties reset at the beginning of each residual window. Each detector estimates
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the level of a bias jump in the associated sensor output which is hypothesized to
occur at the beginning of the corresponding window. The start of a new window
determines the hypothesized time of failure, and the maximum length of the window

determines the time to wait before initiating a new hypothesis.

Figure 4 shows the synchronization of these various residual. windows for a
typical run. In this run, the decision window length is 1 second. Estimation window
lengths for input and measurement sensors are 3 and 1 seconds, respectively. The
length of the healer window is 3 seconds. At 6.4 seconds, due to a sensor failure
detection decision, all of the residual windows are restarted. Estimation and healing
(discussed in 2.1.6) residual window lengths are constrained to be integer multiples of

the decision residual window length.

The choice of residual window lengths is based on the sensor type, the expected
failure level (hard, mid, soft), the specified probability of false alarm, and the desired
detection speed. Since the detectors keep track of how each hypothesized sensor
failure propagates through the no-fail filter dynamics to affect the no-fail filter
residuals, the sensor type definitely plays an important role in the determination of
residual window lengths. For instance, we have chosen the residual window length for
input sensors to be three times the length for measurement sensors in our
application. Finally, the residual windows should be large enough to produce a
tolerable probability of false alarm rate and small enough to permit rapid detection of

sensor failures.

In summary, the detector block consists of a bank of first order estimators
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driven by the expanded innovations of the no—fail filter. Each detector corresponds
to a different sensor failure hypothesis, and, corresponding to each detector, there is
an associated residual data window length. The bias jump magnitude for a given
sensor failure, hypothesized to happen at the start of the residual window, is
estimated by the detector corresponding to that sensor. The residuals of the
detectors along with the residual of the no-fail filter are used in the likelihood ratio

(LR) computations which are discussed in the next section.

2.1.3 Likelihood Ratio Computations

As seen in Figure 1, each compensated residual sequence, ri(k), is used in the
computation of the likelihood ratio, Ai(k)' for hypothesis H. corresponding to the i'th
sensor failure. Likelihood ratio computations are also based on a fixed window of the
residuals. The length of this residual window for the LR computations is the same for
every hypothesis. However, the leng.th of this decision residual window is, in general,
different from that of the detector estimation residual windows described in the
previous section. The likelihood ratio, for a particular hypothesis, H;, is proportional
to the a posteriori probability (conditioned on the residuals in the decision window)
that the compensated residuals model (used by the LR) corresponds to the "best”

hypothesis.

Each likelihood ratio is initialized with the a priori probability PHi, of that
hypothesis. A priori probabilities are determined from known sensor failure rates and
modified according to the expected estimation degradation due to modelling errors.
Each likelihood ratio is a function of a sum of residual quadratic forms weighted by

the residuals’ statistics. Likelihood ratios are used by the decision rule which is
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discussed next.
2.1.4 Decision Rule

The decision rule selects the most likely sensor failure based on an M-ary
hypothesis testing procedure. This test minimizes the Bayes risk which is a weighted
average of making incorrect decisions. These weightings are shown as the input
"costs” in Figure 1. If it is assumed that costs associated with making incorrect
decisions (selecting hypothesis H; when Hj is true) are all equal and those of making
correct decisions (selecting hypothesis H; when H; is true) are all zero, then the M-
ary decision rule is equivalent to choosing hypothesis H, corresponding to the largest
a posteriori probability. The decision logic provides the output of the M-ary
hypothesis test indicating whether the no-—fail filter is operating under no failures

(hypothesis H_), or under the i'th sensor bias jump failure (H;).
2.1.5 Reconfiguration Logic

Once a failure decision is reached, the necessary filter/detector changes are
made in the reconfiguration block. For input sensor failures, this process includes
removing the faulty sensor from the no-—fail filter inputs and replacing it with a
redundant one of the same type. If there are no more healthy sensors of that type
left in the stand—by queue, then the no-fail filter is restructured to reflect the loss
of that sensor type input, provided that the filter is capable of operating without it.
Similarly, if a measurement sensor fails, then the faulty sensor is removed from the
corresponding average and the appropriate changes in the no-—fail filter statistics are
made. Again, when no sensor of a given type remains, then the no-—fail filter

structure is collapsed to accommodate the loss of that type sensor measurement.
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The next function of the reconfiguration block is to reinitialize the no-fail filter,
detectors, and the likelihood ratio computers following the identification of a failure.
The reinitialization of the no-fail filter is necessary since undetected sensor failures
propagate through the no-fail filter dynamics to corrupt the state and bias estimates.
The reinitialization of the no-—fail filter is performed by increasing the estimation
error covariance by an amount reflecting the effect of uncertainty caused by the
identified failure. This incremental covariance is a function of the sensor type, the

sensor failure level estimate, and the elapsed time since the hypothesized failure onset

time.

For instance, if a body mounted normal accelerometer failure is detected, then
the incremental covariance would principally involve terms related to altitude and
normal velocity. The estimates of the no-fail filter are not reinitialized directly in
order to minimize transients. The state estimates gradually eliminate the effects of
the sensor failure due to the increased estimation error covariance. The initialization
of detectors and likelihood ratio computers after a sensor failure is identical to the

procedure for starting a new detector and estimation residual window.

2.1.8 Healing Tests

In order to recover from false alarms associated with modelling errors (e.g. scale
factor errors during significant maneuvers), tests for healing of a failed sensor are
performed after the detection and isolation of a failure. Input sensors are tested for
healing by comparing their outputs with a sensor of the same type currently used by
the no—fail filter. This test is a binary hypothesis test conditioned on the decision

rule outcome that the sensor used by the no-—fail filter is healthy. The recovery of a
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failed measurement sen.sor is tested by comparing its output with the estimate of that
sensor output provided by the no—fail filter. Again, this test is a binary hypothesis
test conditioned on the decision rule outcome that all sensors currently used by the
no—fail filter are healthy. Both input and measurement sensor tests are performed
only at the end of a healing test window, which is constrained to be an integer

multiple of the decision residual window length as shown in Figure 4.

2.2 No-Fail Filter

In this section, we will present the no-fail filter algorithm along with the
underlying aircraft dynamics which the filter design is based on. Our discussion
begins in subsection 2.2.1 with a derivation of the aircraft equations of motion and
the analytic relationships relating the no-—fail filter sensor outputs to the aircraft

dynamics. Subsection 2.2.2 contains the implemented filtering algorithm.
2.2.1 Aircraft Dynamics

The function of the no-fail filter is to provide estimates for the aircraft's
position, velocity and attitude with respect to a ground freme located on the runway.
As dictated by our application, the no-—fail filter also provides normal operating bias
estimates for a selected sensor subset and estimates for horizontal winds. Clearly, the
degree of analytic redundancy which can be exploited by the FTS is dependent on the
choice of underlying system dynamics for the no-fail filter design. In our study, we
have chosen the aircraft point mass equations of motion for the system dynamics and

a simple "signal plus bias—plus noise” model for the sensor measurements.

The following frames of reference (definitions can be found in [9]) will be used in
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our discussion:

1 frame: earth centered nonrotating (inertial) frame

E frame: earth fixed (rotating) frame

L frame: local level North, East, Down (N.E,D) frame located at A/C center of
gravity

B frame: body frame

G frame: a geographic frame located at the start of the airport runway

Our goal is first to describe aircraft motion with respect to the G—frame while
allowing for the earth’'s rotation and assuming a locally flat earth in the vicinity of
the terminal area. Secondly, we will relate the sensor measurements to these
equations of motion. The vector equation for the aircraft acceleration with respect to
the G-frame which is itself rotating with respect to the inertial frame is given by

[9]-[10]: (referring to Figure 3 for frame geometry)

Tg = ToITg fg + 8] — 2 Qgrg (2.2.1)
where capital subscripts denote coordinatization (i.e. rc in the r vector coordinatized
in the G-frame). TGL and TLB are the transformation matrices from the L-frame into
G-frame and from the B—frame into L—frame respectively. The vector fB is the true

specific force which would be measured by an ideal accelerometer in the body frame:

fg = Tg('rp ~ gp) (2.2.2)
where g; is the gravitational acceleration at the instrument location expressed in the

inertial frame, g, is the gravity field vector representing the acceleration from the
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combined effects of earth’s gravitational field and the centripetal acceleration defined
by

g, = 8 — T o0 r (2.2.3)
where p; is the position vector from the center of earth to A/C center of gravity
coordinatized in the G—frame. The rotation matrix QG is the skew symmetric form of
the angular rate vector wg defined by

wg = Tg; [wE0,07 (2.2.4)

where wE is the earth’s rotation rate (7.27 x 1070 rad/sec).

Modelling the accelerometer measurement inaccuracies by a "noise plus bias”

type model, we have for the accelerometer measurement output u,

u, = Tg('r; = g;) + by, + n, (2.2.5)
where bu is the accelerometer bias vector in the body frame and n, is the
accelerometer noise vector. Substituting the expression for the accelerometer

measurements (eq. (2.2.5)) into equation (2.2.1) for fg, we get

rg = Tg T gue + Tg8L — ROGrg — Teg(bgatng) (2.2.6)

Equation 2.2.6 above represents the equations of motion relating to the

accelerometer measurements. The transformation matrices are given in Appendix A.

The equations relating the rate gyro measurements to the Euler angles are

obtained from [10]:

e = T [ug = Ty Tie¥e) (2.2.7)
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where e is the vehicle Euler angles defind by e'=[¢8,%], wg is the true absolute vehicle
rates vector in the body frame which would be measured by an ideal rate gyro triad,
and 1"W is the nonorthogonal transformation matrix relating the body rates to the
Euler angle rates. Assuming a “bias plus noise” model for the rate gyros defined by

u=u+bw+n

w where b, is the rate gyro bias and n , is the associated noise

W

vector, we get the following kinematics relationship:

e = T [u, — Tggwg — b, + n,] (2.2.8)

We have used the following model for the horizontal winds

w= AW+ n, (2.2.9)
where w' = [wx,wy]' with w,_ and w, are the horizontal wind components, n, is a white
Gaussian process noise with covariance Q,. Defining the vehicle state x’ = [rér'"Ge’,w']

and combining eqs. 2.2.1-9 we obtain the following state space description of the A/C

point mass equations of motion.

x(t) = Ax(t) + B [u(t)-b ] + BSuS + E_n(t) (2.2.10)
where u' = [ué,u;)], b, = [b;’,b;d], n = [n;_’,n[d,n;ﬂ] and

_ - -

0 1 (o} OT (o} (o} (2.2.11)
Ac = 6] 0 [¢] (o] , Bc = TGB (o}

(o} 0 0 0 0 Tw

(o} o} (o} A (o} 0

L " L i
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Integrating this expression over a sampling interval of 7 seconds [11], the
following nonlinear discrete-time stochastic difference equation describing the aircraft
dynamics is obtained:

x(k+1)=Ax(k) + B(x(k))[u(k)—bu(k)] +ug + n(k) (2.2.12)
where the six dimensional vectors u and b, are composed of accelerometer and rate
gyro measurements, and their associated biases, respectively. The vector ug
represents the incremental effect of the earth’'s constant gravitational force on the

system state. The matrices A and B are defined by

. i "
I 1 o © 72/21GB ) (2.2.13)
A =l0o 1 0o o] .B(x(k) =| 1T 0
0o 0 1 o 0 1T,
0o 0 o tJ ) )
- L _

A, is the 2x2 system matrix associated with the wind dynamics. The 3x3 matrix
Tgg is the transformation from the body axes into the G frame [10], and T is the 3x3

matrix relating the body rates to the Euler angles [10] defined in appendix A.
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The variance, Q, of the white noise, n(k), is given by

[ 3 . 2 .
™/3T68%Tée T /2T¢e%"éB 0 0 (2.2.14)
B . .
Q= |"/5T68%Té8  "Tes%7GB 0 0
0 0 T, 0
T
0 0 0 f efwiq efwsds
o

where Qa and Q, are the measurement noise variances for the accelerometers and rate

gyros, and Qw is the process noise variance associated with the wind dynamics.

Note that the state transition matrix, A, is constant. However, both the process
noise variance, Q(k), and the system input matrix, B, are state dependent due to the
nonlinear state dependent transformation Tgyz and T, Now let us consider the
measurement equations for the system described by egs. (2.2.1)—(2.2.14). Let (xM.yM,zM)
and (xE,yE,zE) be the azimuth and elevation antenna locations in the runway frame,
and (rx,ry,rz) be the A/C position relative to the runway expressed in the runway

frame. Then, the MLS azimuth (y_,). elevation (y,,), and range (y,) measurements are

defined by:
=1
Y4, =sin [(-—ry+yM)/r°z] + by, + Vg, (2.2.15)
Vo =sin"[(-r,+2g)/r,] + by, + v, (2.2.16)
Yen = Taz ¥ Prn T Vi (2.2.17)
where (baz,bel,bm) and (qu,vel,vm) are biases and measurement noises associated with

the MLS and Foz» Tey &re the aircraft range from the azimuth and elevation antennas

30



given by:

Tz = \/(Tx—xM)z + (ry—yu)z + (I:lz_'zM)2 (2.2.18)
ry, = V(r,—xp? + (r,~ye)? + (r,—zg)? (2.2.19)

Assuming a zero angle of attack, the airspeed indicator output, ys'p, is a noisy

version of the aircraft velocity with respect to the atmosphere given by:

= . 2 M 2 .2

Yep = Vir —w. )< + (ry wy) + 1% 4 bgtvy, (2.2.20)
where (w!,wy) are the horizontal wind components and bsp and Vep 8re the IAS normal
operating bias and white measurement noise. If the angle of attack measurement is

available, then eq. (2.2.20) would be appropriately modified.

The IMU platform provides the Euler angle outputs. These roll (yd)), pitch (yg),

and yaw (y,) angle measurementis are modelled via
P

Yo = ¢ + by + vy (2.2.21)
¥ = 0 + by + vy (2.2.22)
Yy = ¥+ by + vy, (2.2.23)

where (b¢,be,b¢) and (v¢,ve,v¢) are the biases and white measurement noises associated
with platform outputs. Defining the measurement vector, y’=[y°z.ye|,yrn.ysp,y¢,ye,y¢],

the system dynamics output becomes

y(k+1) = h(x(k+1)) + by + v(k+1)" (2.2.24)
where by is the measurement sensor bias vector defined by
b; = [brn’baz’bel’bsp'bd)'be’blb] and v is the measurement noise vector defined by
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v, = [vrn,voz,v'el,vsp,v¢,ve,v¢]. The nonlinear measurement function h(x) is defined by
egs. (2.2.15)—(2.2.24). In the next section, the no—fail filter which estimates the state
variables and the normal operating biases of the stochastic nonlinear dynamic system

described above will be discussed.

2.2.2 No-Fail Filter

In this section, we will describe the operation of the no—fail filter in detail. The
no-—{fail filte‘r is an extended Kalman filter estimating the aircraft runway position and
velocity attitude and horizontal winds along with the normal operating biases of its
inputs and measurements. The estimator uses either RSDIMU body outputs, or a set of
body mounted accelerometer and rate gyro measurements as its inputs as discussed in
the overview section. In the case of replicated inputs, redundant accelerometer and

rate gyro sensors are kept as standby equipment.

MLS range, azimuth, and elevation sensors, and the IAS provide the measurements
into the filter. If desired, IMU platform outputs, or RSDIMU computed attitudes, can
also be included in the measurement set. For the case of hardware redundant
measurements, the no-—fail filter uses an average of the replicated sensor outputs as
its measurement. In this way, filter size is kept to a minimum, without loss of
generality. The no-fail filter also estimates the normal operating biases of any

specified subset of the sensor complement.
In the process of obtaining the EKF used in our study, we have extended the

separate bias estimation algorithms for linear systems to nonlinear systems via the

extended Kalman filter framework. As discussed in the overview section, our extension
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yields a numerical decomposition procedure for obtaining the extended Kalman filter
gains. We will not discuss the the details of this procedure since they were
adequately covered in the Interim Report [1] and associated papers [6]-[7]. Here, we
will present the computational structure of the EKF algorithm for the system dynamics

described by eqgs. (2.2.12)~(2.2.24).

The following assumptions are made in obtaining the EKF algorithm. The system
state and bias initial conditions are assumed to be zero mean Gaussian random
variables with variances PX(O) and Pb(O), respectively. In addition, it is assumed that
the measurement noise {v(k),k=1,2,...} is a zero mean, white Gaussian sequence with
constant variance R. Furthermore, the plant state and bias initial conditions,
measurement and process noise sequences are all assumed to be mutually

uncorrelated.

In [1], [6]-[7]. it is shown that the EKF equations for the nonlinear system
dynamics described by egs. (2.2.12)—(2.2.24) will be given by (dropping the functional

dependence of variables and forming a composite bias vector b as b=[b;J,b'y]’

X(k+1) AX(k) + B(X(k))u(k) + ug + K (k+1)r(k+1) (2.2.25)

B(k+1)

I}

B(k) + Ky (k+1)r(k+1) (2.2.26)

where the innovations sequence of the no-fail filter, r(k+1), is given by:
r(k+1) = #(k+1) - h(x(k+1/k)) — DbB(k) (2.2.27)
and the bias compensated input vector, u(k), is given by:

(k) = u(k) - ByB(k) (2.2.28)
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Note that Db(k) = By(k) and BbB(k) = Bu(k); therefore, these matrices are defined as

D=[01], B, = [10] if all input and output biases are estimated. The filter gain
partition, K , is defined by:

K (k+1) = K (k+1) + V(k+1)K (k+1) (2.2.29)
where K  is the "bias—free"” filter given, V is the bias correction matrix and K, is the
bias filter gain. K (k+1), V(k+1) and K (k+1) are computed sequentially using the

linearized quantities:

F(X(k),u(k)) = A + _9__ B(x(k))u(k) (2.2.30)
9% FORTO)
H(z(k+1/k)) = _g_h(X(kH)) (2.2.31)

X (k+1/k)

The expressions for the above partials are given in Appendix A of [1]. Recursive

equations for the "bias—free” gain K, bias correction matrix V, and the bias gain K,

are given in Chapter 2 of [1].

The state estimation error covariance Px(k+1/k), bias estimation error
covariance P (k+1/k), and cross covariance of state and bias P ,(k+1/k) together

define the prediction error covariance for the composite no-fail filter. They are

defined by [7].[13]:

P (k+1/k)=P (k+1/k) + U(k)P (k)U’'(k) (2.2.32)
P ,(k+1/k)=U(k)P, (k) (2.2.33)
P (k+1/k)=P,(k) (2.2.34)

with
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P, (k+1/k) P, (k+1/k) (2.2.35)
P(k+1/k) =

P (k+1/k) P (k)
and where Po(k+1/k) is the prediction error covariance associated with the bias—Iree

computations and V is the bias correction matrix. (See eq. 2.23 in {1]). The matrix

U(k) is defined as:

U(k) = F(R(X).8K)V(K) + BE(K)) (2.2.36)

Recursive equations for these matrices are given in [1]. The innovations

variance, R (k+1), can be expressed as:

R (k+1) = Efr(k+1)r'(k+1)}

[Hx(k+1/k)D] P(k+1/k) [H(X(k+1/k))D] + R (2.2.37)

In the next section, the operation of the detectors, which are driven by the

expanded innovations of the fail—free filter described above, will be discussed.

2.3 Detector Implementation

In this section, the blocks in Figure 1 labeled 'residual computation” and
“detectors” will be explained. In the residuals computation block, the residuals for
the individual sensors are first computed, and then, the MLS measurement residuals
are filtered to compensate for colored noise in these sensor outputs. The processed
measurement residuals then drive a bank of detectors, where each detector delivers a
failure corrected residual to the likelihood ratio computers. Each detector tracks the

occurrence and level of a hypothesized sensor failure and compensates the no-—fail
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filter residuals such that the effects of the hypothesized sensor failure are removed

from the residuals.
2.3.1 Expanded Residuals

As seen from Figure 1, the residual computation block receives as inputs, the
replicated measurement sensor signals and the no-—fail filter's estimates for the
averaged measurements. It gives as its output an expanded residual and inverse of
the innovations covariance for these expanded residuals. That is, this block generates
the residual sequence (and its associated covariance) which would have been

generated by the no-fail filter if it had used the unreplicated measurements.

In discussing these issues, it is convenient to define sensor type to be the
generic type of the sensor measurement of interest, such as MLS azimuth, or body P
gyro output, and sensor replication to be the particular replication of interest (i.e.,
second replication of MLS range). The replication will be noted by a superscript in

the text (i.e., y;z = first replication of MLS azimuth).

The residuals for each replicated measurement are formed as follows:

ri(k+1) = y'(k+1) - h(X(k+1/k)) - DB(k) (2.3.1)
where
v o= iy e Yias Yo T8 (2.3.2)

The expanded innovations for a dual redundant sensor set are then given by [note: in

[1] r, was referred to as r_]
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rl(k+1)
r(k+1) =

r2(k+1) (2.3.3)

The innovations variance, R(k+1) (called R(k+1) in [1]), of the expanded residuals

is found by straightforward substitutions to eq. (2.2.37) as:

R (k+1) R (k+1)-R

R(k+1) =
R (k+1)-R R (k+1) (2.3.4)

where R is the measurement noise covariance for each set of replicated measurements,
respectively. Equation (2.3.4) assumes that all measurement sensors are healthy. If,
however, the jth sensor has been removed from the EKF, then R(k+1) must be

collapsed by eliminating the jth row and column.
2.3.2 Treatment of Colored Noise

As discussed in the Interim Report {1], the failure detection performance of the
fault tolerant system with colored MLS measurement noises severely degraded due to
false alarms. This is to be expected, since any time correlation in the no-fail filter
residuals looks like a time-—varying bias failure to the detectors. Therefore, it is
essential to filter out the correlation in the residuals due to the colored MLS noise in
order to have a robust failure detection system. We have investigated the following

methods of treating colored measurement noise in our study:

I. Estimate MLS noise states in the no-fail filter

II. Use difference of MLS measurements

II1.Use suboptimal no—fail filter accounting for colored
noise

IV. Post process MLS residuals to remove colored noise
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1) Estimate MLS noise states in the no-—fail filter:

From Section 2.2 eq. (2.2.24) we have for the MLS measurements:

yi(k+1) = hi(x(k+1)) + bivi(k'H) i=1,2,3 (2.3.5)
where {y,, 1=1,2,3} are the MLS range, azimuth, and elevation measurements,
respectively. In the derivation of the detector—estimator algorithms, the noises vi(k),
were assumed to be white Gaussian sequences. However, these noises are, in fact,

time correlated and are generated [3] via:

v.(k+1) = ¢,v,(k) + n;(k) (2.3.6)
where ni(k) is a white Gaussian sequence. So the direct approach would be to
augment the system states with the MLS noise states, v,, and to estimate these
variables along with other states. The obvious advantage of this method is that the
resulting filter residuals would be white and the false alarms would be greatly
reduced. The disadvantage of this technique is that the numerical complexity of the
filtering algorithms would be increased due to the higher order covariance

computations involved. Since the execution time of the filter algorithm was already

high, we have decided not to implement this approach.

1) Use difference of measurements:

In this approach developed by Bryson and Henrikson [26], the filter equations

are driven by the difference of measurements defined by:
z;(k+1) = y (k+1) - ¢,y,(k) (2.3.7)

The noises associated with the derived measurements zi(k+1) are white. Although the
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filter dimension does not increase in this method, the filter algorithms become more
complicated due to the correlation between process and measurement noises
implemented. The extension of this differencing scheme to the EKF gets even more
complex due to the linearizations involved. For instance, the measurement partials
need to be computed both at the filtered state estimates and at the predicted state
estimate. We have implemented this scheme by making some simplifying assumptions
and found the detection capability of this technique to be unacceptable. This was
largely due to the fact that a bias jump of magnitude m in the measurement y; results

in a jump sequence defined by:
im,(1-¢;)m.(1-¢;)m,...} (2.3.8)
in the derived measurements z,(k). Therefore, the detectors had difficulty in

estimating the failure magnitude due to the initial spike of magnitude m.

IIl Use suboptimal filter accounting for colored noise:

In this approach suggested in [15], suboptimal filter gains are determined by
minimizing the filtering error covariance accounting for the colored noise. The
advantage of this approach is that the filter dimension does not increase. We have
derived the algorithms for this filter along the lines presented in [15] for colored
process noise. However, an analytic evaluation revealed that, although this suboptimal
filter could improve no-—fail filter estimation performance, it could not guarantee the

whiteness of the resulting innovations sequence.

IV) Post process residuals to remove colored noise:
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In this approach, the residuals {r;(k), i=1,2,3} corresponding to MLS range,

azimuth, and elevation, measurements are further processed through first order filters

given by
Gi(k'*'l) = ¢iVi(k)+gi[ri(k-i'l)—d)i;i(k)] (2.3.9)
where v(k) is the estimate of the MLS noise state. The processed innovations

ri(k+1)[r,(k+1) - d)iw'?i(k)] are then used to drive the bank of detectors.

The implementation of this scheme resulted in a substantial reduction in the
false alarms associated with colored MLS noises. The failure detection performance is
essentially the same as the white noise case for measurement sensors. However, the
addition of these first order filters degraded the detection capability for soft input
sensor failures. The insertion of these first—order filters naturally necessitate

changes in the variance of the innovations used by the detectors, and detector

observation matrices.

2.3.3 Detectors

Every detector is driven by the expanded residuals sequence of the no-—fail
filter. For each sensor type and replication, there is a specific detector which keeps
track of how a failure in that sensor occurring at the beginning of a decision window
propagates through the no-fail filter dynamics to affect the expanded residuals.
Based on this propagation effect, each detector estimates the level of the
corresponding sensor failure and outputs a failure compensated residual sequence

which is used by the likelihood ratio computers.
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A typical (say, i’'th) input sensor detector estimates a postulated bias jump in the
i'th input at the beginning of a decision window (denoted by time ko) so that the i'th
input sensor detector design is based on the following modification of the system
dynamics given by eq. (2.2.12):

x(k+1) = Ax(k) + B(x(k))[u(k) - bu] + B;(x(k))m;(k) + ug + n(k) (2.3.10)

m;(k+1)=m (k) with m;(k.)=m; and m, (k)= 0 for k<k, (2.3.11)
where B.(x(k)) is minus the i'th column of the input matrix B(x(k)) and m; is the failed
bias jump magnitude of the i'th sensor to be estimated. On the other hand, the
detector for the i'th measurement sensor failure is based on the following modification
of the measurement equation given by eq. (2.2.26):

yv(k+1)=h(x(k+1)) + by + Dim;(k) + v(k+1) (2.3.12)

m (k+1)=m (k) with m;(k ))=m; and m;(k)=0 for k<k (2.3.13)
where m; is the failed bias jump magnitude for the i'th output sensor and D; is a
column vector with unity entry at the i'th row and zeroes elsewhere. It is assumed

that the failed bias jump magnitudes are unknown nonrandom variables.

As mentioned previously, the detectors utilize the residual of the no-fail filter
as a measurement equation. In Appendix C of [1], it is shown that the residual of the

no-—fail filter, in the case of i'th failure hypothesis, can be expressed as:
r(k+1) = Ci(}?(k+1/k))mi + F(k+1) (2.3.14)

where T(k) is the innovations of the no-fail filter under the no-fail hypothesis.
Therefore, T(k) is approximately a zeroc mean white noise sequence with variance
R(k+1) defined by eq. (2.3.4). Referring back to eq. (2.3.14), F(k+1) would then be the

measurement noise in the i'th detector model and the measurement matrix
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Ci(i(k+ 1/k)) would be given by (see Appendix C in [1] for the derivation):

C.(R(k+1/k)) = [H(R(k+1/Kk)) D] [Fi(i(k),u(k)) Bb] V.(k)
0 I

+ [H(X(k+1/k) D] [Bi]+ D, (2.3.15)
0

In the case of linear systems the relations above, which show the additive effects
of bias jump failures on the no-—fail filter, are exact. In the nonlinear case, they are
obtained by expanding the system nonlinearities about the no-fail filter estimate
under the i'th hypothesis, deriving the linearized filtering error equations [7], and

following the procedure outlined in [1].

Note that the left most matrix product in C; above shows how the failure
propagates through the dynamics to affect the residuals; the middle product depicts
the direct effects of input failures, and the right most matrix illustrates the direct
effect of output failures. Furthermore, Bi(i(k)) is zero in the case of measurement
sensor failures and, D; is zero in the case of input sensor failures. The matrix

F,(%(k),u(k)) is defined by:

F.(x(k).4(k)) = F(X(k).0(k))

+ 9B, (x(k))m, (2.3.186)
ox X (k). (k)

Where F(%(k),d(k)) is given by eq. (2.2.30). (Note, for measurement sensor failures

F, = F since the failures do not enter through the input weighting matrix B.)
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The matrix Vi(k) is analogous to the bias correction matrix in the separated EKF
algorithm [7] and represents the propagation of a sensor failure, occurring at time ko
(recall k, is the start of the estimation residual window), through the no-fail filter

dynamics. It is computed using the following recursive relationship:

Vi(k+1) = A;V;(k) + B, (2.3.17)

where Vi(ko) = 0, and;

A =E |F.Gx)uk) B,
0 I
E, =1- [K] [HEX+1/k) D]
Kb
B, = [B] - [x] ((H&E&+1/x) 1] [B] + Db,
0 K, 0

The gains K, and K, are given by eqs.(2.2.29)—(2.2.31). Note that eq. (2.3.17) is
similar to the recursive relation for the bias correction matrix recursive relation in
the separated EKF algorithm. This is to be expected since Vi(k+1) represents the
effect of a sensor bias failure on the composite no-fail filter and V(k+1) in the
separated EKF represents the effect of a normal operating bias on the bias free
portion of the fail free filter. The postulated sensor failure’'s effect on both state and

normal operating bias estimates are thus computed.

Summarizing, the 1i'th detector design is based on the observation model
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described by eq. (2.3.14) and constant failure dynamics. The development up to this
point has assumed the value of m; is known. In reality, m; is nonrandom, but

unknown. Therefore, one must continuously estimate its value.

The i'th detector estimate, fni(k), of the i'th sensor failure jump, m;(k), can be
computed by the following first order linear Kalman filter for the case of measurement
sensor failures, and by a first order approximate nonlinear filter in the case of input

sensor failures:
m(k+1) = m;(k) + G, (k+1,x(k+1/k))[r(k+1)
- C;{k+1,%(k+1/k))m;(k)] (2.3.18)

where the detector estimate fni(k) is initialized at the start of a residual window with
m,(k )=0. The detector gain is computed by:
G.(k+1,%(k+1/k))=P,;(k+1/k+1)Ci{k+1,%(k+1/k))R™ (k+1) (2.3.19)
where Pi(k+1/k+1) is the error covariance of the i'th detector bias jump estimate.
The information matrix, Pi'1(k/k), of the i'th detector is propagated recursively

through:
P, " N(k+1/k+1) = P, ' (k/k)
+ Ci(k+1,%(k+1/k))R k+1)C,(k+1,%(k+1/k)) (2.3.20)
with
P, '(k,/k,)=0

That is, the failure bias jump at time ko is assumed to be a zero mean random variable

with infinite covariance (or equivalently, zero information). In the case of output
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sensor failures, the detector implementation described by egs. (2.3.18)—(2.3.20) above
is an exact linear Kalman filter for the hypothesized failure model specified by
eqs. (2.3.10)—(2.3.15). In the case of input sensor failures, the detector becomes an
approximate nonlinear filter due to the dependence of F, in eq. (2.3.16) on the failure

bias magnitude, m; where m;(k) is used in the evaluation of F(X(k).U(k)).

In summary, the detector block consists of a bank of first order estimators
driven by the expanded innovations of the no-—fail filter. Each detector corresponds
to a different sensor failure hypothesis, and, corresponding to each detector, there is
an associated residual data window length. The bias jump magnitude for a given
sensor failure, hypothesized to heppen at the start of the residual window, is
estimated by the detector corresponding to that sensor. The residuals of the
detectors along with the residual of the no-fail filter are used in the decision block.

In the next section, the decision rules used in FINDS will be discussed.

2.4 Decision Rule

As seen in Figure 1, the failure compensated residuals from each of the sensor
failure detectors along with the expanded innovations sequence of the no-—fail filter
are used in deciding the most likely failure mode. To arrive at this decision, M—ary

hypothesis testing, based on a decision residual window, is utilized.

Tests for isolated, singleton sensor failures will be examined in the next section.
Tests for multiple failures {(two failures occurring at the same instant of time) will be
discussed in the last section. Currently, tests for multiple failures are only performed

for MLS azimuth elevation, and range sensors in order to detect antenna failures.
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2.4.1 Tests for Single Sensor Failures

Tests for single sensor failures are derived through a multiple hypothesis testing

formulation. Given M sensor failure models, formulate the following M+1 hypotheses:

Hy ro(k) = T(k) k=kgky+1,.. kgt (2.4.1)

H;: r (k) = ¥k) + C,(R(k/k—1))m, i=1,2,...M

f
where ro(k) is the actual expanded innovation sequence of the no-—fail filter, F(k) is
the innovations sequence of the no-fail filter under no-fail conditions, and l4 is the
length of the decision residual data window on which the M-ary hypothesis test is
based. Recall from the previous section, that ¥(k) is a zero mean white noise
sequence with variance 'ﬁ(k) defined by eq. 2.3.4. The length of the decision residual
window is, in general, different from the estimation residual data windows described in
the previous section. An M-ary hypothesis test will be used to decide whether the
no—fail filter is operating under no failures (hypothesis Ho), or under the i'th sensor

bias jump failure (hypothesis H;).

The M—ary hypothesis test, described in detail in [18}, minimizes the Bayes risk
which is a weighted cost of making incorrect decisions. In the special case, when
costs associated with making wrong decisions are all equal and those of making
correct decision are zero (i.e., Cij=1 for i#j and C,,=0), then the optimal Bayesian
decision would be to choose H; corresponding to the smallest one of the M+l
likelihood ratios A; given by:

kd+ld
A, =1 % r. (k) EYk)r;(k) - InP, i = 0,1,..m (2.4.2)
2 kskd i
Stated differently, the decision rule is equivalent to choosing the hypothesis, H;,
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corresponding to the largest a posteriori probability conditioned on the residual

window Y(K).

The a priori probabilities, PHi, represent our prior knowledge about how often
particular sensors fail. In this study, the a priori probabilities will be based on
typical manufacturers specifications of mean time between failures (MTBF). The
following rule, which simply converts MTBF (in hours) to MTBF in 1/2 a decision

window, will be applied.

P, = 2*MTBF/(3600%1 %)
]
M
Py, = 1-C Py, (2.4.3)
j=1 ! h

2.4.2 Test for Simultaneous Multiple Failures

While the single sensor failure model described in the previous subsection, may
be able to handle multiple failures by viewing them as a sequence of single sensor
failures, it is not clear that the fault tolerant system can decipher simultaneous
multiple failures without any modifications. These types of failures are especially
important for the MLS measurements since an antenna failure would produce a
simultaneous multiple failure in the corresponding MLS measurements. In this
subsection, a number of possible additions to the fault tolerant system structure,
which have been analyzed for the testing of multiple simultaneous failures, will be

discussed.

Recall that the previously discussed fault tolerant system structure requires a

(first order) detector for each sensor utilized by the no-fail filter. Since the no-fail
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filter uses only one set of the redundant input sensors (accelerometers and rate
gyros), multiple failures for input sensors need not be considered. On the other hand,
because the no—fail filter uses both of the dual redundant measurement sensors, (MLS,
IAS, IMU measurements), multiple failures for output sensors must be taken into
account. Of course, any combination of (input or measurement) sensors would
constitute a valid simultaneous failure. Since the number of possible combinations are
exceedingly high, and since most probable simultaneous failures are due to MLS
antenna malfunctions, we have decided to incorporate multiple failure tests for MLS
azimuth, elevation and range sensors only. There are basically three approaches one
can take in dealing with simultaneous multiple failures within the context of the

existing fault tolerant system structure:

1. No Modifications
Il. Multiple Failure LR's

III. Multiple Failure Detectors and LR's

I. No Modifications

The thought behind this approach is that the FTS, designed for single failures,
might be robust enough to detect multiple failures sequentially. This would be a
desirable property, since arbitrary multiple failures could be handled without
additional computational burden. To investigate this avenue we have examined the
failure detection and isolation performance of the existing FTS under multiple MLS, IAS
and IMU failures. As one might expect, one problem with this approach is that the
posteriori probabilities tend to converge to equal values (such as 1/2 or 1/3) .

Generally speaking, the FTS worked quite well for cases when the a posteriori
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probabilities converged to values greater than 1/3. Multiple failures were correctly
detected in a sequential fashion (decisions were one sampling interval apart).
However, since other cases produced more unsatisfactory results, it was clear that

this approach was not adequate in general.

I1. Multiple Failure LR's

The next level of complexity would be to include new LR tests for simultaneous
multiple failures, without adding new detectors for these hypotheses. Recall from
eq.(2.3.14) that the LR tests for single failures assume the following failure signature

models for the no-fail filter residuals:

r(k+1) = C;(k+1)m; + F(k+1) 1=0,1,...M with m =0 (2.4.4)
where r, is the residual sequence of the no-fail filter, m; is the failure level for the
i'th sensor, C; is the "observation” vector which relates the i'th failure level onto the
no—fail filter residuals, and T(k+1) is the white noise sequence which would have been
obtained for the no—fail filter residuals if there were no failures present (Remember
that this failure signature model was derived by linearizing the error dynamics). Since
the error dynamics are linear, if there were two sensor failures (say i and j)

simultaneously present, then the following failure signature model would result:
ro(k+1) = Ci(k+1)m; + Cj(k+1)mj + F(k+1) (2.4.5)
where m; and m, are the failure levels for the i'th and j'th sensors, C; and Cj are the
measurement vectors for the two failure models (dependency has been dropped for
convenience). Combining the failure levels into a single vector, m the failure signature

model becomes:
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ro(k+1) = [C,(k+1) Cj(k+1)]ﬁ1+ F(k+1) (2.4.6)

This model is exact for measurement sensors and approximate for input sensors due to
the dependence of C; and Cj on m; and m; res_pectively. That is, when the i'th and
j'th sensor failures are considered simultaneously, the linearizations for the input
matrices can be slightly different than the case in which the failures are considered
separately. For the evaluation of the LR's, we need their estimates ﬁi and ﬁj. One
approximation is to use ﬁi and Ej from the single sensor failure detectors. Clearly,
by considering the i'th and j'th sensor simultaneously, estimates for m, and mj may be
improved by using a second order detector. Using the estimates from the single

sensor failure detectors, we obtain the following residual, corrected for the

simultaneous i'th and j'th failure:

ri (k1) = r(k+1) - C(k+1) (k) - C;(k+1) (k) (2.4.7)
So that LR’s for the dual sensor failures can be computed by:

k +1

d 'd
~1
Aij(r(K)) = % z r’ij(k)R (k)rij(k)_lnPHi. (2.4.8)
=kg J
i=1,....M
j=1,...M

where P, is the a priori probability of the i and j sensors failing simultaneously.
ij

Computational requirements for this procedure are relatively modest. Since new LR's

introduce only recursive scalar quantities, the additional computations are not

excessive. Caution should be exercised in selecting the a priori multiple failure

probabilities because false alarms associated with these failure models could have
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serious effects on the system performance. In this study the following rule (which

assumes independence between failures) is used:

Py =P, " P, (2.4.9)

In addition, to reflect the type of multiple failure expected, we have chosen the

following form for T defined in eq. (2.4.6):

Tn=[(mi+mj)/2 ) (mi+mj)/2] (2.4.10)

III. New Detectors and LR Tests

In this approach, the same procedure is followed as described in the previous
section, except, new second order detectors are implemented wusing the failure

signature models, eq. (2.4.6), for multiple failures.

These detectors will estimate m; and m,, simultaneously. Note that they will be
second order for the dual failure case considered here. While this procedure is
optimal for multiple failures, we believe that the computational benefit to be gained is

far outweighed by the increased computational requirements.
In conclusion, after examining the three approaches outlined above, we've

adopted approach II, modification of the LR’s, as a reasonable method of handling

multiple failure conditions.
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2.5 Healing Tests

An important aspect of the developed fault tolerant system is its ability to
monitor sensors which it has isolated as ‘“failed”, and to determine if they have

recovered.

A healing test can be useful for a number of practical reasons. For example, if
the sensor only fails intermittently, or if unmodeled (normal operating) characteristics
of the sensor manifest themselves as moderate errors for short periods of time, it
would be useful to heal the sensor after the sensor recovers or the transient has
passed. Another practical utility of these tests occurs when the FTS incorrectly

detects a sensor as failed (false alarm).

There are, of course, pros and cons to using healing tests at all. It can be
argued that if, for example, a sensor fails with an increased scale factor error then it
is only detectable during transient maneuvers and will appear "healthy” otherwise. In
this case, the sensor may be correctly detected as "failed”, only to be "healed” once
the transient has passed. Admittedly, these sorts of problems do exist; however, since
in this study, we have adopted simple models for the normal operational sensors,
healing tests are a sensible alternative to increased redundancy or modelling
complexity. Moreover, the FTS maintains a log of all FDI activity, such that a sensor

with a history of chronic problems can be identified and dealt with.

In our FTS environment, sensors used by the no-—fail filter as inputs are treated

differently than those used as measurements, when testing for healing. The essential
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difference is that failed input sensors (body mounted accelerometers and rate gyros)
are compared to "healthy” sensors of the same type (with the constraint that these
healthy sensors are also being used by the no—fail filter), whereas failed measurement
sensors can be compared to estimates provided by the no-fail filter. The implications
of this difference, along with the specifics of the employed healing tests, will be

discussed in the ensuing subsections.
2.5.1 Test for Input Sensor Recovery

A likelihood ratio (LR) test will be used to determine whether or not an input
sensor, which has failed and been taken out of the no-fail filter, has recovered. The
basic idea is to compare the output of a failed sensor with another, like sensor, which
we assume is healthy. The comparison is carried out as the difference between the
two signals, over a fixed length healing test window of length 1. Likelihood Ratios are
computed based on this comparison, along with information about expected normal
operating bias levels and expected failure levels. Discrete decisions are made at the
end of a complete healing test window. In other words, if the FTS decides that a
sensor has failed before the end of a healing window, no healing decision will be made.
An important constraint imposed by our FTS is that the "healthy” sensor be currently
used by the no-fail filter. This is done because only those sensors used by the filter
are monitored for failures. As a result, standby sensors (not used by the filter), could

have failed already.
Here we will consider the healing test for an arbitrary input sensor. Initially, all

input sensors are assumed to be working. Therefore, there will not be any tests for

healing until an input sensor actually fails. To describe the healing mechanism, we
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begin by making the following assumptions about the characteristics of a working and

a failed sensor:
o "healthy” sensor model:

u;(k) = ul®) + b, + v,(k) (2.5.1)
o '"failed” sensor model
u;(k) = ul(k) + b; + v,(X) + m, (2.5.2)

where u?(k) is the "true” or ideal sensor signal, and b; and v;(k) are the normal
operating bias and white gaussian measurement noise associated with the i—th input
sensor ui(k) respectively. The term m, represents & bias failure of magnitude m,.
Suppose an input sensor u,, fails and is replaced by a second (standby) input sensor
of the same type, u,. These two signals can be compared by computing the following
difference signal over a healing test window that is synchronized to the start of a
decision window (see Figure 4).

u(k) = [uz(k)—u1(k)] k=ky+1,... k,+1, (2.5.3)
At the end of a healing test window initiated for that input sensor, we test for the
healing of the failed input sensor, u1(k), provided no failures were announced by the
fault tolerant system. Note that testing is not performed at every sample, but rather
only at the end of each healer window. Defining the following two hypotheses, and

incorporating the appropriate sensor/failure models into eq. (2.5.3), we obtain:

H (u, healthy) H,(u, not healthy)
u(k) = b, — b+ vz(k)—v1(k) u(k) = bz—b1—m1+v2(k)—-v1(k)
= Ab + Av(k) = Am + Av(k)

where Ab = b,- b,, and Av(k) = vy(k)- v,(k). If the variance of the two
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measurements are equal (say oﬁ), then v(k) would be a zero mean white Gaussian

sequence with variance 203.

Based on the expected value of the normal operating biases, we can put the

following constraints on Ab and Am:

~B,< Ab <8,

Am < -f, or Am > 1,
where B, and f are expected levels for the normeal operating bias and failure level for

input sensor type u, respectively. We can now apply the likelihood ratio for this

composite hypothesis testing problem to get the following decision rule [18]:

kd+lh H1
PN [Au(k) - B, )% - [Au(k)- @,]? Ez(zoﬁ)lm
k=1 -]

where3 b, and m, are the maximum likelihood (ML) estimates under each hypothesis
given by:

B = AT if —B,<AT < B,

B,= B, if AT > B,

Bo= B, if du< -B

Yy

3The mathematical symbol Z is defined as follows, given: a b, hypothesis H1 is

IANIT

considered true if a > b; and hypothesis Ho is true if a < b.
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k +Ih

An=L1¢% Au(k)

h k=kd+l

m, = Au if A®>f or Ad < - f,

m=1f if 0 <Au <f,
m= —f if -fu<A1‘1 <0
1
For instance, the choice for the threshold v = 5 would imply that the a priori

probability of a failed sensor not healing is 0.95 [18].

In summary, the input sensor healing test is done in batches. The test is only
performed while the FTS considers a sensor ‘failed”. At the end of each complete
healer window, a likelihood ratio test is performed to ascertain whether the faulty
instrument has recovered or not. If a decision indicating that the faulty sensor has
recovered is made, the only action is to change the status flag of that input sensor to

standby status.
2.5.2 Test for Measurement Sensor Recovery

The recovery of a failed measurement sensor can be detected, as in the case of
input sensors, by comparing the output of the failed sensor with that of a sensor of
the same type which is currently used by the no-fail filter. However, another
possibility is to compare the failed sensor with an estimate of its output provided by
the no-fail filter. (Note that this procedure is not possible for input sensors). The
latter approach has been adopted in this study since it has the advantage of

applicability even when a given sensor type is not utilized by the no-—fail filter. That
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is, all sensors of a given type have failed and been taken out.

Let's consider the healing test for an arbitrary measurement sensor. Suppose
the first replication of a particular measurement type, call it Z1, has failed and been
removed from the no-fail filter. Assuming dual redundancy, only the second
measurement, Z,, remains in the no-fail measurements. To mimic the input healing

test the following residual over the healing test window is computed:

AZ(K) = Z,(k) ~ Z(k/k-1)
AZ(k) = Z,(k) - h(R(k/k-1))~B(k),
k=kd+1'kd+2"“'kd+lh (R.5.4)

Here it is assumed that the normal operating biases for the two measurements are
similar. Where h(X(k/k—1)) above is the estimate of Z(k) provided by the no—fail EKF,
and b(k) is the no-fail filter bias estimate. We then have the two hypotheses (after

substituting eq. (2.2.24)):

H (Z, healthy) H,(Z, not healthy)
AZ = h(x(k)) - h(X(k/k-1)) AZ = m,+ ¥(k)
+ b - b, = ¥k) where m,>f, or my < - f,

Under hypothesis H,, ¥(k) would be a white Gaussian sequence with zero mean
2
and variance, az, given by the appropriate diagonal entry of the residual variance

matrix of the no-—fail filter.

The LR test can now be applied in a manner similar to the input healing test.
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The ML estimate for m, would be given by:

_ kgl _ _
f, = AZ =1 7(k), if AZ< ~ f, or AZ > 1,
1, k=k -
h d+1
m, = +, if 0 < AZ< 1,
B = -, if —f,< AZ<0

So that the composite hypothesis test for this problem becomes:

kat!n - -~ Hy 2
P 7% - [AZ-@,]% 2 20 In~y
k=k g1 Hy Z

If a measurement sensor bias is not estimated, under Ho, there will be a normal
operating bias mean in the residuals. In this case, under H_, residuals can be

computed as:

AZ(k) = b+ ¥(k), where —B, < b < By

where,
b, = Z if —B,<AZ<B,
B°= B4, if AZ > B,
B,= -8, if AZ < B,

This results in the following composite hypothesis test:

Katip 2 12, Hy _ 2
% ${2(k)-B_]° - [2(k)-Mm ]} 2 Ro_lny
K=Kd+1 H Z

(o]

In summary, when an output sensor fails and is removed from the no-fail filter

measurement set, its output is compared with an estimate provided by the no-—fail
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filter. The LR computation generates a maximum likelihood estimate for the normal
operating bias and failure level. The composite hypothesis test is done at the end of
every complete healing test window. If the test indicates that the sensor has

recovered, the measurement is incorporated back into the no-fail filter measurement

set.

2.8 Reinitialization Procedure

Fault tolerant systems in which analytic failure detection and isolation (FDI)
techniques are used on-line to identify system failures usually require some level of
compensation in order to remove the accumulated effects of the detected failure on
the system. In the developed FTS, sensor failures (especially input failures, and soft
measurement failures) have to propagate through the no-fail filter dynamics (until a
significant residual signature is generated) in order to be detected. Therefore, the
no—fail filter must be reinitialized in order to remove the accumulated effects of the
detected failure on the filter. In addition, the no-—fail filter must be restructured
after the isolation of a failure to account for the loss of a sensor input or

measurement.

There are -a number of ways in which reinitialization can be accomplished within
our framework (see [29]). For instance, the measurements can be reprocessed if the
failure onset time can be estimated accurately. In our problem, however,the exact

failure time is not estimated since a fixed length window of measurements are used.*

4The procedure for finding the exact failure times is described in [13] and invoives using
a set of moving windows corresponding to different failure detection times.
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A second problem with this strategy is the additional requirement of saving the past
measurements for the moving windows. Finally, re~running of the no—fail filter with a

previous set of measurements, generally, cannot be done in real time.

Another method involves resetting the no-fail filter state estimate and
covariance using the same procedure followed in setting the initial levels for these
variables. The drawback of this procedure is its neglect of the information embedded

in the failure decision logic and associated failure level estimates.

If the failure level estimates provided by the detectors can be trusted, then the
no—fail filter state estimate can be corrected by adding an appropriate increment due
to the detected failure as suggested in [27]). The no-fail filter covariance is also
incremented in this procedure by using the covariance associated with the failure
level estimate. Although the failure level estimates provided by the detectors usually
provide a reliable failure direction, the magnitude of the failure level estimates are
not usually very accurate due to the uncertainty associated with failure onset time
and detector settling time. Moreover, in some applications, it is not desirable to have
step changes in the plant state estimates due to the transients produced, in devices

which use these estimates as inputs.

The_se drawbacks associated with the reinitialization procedures above can be
minimized by resetting only the covariance of the no-—fail filter. In this method, the
appropriate increment of the no-fail filter covariance is found by computing the
conditional covariance of the no-fail filter state estimate conditioned on the

observation sequence under the detected failure mode.
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Finally, the last possibility is the weighting of the no-fail filter state and
detector failure level estimates by the a posteriori probabilities. In this technique,
instead of the hard switching produced by a decision rule, the a posteriori

probabilities provide a soft switching between the failure modes.

The reinitialization methods discussed above can be grouped into the following

categories:

o Reprocess Measurements
o Reinitialize (Estimate and) Covariance
o Reset Estimate and Increment Covariance
o Conditional Covariance
o0 A Posteriori Probability Weighting
In our study, we have compared only the second, third and fourth approaches which

are described next.

I) Reinitialize (Estimate and) Covariance: In this approach, the no-fail filter

covariance parameters are set to the values used as initial conditions. The state
estimate is be reinitialized by following the procedure employed in selecting the plant
state estimate initial conditions. Naturally, this approach generates transients
associated with the settling of the filter gains similar to that encountered in the

initial stage of the problem.

1I) Reset Estimate and Increment Covariance: In the case of an i’'th failure mode

decision, the no—fail filter state estimate would be reset to [24]}
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%;(k) = E[x(k)/Y(k).H;] = X(k) + V (k)i (k) (2.6.1)

where X(k) is the state estimate from the no-—fail filter (eq. (2.2.25)), V.(k) is the
failure correction matrix for the i'th failure mode (eq. (2.3.17)), and m;(k) is the i'th
failure state estimate (eq. (2.3.18)) provided by the i'th detector. When the state

estimate is reset according to the procedure above, then the corresponding prediction

error covariance is given by:

E[%,(k+1/k)%;(k+1/k)/H;]} = P(k+1/k) + U, (k)P,;(k)U;(k) (2.6.2)
where X,(k+1/k) is the single stage prediction error associated with the estimate,
¥,(k), given by

%, (k+1/k) = x(k+1) - X (k+1/k) (2.6.3)
or, rearranging eq. (2.6.3)

%.(k+1/k) = A[Z(K) + V, (R, ()] + B, (k) (2.6.4)

AZ(k) + [AV,(K) + B;]@, (k)

X(k+1/k) + U (k)m, (k)

where U,(k)=AV,(k)+B,;, P_(k+1/k) is the prediction error covariance of the no-fail
filter, and P,(k) is the prediction error covariance of the i'th detector. Therefore, the
prediction error covariance of the no-fail filter can be incremented by the second

term on the right hand side of eq. (2.6.2) above if the state estimate is reset

according to eq. (2.6.4).

The state estimate above is the optimal (least mean square sense) estimate

conditioned on the i'th failure mode provided that the failure onset time and the
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failure state initial statistics correspond to those of the actual failure. However, in
practical applications such as ours, the failure onset time cannot be accurately
estimated due to the necessity of using a bounded set of detectors as opposed to a
growing number required by a fully optimal decision rule. Moreover, sudden changes
in the state estimates would not be desirable due to their effects on the automated

landing and control laws.

III) Conditional Covariance: To reduce the transient effects produced by the

previous method, the no-fail filter can be reinitialized by incrementing only the error
covariance by an appropriate amount following the isolation of a failure. In this
manner, the state estimation error in ."2 no-fail filter can be compensated gradually.

In this procedure, the appropriate covariance to be used is the conditional covariance

of the no-—fail filter conditioned on the given observations under the decided failure

mode. In other words, we need to compute E[X(k+1/k)X(k+1/k)/Y(k),H;] where
%(k+1/k) is the prediction error of the no-—fail filter defined by
R(k+1/k)=x(k+1)-x(k+1/k). Since the single stage prediction of the no—fail filter can

be expressed by (adding and subtracting the term V,(k)m;(k) to the R.H.S.)

X (k+1/k) = x(k+1)-[X(k+1/k) + U,()m;(k)] + U (k)m,(k)
= x(k+1) - %,(k+1/k) + U, (0, (k) (2.6.5)
= %,(k+1/k) + U, (k) (k)
we have
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%, (k+1/K)%, (k+1/k) = ¥,(k+1/K)%; (k+1/k)

+ [%(k+ 1/10/ (U} (k) + U, ()R, (K)X(k+1)]

+ U, (k)R (k) (k) U (k) (2.6.6)
Taking the conditional expectation, given the observation sequence Y(k) and the

hypothesis H;, of both sides above, we get
E['}‘co(k+1/k)'5'c;>(k+1/k)/Y(k),Hi]

= E{[%, (k+1/K)%, (k+1/K)/Y(k).H,] + U, (k)& (k) (k)U; (k)} (2.6.7)

The middle term in eq. (2.6.6) vanishes because E[X;(k+1/k)/Y(k),H;]= O and the
last term can be taken out of the conditional expectation sign. From the properties
of the conditional expectation for Gaussian random variables (Proposition 3 on p. 246
in [28]), the Y(k) dependence of the first term on the right hand side of eq.

(2.6.7) can be taken out so that using eq. (2.6.2) we get
E[%, (k+1/K)%,(k+1/k)/Y(k)H,] = P (k+1/k) + U, (k)P,(k)U;(k)

+ U; (k)m,; (k)m; (k) U, (k) (2.6.8)
Therefore,. the no—fail filter covariance can be incremented by the last two terms in
the equation above. The last term represents the uncertainty due to the accumulated
error in the no-—fail filter arising from the failure. The preceding term signifies the
uncertainty associated with the estimation of the failure state. In this method, the
accumulated effects of the failure on the no-fail filter state estimate are not taken
out; however, the additional uncertainty added to the no-fail filter covariance reflects

the error accumulation due to the detected failure mode.
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Eaéh of the three approaches outlined above can, in principle, provide an
estimate for the rei'nitialization "direction” and magnitude after the detection and
isolation of a failure. The failure directions (provided by the estimate and/or
covariance increment) can be used to selectively reinitialize those parts of the no—fail
filter affected by the failure. The magnitude of the reset can be scaled to reflect any
inherent uncertainty about it. In this way, a slightly stiffer reset can be generated,
as a conservative measure. Qur fault tolerant system uses Method III, (conditional

covariance) for resetting the no-fail filter.

2.7 Failure Signature —— An Example

In this section an example problem will be analyzed in an attempt to better
understand the failure signature information seen by the detectors. In the context of
this example, the failure signature of bias, ramp and null failures on no-—fail filter
residuals will be discussed. Moreover, the inherent difference in detectability between
the input and measurement sensors and the distinguishability of various sensor

failures will be apparent by analyzing this simple example.

The example chosen is a special case of our problem involving scalar position, X,
velocity v, and acceleration variables without nonlinear coordinate transformations.

Within this framework, consider the second—order system

x(k+1)

x(k) + tv(k)

v(k+1)

v(k) + 7a (k) + ng(k) (2.7.1)

where 7 is the sampling interval and the sensor measurements Xy Vn and a, are

m

defined by
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x (k+1) = x(k+1) + n, (k+1) (2.7.2)
vo(k+1) = v(k+1) + n(k+1)
am(k+1) = a(k+1) + no(k+1)

The measurement noises n_n,, and n, are white Gaussian sequences with known
statistics. For ease of presentation, assume that the no-fail filter is implemented with

constant gains by:

r.(k+1) + k_.r (k+1) (2.7.3)

(k+1) = X(k) + (k) + k1 «wCv

r(k+1) + k r (k+1)

¥y X YV Vv

V(k+1)

v(k) +va (k) + k
where kxx’kxv'kvx and k,, are the no-—fail filter gains and the measurement residual

sequences r, and r, are defined by:
r (k+1) = x (k+1) - [X(k) + (k)] (2.7.4)

r(k+1) =v (k+1) - [¥(x) + Tam(}c)]

We will now analyze the failure signature induced by a bias failure jump in each
of these three sensors. Using the expression for the failure correction matrix, eq.
(2.3.17) we get the following recursive relation for V_ (i.e., the failure correction

matrix for the position sensor failure)

1-k T(l_kxx) - kg,

-k -tk + 1-k (2.7.5)

Using the expression above and the one for the failure measurement matrix, eq.

(2.3.15) we get the following failure signature mean for two samples in the position and

66



velocity' measurement residuals for a bias jump m  at time k:

Elr (k)] = m_ ; E[r, (k)] =0 (2.7.6)

X

(1-k, - k, Jm  Efr(k +1)] = k, m

E[rx(ko)] XX VX) x

X

As seen above, a position sensor bias failure induces a jump in position
measurement (with a level equal to the failure magnitude) and one sample later
induces a jump in the velocity sensor with a level scaled by the no-fail filter gain k.
Based on this observation, several simple tests for position sensor failures can be
posed. For instance, we can evaluate, on—line, the statistic

Wk +1) = (r (k) + r (k,+1)/k })/2 (.7.7)
to estimate the position sensor failure level m

E[v(k,+1)] = m
These types of open—loop generated statistics would be susceptible to accumulated
errors. The detectors described in the previous section use the failure signature
information above in an optimel closed—loop manner (accounting for noise statistics
and dynamics) to estimate the failure levels. Similarly, for a bias jump failure in the
velocity sensor v, with magnitude m , at time k_, we have the following signature on
the residuals:

E[rx(ko)] =0 ; E[rv(ko)] = m, (2.7.8)

E[r (k,+1)] = -(1+7)k,  m, ; Efr (k,+1)] = (1-k, )m,

On the other hand, e bias jump failure in the accelerometer sensor a, with magnitude

m, at time k induces the following signature mean time history on the measurement
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residuals:

E[r (k)] =0 ; Elr(k)l=0 (2.7.9)
E[r (k,+1)] = 0 ; E[r(k ,+1)]=-m,

Elr (k,+2)] = (k,, +(k,,~1))m,

Elr,(k +1)] = (k,,—27)m,

Comparison of the input sensor (accelerometer) failure signature above with that
measurement of sensors (position and velocity) shows the inherent delay in failure
signature generation for input sensors. This is because an input sensor failure must
propagate through the no-fail filter dynamics in order to generate failure signature
on the measurement residuals. We also note the similarity of the signatures generated
by accelerometer and velocity sensor failures. For instance, an accelerometer bias
failure with level m, looks like a velocity sensor failure with failure level - m,.
Moreover, if we had the unfortunate choice for no—fail filter gains such that the
relations

-(1+7)k  (-™m ) = (kxv'r+(kvv—1)1'2)m°

(1—kw)(—Tmc) = (kw—2'r)m° (2.7.10)
were approximately satisfied (choosing k , = 7/(1-7) and k, =k, ,—1 would exactly
satisfy them), then it would be impossible to distinguish between the velocity and
accelerometer failures by looking at this failure signature time history. This simple
example clearly shows how the choice of no-fail filter gains affect the
distinguishability of various sensor failures. In this case, the next sample of the

failure signatures involving terms including the gains k _ and k,, would provide the
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necessarjr distinguishability information.

We also note that the residual signatures will eventually converge to finite
steady~state values since the recursive relation for the failure correction matrix

given by eq. (2.7.5) is governed by the stable closed—loop filter transition matrix.

Although we have modelled sensor failures as bias jumps, other types of failures
also manifest themselves approximately as time varying biases. For instance, consider
a ramp failure in position sensor, at time k2 with level s (k;éko). In this case, the
induced failure signature would be given by (using the expression for the time—varying

failure levels in [15]):
E[r (k)] =0 . E[r(k)] =0 {2.7.11)
E[r (k,+1)] = s,7 ; E[r(k,+1)] =0

x

E[r (k,+2)] = (R-k ,~7k J)s, E[rv(k°+2)] =k, S,T

X X
A hardover failure in position sensor at time k  with a level of h will approximately

result in the following failure signature:
E[rx(ko)] = hx—}—c(ko) ; E[rv(ko)] =0 (2.7.12)
E[r (k,+1)]=(1-k,  ~7k, Jh —F(k ) : E[r (k)] = k  (h ~%k))

where X(k ) = E[x(k )] and assuming X(k,) = X(k +1). These relations follow since a
position sensor failure with level h  at time k  is approximately equivalent to a bias

failure with level h -X(k,).

Similarly, a null failure in the velocity sensor at time k  will approximately result
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in the following failure signature mean time history:

E[r (k)] =0 . E[r/(k)] = -%k,) (2.7.13)
E[r (k,+1)] = (1+7)k Hk,) : E[r (k +1)] = (1-k )¥k,)

where it is assumed that ¥(k ) = V(k°+1). These relations follow since a null failure in
the velocity sensor at time ko is approximately equivalent to a bias failure with level

~%(k,).
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3. FTS PERFORMANCE EVALUATION

In this chapter estimation and failure detection performance of the developed
integrated avionics sensor fault tolerant system will be discussed. The discussions will
be centered around specific simulation runs, which point out characteristic traits of
the FTS, rather than ensemble statistics (although the simulation was carried out in a
Monte Carlo fashion). The computer program used for these simulations is called
FINDS and is documented in [2]. Current performance of the FTS will be empirically

examined in this chapter with regard to:

o Reliability of no—fail filter state estimates, i.e. "fault tolerance”
o Speed of detection and isolation.

o Failure distinguishability between dynamically related sensors.
o Robustness of the method for detection of non—bias failures.

o Use of navigation quality RSDIMU in lieu of flight qgquality body mounted
accelerometers, rate gyros, and platform IMU.

The organization of the chapter is as follows: Section 3.1 outlines the format and
goals of the simulation study. Its two subsections help the reader understand the
later results by detailing the simulation parameters used, and the performance
measures which will be employed, respectively. Typical FTS performance when failures
are not simulated can be found in Section 3.2 along with a description of the nominal
FTS parameters used in the study. The next section, 3.3, discusses performance under
singleton and simultaneous multiple bias failures. Bias failure performance is reported
in this section for both a "standard” (flight control quality) sensor configuration, and
an RSDIMU configuration (navigation & flight control quality sensors). Section 3.4

shows how well the FTS works with non—bias type failures. Finally, the chapter closes
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with Section 3.5 which summarizes the results of the chapter and gives an overall

evaluation of the current system.

3.1 FTS Evaluation—Overview

A simulation study was performed to empirically determine the capabilities of the
analytically derived fault tolerant system, developed in Chapter 2. The study had
several goals — some of which were mentioned in the previous section. Here we would
like to review the ground rules for this study, discuss the simulation and filter

parameters used, and the performance measures to be employed.

The simulation environment used to test the developed FTS is provided by NASA's
six degree of freedom nonlinear digital simulation of the TSRV research aircraft. The
original program (supplied by NASA-LRC) was suitably modified to include realistic

sensor and failure models (see [2]). Our simulation study uses this program in the

terminal area — under MLS coverage only. Moreover, the fault tolerant estimates
generated by the no-fail filter are used by a fully automatic landing system - in a
closed loop fashion - to land the aircraft along a prescribed path. Therefore, our

simulation study is concerned with detecting and isclating failures in sensors and
providing fault tolerant aircraft state estimates to the automatic landing system in the

terminal area. It is assumed that the reader is familiar with this problem (from

reading [1], [2], [4]. [5], or {8]).

The simulation study was performed by:

o implementing the system described in Chapter 2 - making little or no
simplifying assumptions.
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o using an update rate for all portions of the FTS of 20 Hz (i.e. a sample time
of 0.05 seconds).

o simulating the normal operating characteristics of the sensors (i.e., bias,
noise, scale factor, misalignment, etc.) — while using a simple bias plus noise
model in designing the FTS.

o simulating the meny failure modes for the sensors (i.e., bias null, hardover,
ramp, increased noise, etc.) — while using a simple bias jump failure model
in designing the FTS.

o estimating only selective normal operating biases — even though all sensors
have some form of constant bias term in their outputs.

o simulating failures in the components of the RSDIMU (when used) are not
detected by the FTS, nor are they considered in this study - instead the

FDI techniques resident in the RSDIMU are used (see [23] for a descrlptlon
of these techniques).

These rules were adopted in order to evaluate the robustness of the FTS under
simple internal models. Simplifying assumptions (even straightforward ones) were not
made so that assumptions about one mode of operation (say with bias failures) would
not impact performance under another (for example, with increased noise failures). In
this way, the robustness of the original method would be examined rather than an
unintended specialized variant of it. Moreover, by postponing these practical

decisions they could then be made based on a broad experience base.

In addition to the basic rules given above, the particular runs chosen to be

included in the study had the following general characteristics:

o Multiple isolated failures were simulated in each rum to save on computer
resources, and to see if detectability of the remaining sensors would be
affected.

o A bias failure was simulated for every sensor at several points in the
standard flight trajectory (for example, along a perpendicular path as well
as a tangential path relative to the runway; or on a straight and level path,
as well as a maneuvering one).
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o PFailures were randomized with respect to

time of failure
level of failure
sensor replication
o Each run was made in a Monte Carlo fashion — in that a different random

seed was used for every run (therefore, filter initial conditions, bias levels,
noise time histories, etc. were all randomized).

The Monte Carlo simulation approach was used to more faithfully test the FTS
and explore the strengths and shortcomings of it. It also provides a good base of
runs which can be incorporated with future ones to obtain average performance
measures, and probabilities. By simulating failures at various points within the flight
path, we can empirically examine the effects of flight path on failure identifiability and

detectability.

The next subsection defines the nominal simulation used throughout this study.

It also displays the nominal flight path along with other important flight profiles.
3.1.1 Simulation Description

The objective of this sub-—section is to define the simulation parameters used in

the study and to describe the nominal simulation environment — as it effects the FTS.

The simulation runs all start slightly before the point of transition to MLS
coverage and end at touchdown on the runway. Sampling frequency for the simulation
is 20 Hz. Figures 5—9 show the simulated aircraft state time histories for a typical

simulation run. These figures are intended to be used for reference purposes. In the
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rest of the simulation runs to be presented, these time-histories will not be re-—
shown. They may, in fact, be slightly different, since the no—fail filter state estimates
are used by the automatic guidance and control laws to land the aircraft. In other
words, under different noise, wind, failure, etc. conditions, the corresponding true

variable time-—histories may differ somewhat from the nominal.

Figure 5 shows the A/C ground track and altitude profile. This figure clearly
shows the sequencing of the various flight segments as the A/C performs its automatic
approach and landing. In addition, the direction of the simulated horizontal wind
(165 degrees from north) is displayed. The magnitude of the wind was a constant
30 knots in all sample runs considered in this study. The simulation runs all start
under VORTAC system coverage without the FTS. At approximately 35 seconds, MLS
coverage begins and the FTS program (no—fail filter, bank of detectors, decision logic,
etc.) is initiated. Figure 5 shows the initial ground track oriented roughly 45°
relative to the runway. A banking maneuver is executed (from 55-100 seconds) which
brings the flight track perpendicular to the runway. A second bank maneuver occurs
30—40 seconds thereafter which aligns the flight track with the runway. This flight
segment runs to approximately 215 seconds. Glide slope capture occurs at
approximately 180 seconds. Between 255 seconds and touchdown (epproximately 275
seconds), decrab and flare maneuvers are executed. Also, MLS elevation measurements
are replaced by altimeter measurements in the FTS at around 260 seconds. The flight
path can be summarized by the following mapping (which will be convenient to refer to

in later discussions):
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The altitude profile curve shows the nearly constant sink rate of approximately 3

meters/s.

The maneuvers, shown in the ground track of figure 5 can be seen in more detail

in the next four figures.

The corresponding attitude and body attitude rate variations

for this typical simulation run are displayed in figure 7 and 6, respectively. The

following attributes are evident in these figures:

o Yaw angle has the largest amplitude range, and the lowest frequency content
(i.e. changes occur more gradually and smoothly)

o Pitch angle has the smallest amplitude range — and is also fairly smooth,
with some regulation evident during the roll angle transient.

o The roll angle profile shows the most variations. It also contains several
periods where the roll angle is very nearly zero.

o All three body attitude rates are plotted using the same scale.

o Roll rate has the largest and sharpest transients, but the duration of each
is typically confined to a 5—-20 second period.

o Yaw rate, on the other hand, is smooth, but its duration at significant levels
is much longer (30-70 seconds).
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The implications of these variations are as follows:

o The effects of these attitude rate variations on the FTS will be felt as
unmodeled errors due to misalignment, and scale factor errors - each of
which is a function of the signal level. '

o Both attitude and attitude rate profiles clearly show periods of large and

small signal levels. The detectability of failures of varying types and levels
during these periods is an important issue.

Typical body acceleration profiles experienced by the aircraft are found in
figure 8. All three trajectories are plotted on the same relative scale — so that they
can be compared. Notice, however, that the vertical acceleration is biased by the
gravitational acceleration. Basically, these curves show the aircraft decelerating as it
nears touchdown. The affects of cross—axis coupling on the lateral airframe dynamics
can be seen in the lateral acceleration curve. Since body accelerometer measurements
are inputs to the FTS, and since they include both scale factor and mounting
misalignment errors, the absoclute level of each of these curves should be kept in mind

when interpreting the later results.

Since the FTS operates in a runway based coordinate frame, the mapping between
body quantities and runway quantities is important since this transformation effects
failure observability. Figure 9 shows the A/C velocity components in the runway
frame. It can also be viewed as the transformation of the body accelerations
(properly integrated) into the runway frame. Note in particular, the flight segments
where the forward body velocity is either all in'the x or y runway direction. During
these periods, not only the signal, but also much of the modeling errors will be

polarized in these directions.
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Table 1 shows the sensor model parameter values used in the simulation. A dual,
redundant, sensor configuration is used. For each sensor type, the stendard deviation
of the sensor measurement noise, normal operating bias and scale factor error is
given, along with the associated stop limits. The units for the parameter values are
given in the second column - except for scale factor which is expressed as a percent,
and IAS measurement noise, which is multiplicative, and also expressed as a percent.
As discussed earlier, MLS measurement noises are time—correlated with a steady—state
rms value specified in Table 1. Furthermore, body-mounted instruments are
misaligned with respect to the body axis through a random transformation. The
standard deviation of the random misalignment is 0.4° for rate gyros and 0.36° for
accelerometers. The normal sensor model parameters values for the RSDIMU, when it is

used, is shown in Table 2.
3.1.2 Performance Measures

The performance of the FINDS program has been determined by making various
runs under the following sensor failure conditions, listed in approximate order of

increasing deviation from the underlying the FTS design assumptions:

o singleton bias failures

o multiple bias failures

o hardover failures

o null failures

o ramp failures

o increased scale factor failures

o increased noise failures
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TABLE 1. NOMINAL SENSOR MODEL PARAMETERS

SENSOR NOISE BIAS SCALE MISALIGNMENT ~ SYMMETRIC
_TYPE_ UNITS LEVEL LEVEL FACTOR ANGLE QUTPUT LIMITS
Achyoh, m/s/s .98 .Nag .25% .40° 4,9,4,9,19,6
P,Q,R deg/s N2 2.8E-5 N1% .36° 100

Azm,E1 deg .03 .03 N/A* N/A N/A

Rng m 3.0 4 N/A N/A N/A

IAS m/s 2%(4.5)%** 1.0 N/A N/A 205/58%*
é.6 ¥ deg .23 .8 N/A N/A 80,80,600

RA m .35 .305 N/A N/A N/A

* -not applied
** - two sided (asymmetric) stop limits
**% . percent (absolute)



TABLE 2. NOMINAL RSDIMU SENSOR MODEL PARAMETERS

RATE GYRQS LINEAR ACCELEROMETERS
(deg/Hr) (g's)
Noise 0.125 1.25 E-5
Bias 0.015 1.0 E-4
Scale Factor (ppm) 75 75
Misalignment (deg) 3.333 E-3 3.333 E-3
G-sensitive drift (dea/Hr) 0.015 0.015
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In all of the failure conditions above, except for the null, hardover, and ramp
cases, it will be convenient to define a failure level with respect to the underlying
normal operating error level. For instance, if the standard deviation of the normal
operating bias for a given sensor is o, then a 5o bias failure for that sensor will
signify that the failure level will come from a distribution with a standard deviation of
5¢. Similarly, the o in a 100 increased noise failure will be the standard deviation of
the measurement noise associated with that sensor. A more detailed description of the

sensor failure models can be found in [1] and [2].

Although repetitive runs for a given sensor failure type under varying random
conditions have been made, the collected data was not sufficient to compute
experimental false alarm and probability of detection figures. On the other hand, the
repetitive runs, where available, have been used in obtaining an average "time—to-

detect” and “time—to-heal” figure.

The primary way of evaluating performance will be to examine the actual time
histories of the no-fail filter state estimation errors and covariances. The
information contained in these plots, much of which would be lost in forming ensemble
statistics, is partitularly useful in providing insight into the operation of the FTS. In

particular:

o The transient effects of the failures can be seen.
o The effects of using biased measurements are evident

o The interaction of the bias filter and choice of biases to be identified can
be viewed

o The effects of the healer and re—configuration logic can be gauged.
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o How the flight path effects the no-—fail filter and the propagation of failures
can also be seen.

Time histories will be presented as an estimation error profile, with the no—fail

filter's a posteriori (e.g. after the measurement update) covariance envelope.

When viewing these error profiles note that although absolute performance of the
no—fail filter is important, the filter serves a dual purpose. On one hand, it's function
is to provide accurate estimates for the A/C's current state. While on the other hand,
it must perform data fusion in such a way that all sensors play a role in the
estimation of those same A/C states. This last function is critical if failures in
individual sensors are to be detectable. Since, at times, these two functions are

clearly in conflict, no-fail filter parameters were chosen to satisfy both goals.

3.2 Performance with No Failures

In this section, the performance of the FTS no-fail filter described in Section 2.2
will be discussed using the results obtained on the six—degree—of—freedom nonlinear
simulation described in Section 3.1. The inherent modelling error in the no-—fail filter,
arising from the assumptions made in the design were discussed in Section 3.1.1.
Before we begin, however, we will need to specify the specific parameters used in the

FTS modules.

Initial errors for the state and normal operating bias estimates are randomized.

Their one sigma levels at FTS start—-up time are given in Table 3. This table also gives

the standard deviation of the initial uncertainty for these variables. Furthermore,

87



accelerometer and rate gyro biases are normally estimated by the no-fail filter.
Normal accelerometer bias levels were large enough that their compensation was
necessary, however, normal rate gyro biases are very smell. Rate gyro biases were

estimated to help eliminate false alarms associated with scale factor and misalignment

modeling errors.

Process and measurement noise statistics used by the no-—fail filter are given in
Table 4. Notice that the noise levels assumed by the filter are given in a per
replication manner - to reflect the fact that the actuel process and measurement
noise statistics used depend on the replications of the corresponding sensors.
Further note that the wind process noise doesn’'t relate to a physical sensor and

therefore is replication independent.

FTS detector parameters are summarized in Tables 5 and 6. Table 5 gives the a
priori probability of failure, detector estimation window length, and standard
deviations of the estimation information used for detector resetting. Table 6 shows

the bias and failure levels used in the healer module. The healer window length used

was 3 seconds in all runs.

Figure 10 shows the no-—fail filter position estimation error time histories for a
typical run. Each plot is made up of two parts: an error time history — the solid line;
and an a posteriori covariance envelope - the two symmetrical dashed lines. Also,
keep in mind that the covariance envelope represents the a posteriori covariance (e.g.
after processing the measurements), and therefore does not reflect the level used in

forming the Kalman gains or the innovations covariance used by the detectors. The
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TABLE 3. NO-FAIL FILTER STATE INITIAL CONDITIONS

Variable Est. Error Uncertainty Units
(S.D.)> (S.D.)

States:

X—rw 1.5000E+91 4.0060E+01 m
y-rw 1.5000E+91 4.,0000E+01 m
=W 5.0000E+00 3.0000E+01 n
x-dot~rw 1.50D0E+00 4.0000E+00 n/s
y-dot-rw 1.5000E+08 4.0000E+00 /s
z-dot-rw 1.S5090E+00 1. 2S00E+00 n/s
phi 1.0000E-01 5.0000E-01 deg
theta 1.B0PDE-0O1 5.0000E-01 deg
psi 2.0000E-01 1.5000E+00 deg
x-wind-rw S5.00D0E-01 7.S000E-01 m/s
y-wind-~rw S5.0000E-0O! 7.5000E-01 m/s

Ave. Biases:

x-azcel 1.0000E-01 3.0480E-01 m/s/s
y-accel 1.0000E-01 3.0480E-01 m/s/s
z—ascel 1.0000E-61 3.0480E-0! wm/s/s
P-gyro 2.8000E-05 2.5600E-81 deg/s
Q-gyro 2.8090E-05 2.5600E-01 deg/s
R-gyro 2.8000E-0S 2.5600E-01 deg/s

TABLE 4. NO-FAIL FILTER PROCESS AND MEASUREMENT NOISE LEVELS

Variable Noise S.D. Replications Units
Per Repl. Used

Process Noises:

x—accel 9.806G6E-02 1 m/s/s
y-accel 9.8066E-02 1 m/s/s
z-accel 9.8066E-02 1 n/s/s
P-gyro 8.9400E-02 1 deg/s
Q-gyro 8.9406E-02 1 deg/s
R-gyro 8.9490E-02 1 deg/s
x~wind-rw 0.000BE+00 N/A n/s
y-wind-rw 0.00PBE+CO N/A n/s
Measurement Noises:

MLS azin 6 .0000E-02 2 deg
MLS el 6 .00D0E-92 2 deg
MLS rng 6.00D00E+00 2 m
I1AS 1.4918E+00 2 m/s
IMU phi 2.5100E~-01 2 deg
IMU theta 2.5106E-01 2 deg
IMU psi 2.5190E-01 2 deg
Radar alt 3.0430E-01 o m
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DETECTOR RESET PARAMETERS
1.00000 Szconds

TABLE 5.
Detzctor Window Length =

90

Sensor Apriori Est. Window Estimation Units
Type Probabitity (sec) Information
(S.D.)

Singular Failures:

x-acecel 4 .6000E-09 3.00000 9.2903E-03 m/s/s
y-accel 4.6000E-09 3.00000 9.2903E-03 m/s/s
z-accel 4 .60B0E~-09 3.00000 9.2903E-03 m/s/s
P-gyro 4,B6000E-09 3.00000 0.0000E+00 deg/s
Q-gyro 4, 6000E-09 3.060000 0 .0000E+0Q deg/s
R-gyro 4,.6000E-10 3.00000 0.0000E+003 deg/s
MLS azim 3.5080E-09 1.00000 0 .0000E+00 deg
MLS el 3.5000E-09 1.60000 0 .0000E+00 deg
MLS rng 3.5000E-09 1.60000 0.0000E+00 m
IAS 3. 1S90E-08 1.900000 0.0000E+00 m/s
IMU phi 2.2500E-08 1.06000 0.0000E+00 deg
IMU theta 2.2500E-08 1.06000 0.0000E+00 deg
IMU psi 2.2500E-09 1.00000 0.0000E+00 deg
Radar alt 3.5000E-10 1.00000 0.0000E+00 m
Simultaneous Multiple Failures:

MLS azim 1.2256E-14

MLS el 1.2250E-14

MLS rng 1.2250E-14

TABLE 6. DETECTOR HEALER PARAMETERS

Healer Window Length = 3.00000 Seconds

Sensor Bias Est Failure Est Units

Type Thresold Threshold

x-accel 2.0090E-01 S5.0000E-01 m/s/s

y—accel 2.0000E-01 5.0000E-9Q| m/s/s

z-accel 2.0000E~-01 S5.0000E-01 m/s/s

P-gyro 1.2000E-03 1.2000E-02 deg/s

Q-gyro 1 .2000E-03 1.2000E-02 deg/s

R-gyro 1.20600E-03 1.20006E-02 deg/s

MLS azim 6. 00NVE-02 1.5060E-01 deg

MLS el 6.0900E-02 1.5000E-01 deg

MLS rng 1.2000E+01 2.0000E+9] m

I1AS 1.2000E+00 2.5S000E+00 m/s

IMU phi 2.0000E-01 5.0000E-01 deg

IMU theta 2.00D0E-01 5.0000E-01 deg

IMU psi 2.0000E-01 5.0000E-01 deg

Radar alt 6.1080E-01 1.5000E+09 o
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first attribute one notices is that position estimation error profiles are somewhat
biased. This is attributable to the uncompensated normal operating biases of the
measurements. Examination of the EKF gain (at several points in the run) for r, and ry
show that MLS azimuth and range measurements are used heavily in forming these
estimates. Whereas, MLS elevation and range are primarily used for estimating r,.
Given the level of uncompensated bias in MLS measurements (found in Table 1) and the

range as a function of time, these biases can be almost totally accounted for. In

general:
o The bias levels shift in response to changes in the flight path - since the
EKF gain is redistributed for the new flight path.
o The quantity SQRT{ I'r"'xl2 + I'i‘ylz ] and I?"zl diminish as touchdown is
approached (where T =Arm - r, i.e. estimation error).

o The a posteriori covariance is small due to the low measurement noise
assumed for MLS measurements.

o Vertical estimation error characteristically is not effected by changes in the

flight path. Its error diminishes primarily due to the diminishing effect of
the unidentified MLS elevation normal operating bias.

No—fail filter velocity estimation error profiles are shown in Figure 11 for the
same sample run. Keep in mind that these variables are expressed in the runway
— not the body frame of reference. The error levels for all the profiles are
reasonable and both lateral and vertical velocity errors converge to within the one-
sigma covariance envelopes. The nearly linear convergence of the vertical velocity
error is again due to the diminishing impact of the unidentified MLS elevation sensor’s
normal operating bias. The convergence in the x and y directions is characteristically
flight path dependent. The lowest errors tend to occur when the signal level of the

variable is close to zero (see Figure 9). Therefore, periods when the aircraft is
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perpendicular to the runway (the A/C's velocity is in the y runway direction), x

estimation error will typically be low.

The approximately 1 m/s bias® visible in the x velocity error profile after
150 seconds is due principally to the poor wind estimation performance. Remember, a
30 knot horizontal wind is present in all our runs. Lower wind levéls scaled this bias
error downward. Note that a .5 m/s spike occurs around 255 seconds in the vertical
velocity error curve. This is due to the reconfiguration logic. At this point in the
trajectory, MLS elevation measurements are replaced by radar altimeter measurements.
The important point is to notice the selectivity of the reset — it only effects vertical
velocity and vertical accelerometer bias errors. This is an important feature of the

developed FTS.

Attitude estimation errors are shown in Figure 12. An rms error value of
0.05°-0.1° in roll, pitch, and yaw was typical of all the runs. These error levels
correspond roughly to the unidentified normal operating bias wvalues in the IMU
measurements. Increases in the attitude estimation errors during banking maneuvers
is due to the approximations resulting from using Euler integration for the kinematic
equations in the single stage prediction part of the no-fail filter, and the fact that
the filter is running at only a 20 Hz sample rate (typical update rates in conventional

navigators vary between 60 and 70 Hz).

5The level of this bios is actually larger than levels normally observed. A more typical
level would be approximately .3 m/s.
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In this run, there was a false alarm in the roll rate gyro at 251 seconds which
was correctly declared ''recovered” by the healing tests at 258.9 seconds. The
favorable impact of the healing decision can be seen in the roll attitude estimation

error time history.

Horizontal wind estimation error time histories are given in Figure 13. Although
some degradation in the horizontal wind estimates are to be expected due to the
assumptions of zero angle of attack and side slip in the indicated airspeed
measurement model, the steady-—state estimation errors in these variables are largely
due to the wind model used in the design of the filter. Specifically, the unknown
constant random variable model for the horizontal winds causes the filter to become
oblivious to the indicated airspeed measurements after the first maneuver. We believe

that gain limiting on the horizontal winds would eliminate this behavior.

Error time histories for the accelerometer and rate gyro bias estimates are
shown in Figures 14 and 15. Note the initial bias errors visible in the error trace
before the FTS is initiated (at approximately 35 seconds). The good convergence
characteristics for the accelerometer bias estimates were typical of other runs with
different bias levels. Identification of accelerometer bias levels made a significant
contribution to the improvement of position and velocity estimates. On the other hand,
rate gyro biases are identified in order to introduce uncertainty into the kinematic
models, and to help compensate for transient modeling errors due to scale factor and
misalignment errors — although the actual bias levels in the rate gyro measurements

were too small to be of any significance.
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Figﬁre 16 shows various A/C tirack error profiles for this run. These error
levels were typical for the no-fail case. Although these curves are on indication of
overall system performance, the reader should remember that they include the
idiosyncrasies of the automatic control law. That is to say, the contreol laws are
parameterized in a particular way and are therefore more sensitive to particular

parameter variations.

3.3 Performance with Bias Failures

This section describes the observed performance of the FTS under simulated bias
failures. Since the FTS was designed with the implicit assumption that failures would
appear as bias jumps in a sensor’'s outputs, we should expect the best performance
here. As discussed in Section 3.1.2, the format of this section will be to discuss the
results from the context of individual simulation runs, in order to give the reader a
deeper insight into how the method operates. Observed FTS bias failure detection and
isolation performance will be described using the standard sensor configuration, and
an alternative configuration employing an RSDIMU in the first two subsections,
respectively. The last subsection describes performance when multiple (MLS) failures

occur simultaneously in time.
3.3.1 Singleton Bias Failures — Standard Sensor Configuration

In this section bias failure performance will be discussed for the standard sensor
configuration. In particular, three sample runs will be utilized. These runs were
chosen to be representative, and in addition, to highlight strong, as well as weak
peints in the current implementation. Table 7 describes the simulated failure

conditions for each of these runs (where each run is identified mnemonically). The
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names chosen are BF-1, BF—2, and BF-3, where BF stands for bias failure. Further
notice in the table that the first run, BF—1, has a single sensor, MLS elevation, which
fails at time 80.6 seconds, with a failure magnitude of 0.24 degrees (this represents an
8 sigma failure level). In the majority of the runs used in this chapter, three or more
failures are simulated in a single sample run. The implications of this are that it will
save CPU costs, however, observability and time to detect of the remaining sensors

may be affected.

We will now discuss each of these runs in detail, beginning with run BF-1.
Generally, only error profiles, which differ from those of the previous section, will be
shown. In this sample run, no false alar_ms were recorded, and no false healings
occurred. The bias failure was simulated to occur at 80.6 seconds, and it was
detected at 81. seconds yielding a time to detect of .4 seconds. Turning our attention
now to Figure 17 and 18, we see that the effects of the elevation failure are negligible
on x and y position and velocity estimation errors. That is to say that the time
histories are very similar to those one would have seen had no failure occurred.
However, z position and velocity errors (the bottom curves), show pronounced
transient effects at the time of failure onset. Although the failure is detected (and the
system is reconfigured) quickly, it takes a period of approximately 20 seconds to
completely remove the effects of this failure from the state estimates. On the other
hand, the disruptive effects are localized and are at a level similar to that which
occurred at initialization. The rate of convergence for these -error curves is
noticeably slower than observed at start-up. This is due to the higher effective
measurement noise on MLS elevation measurements assumed by the no-—fail filter after

system reconfiguration.
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TABLE 7. DESCRIPTION OF BIAS FAILURE RUNS — STANDARD SENSOR CONFIGURATION

SENSOR FAILURE FAILURE
RUN I/D FAILED MAGNITUDE ONSET TIME
seconds
BF-1 E1-2 .24%(80) 80.6
BF-2 P-1 .1 degrees/s 115.9
BF-2 R-1 .1 degrees/s 66.9
BF-2 g-1 .8 degrees 223.€5
BF-3 Azm-1 .3%(100) 110.65
BF-3 E1-1 .3%(190) 221.9
BF-3 P2 .8%(190) 66.65
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The next sample run to consider is run BF—2. Table 7 shows that roll rate, yaw
rate and IMU theta failures are all simulated in this run. These sensors all affect the
attitude determination of the aircraft, and they are coupled through the kinematic
equations of motion. Therefore, in this run, we will analyze how well _the FTS system

can discern input sensor from measurement sensor failures.

The failure detection performance in this case was quite good. All failures were
correctly identified and there were no false alarms or false healings during this run.
The time to detect for rolli rate gyro was 2.75 seconds, and yaw rate gyro was
4.05 seconds. The detectionr time for theta was 0.3 seconds. This is a typical
characteristic of input versus measurement sensor failures. In all of the runs
measurement sensor failures were detected at least an order magnitude faster than
input sensor failures. This is due primarily to the fact that the input failures, in
order to be identified by the detectors, must propagate through the no-fail filter

dynamics to put their signature on the residuals.

As mentioned previously, these sensors are used primarily to determine the A/C’s
attitude, and therefore only degradation to the no-fail filter's attitude estimates
should be observed.® In fact, examination of the position and velocity estimation error
curves shown in Figures 19 and 20 show that the FTS has this desirable property.
Notice that the position and velocity estimation errors all lie within bounds which are

typical of a no—failure case. Furthermore, disruptions due to resets after failures are

6Since the cottitude estimates are used to resolve the acceierometer measurements, failures
will eventually be observed in the other states — but to less an extent.
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not felt by these state estimates. This is an important attribute of the developed FTS
~ without it resets due to correct failure detections (as well as false alarms) would
drastically reduce the estimation error performance of the system as discussed in

Section 2.6.

Viewing the attitude estimation error curve, Figure 21, the effects are seen to
be pronounced here. Phi estimation error, the top diagram, shows a ramp occurring
between the time of the roll rate gyro failure and its detection. At 118.65 seconds
when the roll rate gyro bias failure is detected and the standby roll rate gyro
replaces the failed sensor, a reset occurs. A similar effect is seen in the psi error
when the yaw rate gyro fails. Notice the reset in phi has no effect on theta and psi
errors. In this portion of the run, phi is less coupled to theta and psi — and the
reset logic accounts for this fact. For example, t:he yaw rate gyro failure occurs
during a banking maneuver, when couplings are stronger, and its reset effects theta
estimation error. Moreover, notice that after both of the rate gyro resets, the
estimation errors become biased. This seems to be a fairly typical phenomenon after
an input sensor failure. We feel this is due to the fact that the input sensor bias
estimates were reset in a rather hard fashion. These resets can be seen more clearly
in Figure 22. Because the bias estimation error uncertainty on rate gyros is. reset so
hard, the no-fail filter primarily uses the raw IMU measurements to get an estimate
for the attitudes. Since these measurements are biased, a step in the estimation
error curves is observed. The effects of the IMU theta failure on the estimation error
curves cannot be seen. This is due simply to the fact that the theta failure was
detected and isolated quickly, in 0.3 seconds. Therefore, it simply wasn’'t present for a

long enough period to affect the filter estimates.



TABLE 8. SUMMARY OF AVERAGE BIAS FAILURE PERFORMANCE — STANDARD

CONFIGURATION
AVERAGE TIME TO NUMBER OF NUMBER OF MISSED
SENSORS DETECT (Seconds) SIMULATED FAILURES DETECTIONS

Input Sensors

A, 4.65 3 1
A, 14.65 3 2
A, N.DX* 3 3
P 13.32 4 1
Q 8.12 3 1
R 6.1 2 0

Measurement Sensors

Azm N.9 1 0
ET n.15 1 0
Rng 0.08 3 n
IAS 1.57 0
o 0.57 4 n

0.43 4 1
¥

0.8 3 0
RA 0.3 3 1

* Not Detected
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The third and final sample run, to be discussed, is called BF—3 in Table 7. It
consists of three measurement failures. They include two MLS feailures of azimuth and
elevation, and also a psi attitude failure in the IMU. As we found out in the last
example, the time to detect is much quicker for sensors which are treated as
measurements into the no-—fail filter. Detection times for this run were 0.9, 0.15, and
0.35 seconds for MLS azimuth, elevation and IMU psi, respectively. Because the
detection times are so quick the estimation error profiles are not much different from
those already seen - so they will not be presented. There were, however, two false
alarms and two correct healings which occurred during this run. The affected sensors
were the roll rate gyro, which was incorrectly detected as failed at time 248.9 seconds
and then healed at 251.9 seconds7, and the pitch rate gyro which failed at 253.65
seconds. The primary reason for these false alarms is that when the IMU psi failure is
detected early in the run (at 67 seconds) an entire IMU is removed from the
measurement set of the filter. This forces the no—fail filter to trust the rate gyros

more, thereby increasing the effects of integration errors.

Up to this point details were primarily about individual sample time histories,
and particular sequences of failures in order to understand how the fault tolerant
system works. Here we present a summary of the average failure detection
performance observed over all the runs. Table 8 describes the average performance
by presenting the average time—to—detect for each sensor type. Also included in the

table is the total number of simulated failures and number of missed detections by

7This is the fastest that healing is alliowed to occur due to the assumptions made in the
healer logic.
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sensor type. The average time—to—heal is not shown in the table because it was
approximately 3 seconds for all sensors. The runs which comprise the table have
random failure levels of 30, 50, 80, 100, or 120. The reader should note that the total
number of runs represented here is quite small. Furthermore, since the average time—
to—detect figure shown is the average of from one to four samples (columns 2-3), one

shouldn't place much weight on the actual numbers, but only look at them relative to

one another.

Summarizing Table 8 we see that:

o Input sensors take considerably longer to detect than do sensors treated as
measurements to the no—fail filter.

o Input sensors are harder to distinguish than measurement sensors - the
number of missed detections is noticeably higher.

o Although not explicitly shown in the table, detection times for input sensors
are much more sensitive to the absolute level of the failure simulated.

o Vertical accelerometer failures were not detected for 30,50,80,and 100 failure
levels.8 Two factors contributed to this situation:

The signal level on the vertical accelercmeter was 1g.

The normal operating bias filter was able to monotonically decrease the
impact on the failure of the system, by slowly estimating it out.

o MLS azimuth takes considerably longer to detect relative to other MLS
sensors.

o IAS is the slowest to detect of all measurement sensors.

o Of the IMU sensors, yvaw failures are the most difficult to detect.

8However. null and hardover failures were detected.
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Soine general comments about particular problems that were encountered in
running this matrix of cases seem appropriate at this point. Typically a missed
detection of an accelerometer sensor failure induced an MLS false alarm. Also, for roll
rate gyros, occasionally an IMU false alarm was observed, rather than a correct
detection of the corresponding input sensor. In these cases - where the FTS was
unable to distinguish dynamically related sensors - examination of the a-posteriori
probability of failure obtained from the decision logic showed nearly equal probability
of failure for the failed sensor and the dynamically related one. This indicates that

this behavior can be improved by:

o Adding heuristics to the decision logic to evaluate this situation better.

o Add off diagonal costs in the decision logic — i.e. and a larger cost for
making an incorrect decision.

In the case of radar altimeters, which turn on very late in the run, several times the
wrong replication was chosen. This was due mainly to the fact that the filter's state
estimates are biased due to the uncompensated normal operating biases contained in

the measurements.

For the case of singleton bias failures the fault tolerant system works very
capably. Detection speeds are very quick for measurement sensors into the filter, and
also adequate for input sensors although they are typically detected an order of
magnitude slower. The state estimates appear to have the quality of fault tolerance,
in tl-mt they are able to recover in most cases from the effects of failure. Moreover,
the fault tolerant system has the desirable property that a failure in one sensor
affects only related quantities of the no-—fail filter, therefore, transient effects are

minimized. In addition, for the case of bias failures, the healers work quite adequately
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as well, however, it's clear that the effects of false alarms can cause considerable

problems.
3.3.2 Singleton Bias Failures — RSDIMU Sensor Configuration

This section discusses observed performance attained using a redundant strap
down inertial measurement unit in place of the usual body mounted rate gyro and
accelerometer measurements. In addition, since the RSDIMU also provides attitude

outputs, these are used in lieu of measurements from the platform IMU.

The impact of these replacements on the FTS configuration and parameters are

as follows:

o No estimation of input normal operating biases is performed.

o No detection and isolation is performed on RSDIMU based measurements
— since it has its own on—board fault detection and isolation logic.

o The FTS reconfigures itself internally to operate the proper number of
detector/LR computers (in our example this is 8, and in the standard
configuration it is 20).

0 Process and measurement noise levels chosen for the no—fail filter remain at
the levels used in the standard sensor configuration.

The last item seems inappropriate at first — since the RSDIMU provides navigation
quality rather than flight quality information. However, if process noise levels were
set appropriate for the RSDIMU measurement noise level, the no-fail filter would
ignore most of the other measurements, and therefore, detection of failures in these

other sensors would not be possible.

For this configuration the transient effects due to failures, and the error time

history plots are very similar to those observed for the standard configuration (they
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are only-slightly better), therefore, they will not be shown. The only exception to this
is for ¢,8, and ¥, where -~ since we are not estimating normal operating biases on P,Q,
and R — they appear more biased during maneuvers than the standard configuration.
These effects can be minimized by "tuning” the measurement noise parameters assumed
by the EKF on P.,Q, and R, and on ¢,8, and ¥. Estimation of normal operational biases
for the rate gyros will further reduce these effects. However, since we are only
concerned with failures in MLS, IAS, and RA sensors, these errors don't impact

performance, and therefore no further tuning was performed.9

Table 9 describes the average detection performance for the RSDIMU
configuration. It should be noted that there were no false alarms or missed
detections in any of these runs. However, since under this configuration, we are not
considering failures in any RSDIMU sensors (i.e. only MLS, IAS, and RA failures are
considered) this eliminates many sensors from consideration, thereby making the

detection task easier.

Viewing Table 9 we see that:

o Detection times for all sensors are on the order of those found for the
standard configuration (see Table 8).

o There were no missed detections.
o MLS azimuth is the most difficult MLS sensor to detect.

o Although not shown explicitly in the table, detection times were constant
over all portions of the flight path.

gln fact, for this confiquration, the filter could be collapsed to eliminate the attitude
channel cltogether — to further reduce the computational requirements.
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In general, the RSDIMU configuration performed very well. Although we expected
to see better performance and detection speeds for this configuration, we observed
only slightly better performance. Additional Monte Carlo simulations of each

configuration would be required to provide a better comparison.
3.3.3 Simultaneous Multiple Bias Failures — Standard Sensor Configuration

In this section, performance when two sensors fail at the same instant of time,
will be examined. Only multiple failures in like MLS measurements were considered in

this study, and will be reported herein.

The FTS parameters used are the same as described in Section 3.2. The error
profiles for these failures look very much like the no-fail case, and therefore will not
be presented here. In fact, after a multiple MLS failure is correctly detected a
mission abort is issued, since the no-—fail filter requires at least one of each MLS

measurement to operate.

Table 10 describes the simultaneous multiple failure performance of the FTS. All
multiple failure sample runs made in the study are represented here. Since MLS
azimuth is harder to detect than MLS elevation or range, azimuth failures were
simulated over all flight conditions, whereas MLS elevation and range were only failed
once. Detection speed and selectivity is very good, with correct detections in all
cases and average detection times of 6.37, 0.2, and 0.15 for azimuth, elevation, and
range sensors, respectively. Over this set of runs the detection times were basically
constant over different failure levels and flight path segments. Notice, further, that

although false alarms were associated with some of the runs, they did not interfere
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TABLE 9. SUMMARY OF AVERAGE BIAS FAILURE PERFORMANCE — RSDIMU CONFIGURATION

SENSOR pETECT ?éﬂﬁolgs) Ngimgiﬁggs NETECTIONS
Azm 0.42 5 0
E1 0.18 5 0
Rng 0.09 5 0
IAS 0.4 1 0
RA 0.15 1 0
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with the correct detection and isolation of this class of failure.

3.4 Performance with Non-Bias Failures

As mentioned at the start of this chapter, one of the goals of the study was to
assess how well the developed FTS can operate when failures of a non-—-bias type are
encountered. This section discusses the observed robustness of the system under the
following failure modes: hardover, null, ramp, increased scale factor, and increased
noise failures. A subsection is devoted to discussions pertinent to each of these

conditions.
3.4.1 Hardover Failures

The primary attribute required of an FTS when hardover failures might be
encountered is fast detection times. Ideally one would like to remove faulty
measurements before they are used in the navigation filter. This is particularly
important in our FTS since the no-fail filter is an extended Kalman filter (e.g.
linearizations are about estimated states) and filter divergence can occur quickly. For
this reason, if redundant sensors are available and hardover failures are a common
problem, we advocate the use of voting techniques to achieve quick hardover failure
detection and isolation. As we will see, the FTS discussed in this section provides an

alternative approach if redundant sensors are not available.

Since hardover failures can be viewed as very large bias failures, we should
expect good performance from the developed FTS. In fact, observed isolation and
detection speed is quite good - it typically takes one filter cycle (i.e. two

measurement samples) to detect a hardover failure.
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TABLE 10. SUMMARY OF MULTIPLE BIAS FAILURE PERFORMANCE

MLS FAILURE NUMBER OF
SENSOR FAILURE ONSET TIME T0O FALSE ALARMS/
TYPE _LEVEL TIME DETEGT SENSOR TYPE
( seconds§ (seconds)

Azimuth .3%(100) 110.0 n.6 0
Elevation .3%(100) 70.0 0.2 1/A

Z
Range 40m(100) 70.0 N.15 1/Ay
Azimuth .3%(100) 70.0 0.6 0
Azimuth .3%(100) 255 0.65 /A,
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Table 11 shows the detection performance for a typical run. Hardover failures in
indicated airspeed, IMU theta, and roll rate gyros are simulated. Remember that only
one replication of the roll rate gyro is used by the FTS, and therefore, no direct

redundancy is used in its detection.

The sample time for the system is 0.05 seconds (e.g. 20 Hz) and therefore all
three failures are detected in one filter cycle. The fact that three very hard failures
occurred fairly close to one another, and did not significantly affect the performance
of the FTS is encouraging. This implies that the filter was able to recover quickly

from the effects of failures.

Figures 23, 24, and 25 show the estimation error profiles for attitude, rate gyro
biases, and accelerometer biases, respectively. These figures show how the reset logic
can directly effect filter performance. From Table 10 we saw that a false alarm in IMU
phi occurred right after the failed roll rate gyro was removed. This was directly due
to the large reset used for the phi state and p bias estimates and their associated
covariances. The filter diverges as a result of the reset, and cannot recover since
both IMU's were removed (one due to a failure and the other due to the false alarm).
The large reset was due to the reset logic applying a reset proportional to the failure
level - it was designed assuming moderate bias failure levels. Since the failure
estimates from the detectors may contain significant errors when hardover failures are

encountered, an obvious solution would be to threshold the reset to remain within a

reasonable range.
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TABLE 11.

SENSOR

IAS

DETECTION PERFORMANCE FOR TYPICAL HARDOVER

FAILURE MAG. ONSET TIME

seconds
205.78 m/s 67.08
80° 114.05
100 s 153.50

False Alarms

Sensor Time of False Alarm
(seconds)

0-2 153.65
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3.4.2 Null Failures

Null failures pose an interesting problem for the FTS. Although they may appear
as a bias jump in the measurement, this only happens if the actual signal level is not
close to zero. Essentially, to be detectable, the signal level must be‘greater than the
smallest bias level detectable by the FTS. Moreover, the effective failure level
fluctuates as a function of the signal level, such that at times it may appear as a soft,
mid or hard failure. In fact, even if the failure is correctly detected, the healer logic
can easily be tricked into believing the sensor has recovered during the next period
of low signal level. A single sample run, which contains null failures, will be discussed
in this section. Certainly many more simulation runs would be required to generalize

the results presented here.

Table 12 shows the detection performance for a run with null failures present.
The first null failure effects the IMU phi measurement during a banking maneuver (e.g.
when the signal level is large), whereas the second failure is in the pitch rate gyro
when its signal level is very close to =zero. The first failure is detected in
0.15 seconds (e.g. three filter cycles), however, it is not removed quickly enough to
prevent a roll rate gyro false alarm. The second failure is not detected, as expected,
since its signal level is very small. It does, however, instigate a pitch sensor false

alarm.
Another perspective is shown in the estimation error profiles for this run,

Figures 26-30. These curves clearly show the coupling effects during the bank

maneuver. Notice the null failure in ¢ effects ¢, 9, P, and Q, but it also effects Xew
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Vew }':rw, }"m, A, and Ay. The encouraging thing to note here is that the FTS manages

to recover from the first failure.

The second failure requires some explanation to understand what is taking place.
First of all, one might assume that since the signal level on Q is small, (see fig. 6), a
null failure shouldn't impact the estimates very much (look at Q bias errors in
figure 30, for example). However, in this case the null failure in Q instigates a 9 false
alarm. Note in figure 7 that @ is not zero, rather it's changing slowly. This removes
all attitude measurements from the filter. Therefore, with Q=0, 6=constant. From this
point on the estimation error in 0 fluctuates as a function of the difference between
the true signal and this constant, plus any other contributions from the filter update

using the rest of the measurements (see fig. 28).

Although very few runs were made with null failures, we would anticipate the

following problems:

o Occasionally dynamically coupled sensors will be chosen (e.g. 4 when P fails,
El when A, fails, etc.)

o Filter divergence when detections are too slow, and the effective failure
level is large.

o Declaring a faulty sensor 'recovered” when a low signal level is monitored
for a period of time.
On the other hand these results are encouraging since:

0 They show that null failures can be detected without any modifications to
the original method.

o The bias jump failure models are 'robust” enough to provide coverage for
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these failures — however, either a better model or more heuristics will be
required for reliable detection, and healer operation.

3.4.3 Ramp Failure

Ramp failures appear in the measurements as slowly increasing biases - in other
words, at every successive step, a new, incremental bias jump is applied to the
measurement. If the slope of the ramp failure is large, the incremental bias jump is
large, and it will appear much like a bias failure would. In this case we would expect
the FTS to detect it without modification. However, if the slope of the failure is small,
the failure may go undetected for a long period of time, or it may create a drift in
the no-fail filter estimates and never be correctly identified. In this section, FTS

performance under ramp failures will be discussed by means of a typical example.

Performance for a typical sample run is shown in Table 13. Ramp failures are
simulated for Azm, 8, P, and A, sensors. The failure levels chosen in the table reflect
the slope required to attain a 30 normal operating bias in one second for each sensor.
Figures 31-36 show the estimation error and A/C track error profiles for the same

case.

From Table 13 we see that all simulated failures are correctly detected and
isolated by the FTS. Sensors which are treated as measurements are detected slightly
faster than those treated as inputs to the no-—fail filter. This was found to be a
common trait of the developed system. Another characteristic for ramp, as well as
other non-—bias failures, is the induced false alarms caused by the reset after the
failure is correctly detected. This is observed in the ¢ and RA failures in this case.

The false alarm in MLS elevation, however, is not due to the reset logic, but rather to
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TABLE 12. DETECTION PERFORMANCE FOR NULL FAILURES

SENSOR
TYPE

¢-1

Q-1

Sensor

FAILURE
ONSET TIME
seconds

65.75

111.65

False Alarms

Time of False Alarm

(seconds)

65.8
121.5
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the FTS's inability to correctly distinguish between the vertical accelerometer ramp
failure and MLS elevation. However, as seen previously in other examples, this type of
false alarm (due to indistinguishability) doesn’t generate a missed alarm, rather it
simply takes longer to make a correct detection, and causes more of a disruption to

the state estimates.

The estimation error profiles again show the effects of a hard reset. It is
especially evident in the ¢ estimation error. Otherwise, the FTS behaves quite

reasonably, considering the number of failures simulated in this short run.

3.4.4 Increased Scale Factor Failures

Increased scale factor errors are quite different from bias failures, and therefore
one should expect to see degraded performance for this class of failures. Consider
the following: a scale factor error may look like a constant bias failure - if the
signal level is constant; or it may look like a time varying failure — if the signal level
varies. In between these two extremes, the failure will look like a combination of the
two. In this section, performance of the FTS when increased scale factor errors are

introduced will be discussed.

Several runs were made, initially, with the healer logic running, however, since
the failures are a function of the signal and noise levels, failed sensors would heal
after a short period of time and we found they could not be used reliably in their
present form (a bias failure mode is implicitly assumed in the formulation of the

healers). The run presented in this section, therefore, has the healers turned off.
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TABLE 13. DETECTION PERFORMANCE FOR RAMP FAILURES

SENSOR FAILURE TIME TO
TYPE FAILURE MAG. ONSET TIME NDETECT
(seconds) {seconds)

Azm .009%s 66.85 2.30

-1 .3%s 112.25 1.9

P-1 .005%s/s 154,1 4.5

Ag-1 .5m/s%/s 223.9 6.6
Time of Time of

False Alarm % Healings False Alarm Healinas
{seconds) (seconds)

0-2 118.05 121.N05

0.2 159.6 171.6

E1-1 230.9 233.9

RA-2 '255.9 258.9

RA-1 261.85 X
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A typical run containing scale factor errors is shown in Table 14. Only input
failures are considered, since they are the only sensors with normal operational scale
factor errors. In this run, failures are simulated in Ay, A,, P, and Q sensors.

Surprisingly, all but the lateral accelerometer failures were correctly detected. The

failure times for this run were chosen so that

o P & Q failures occur when their respective signal levels are low

o Az failure occurs when its signal level is large (as it always is, since it

measures the gravitational force)

o Ay failure occurs when its signal is at a moderate and variable level.

From Table 14 we see that both gyro failures and the vertical accelerometer
failure were all correctly detected, with detection times ranging from 0.9 to
3.5 seconds. The lateral accelerometer failure was not detected; this could be caused
by the lateral accelerometer bias estimte tracking the failure before the input sensor

failure estimates have time to converge.

The false alarms in Table 14 can be grouped into those that are a result of
transients after the reset (4,E1,8), and those that are due to the missed detection of

the lateral accelerometer (Rng,A ).

The estimation and A/C track error profiles are shown in Figures 37-42. In
general, the filter estimates are much less fault tolerant for this type of failure. Some
of the transients in the velocity, attitude and accelerometer profiles are unacceptably

large. In addition, the A/C track errors were observed to be the largest for this

failure type.
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The estimation error curve for the lateral accelerometer bias looks very noisy.
The signal plotted is actually the effective bias due to the scale factor failure and all
other unmodeled effects, however, due to a recording error the noise signal itself was
not subtracted. Since this scale factor error curve consists of a time varying bias
component and an increased noise component, the correct curve would look exactly
like the one shown, but with the noise portion scaled down by the scale factor. One
plausible reason for the FTS’s inability to detect this failure is that the rms value of
this curve is close to zero — violating the basic premise that a failure really is a bias
shift in the signal. Even if there is a misdetection, as this example shows, the FTS

algorithm can still identify other sensor failures:
3.4.5 Increased Noise Failures

Increased noise failures are by nature most different from the underlying bias
failure assumptions used in the FTS. Since the rms value of the effective failure level
is essentially zero, detections only occur if the noise level is large for a short period
of time. This section discusses the performance of the fault tolerant system when

increased noise failures are simulated.

Although, from the last section, we know that the healers are not adequate for
these types of failure modes, in this section the healers were left operational in the

FTS So that the reader would be exposed to this aspect of the problem.
Table 15 details the failure performance of a typical sample run containing

increased noise failures. The reader will notice that the detection time is for the first

detection — since many false healings/re—detections occur in this run with the
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TABLE 14. DETECTION

SENSOR

PERFORMANCE FOR INCREASED SCALE FACTOR FAILURES

FAILURE TIME TO
FAILURE MAR, ONSET TIME DETECT
{seconds) (seconds)
2.5 (190) 66.45 X
2.5 (1n0) 151.8 1.85
.1 (100) 110.3 0.9
.1 (100)- 225.95 3.5

False Alarms (Healers are turned off)

Sensor Time of False Alarm

(seconds)
Rng-2 106,65
@=-2 114.75
E1-2 154,15
Ay 181.1
e 234.4
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healers running. The detection times appear to be quite random for this class of
failure, except that detection times are uniformly longer for input sensors (since they

are smoothed by the no-fail filter) than for measurement sensors.

The important finding is thsat all the failures were correctly detected and that
there were no false alarms in the run. Moreover, the constant healing and detection
with its associated filter reconfiguration and reset did not interfere with correctly
detecting the failures. Certainly the detection times for inputs are relatively long, but

the fact that the simple bias jump model works at all is encouraging.

Figures 43—-47 show the error estimation profiles for this run. The impact of the
successive resets can be clearly seen in these figures. Notice that the errors are
bounded and the filter doesn’'t diverge due to these repetitive disturbances. In fact, if
a more robust healer — or no healer at all — were used the performance would be

somewhat better.

3.5 Performance Summary and Overall Evaluation

The previous four sections have described in detail the performance of the
developed fault -tolerant system under a variety of simulated failure conditions. In
these sections, characteristics, which appeared in our study to be common to a
particular class of failure, were highlighted for discussion. This section will attempt

to generalize the major findings.

Table 16 shows an overall performance summary under the different simulated

failure conditions. As can be seen from the first column, there was complete coverage
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TABLE 15.

SENSOR
TYPE

A,-1
P-1
E1-1

8-1

DETECTION PERFORMANCE FOR INCREASED NOISE FAILURES

: FAILURE

FAILURE MAS. ONSET TIME
seconds,

.98m/s/s (100) 113.05

.2%s (100) 68.35

.3%s (100) 152.6

2.3°% (100) 223.35

Incorrect Hea1ings/Defections

Sensor Mumber of Occurrences

Az-l 4
P-1 None
£1-1 16
0-1 8

154

TIME TO
(FIRST)
DETECT

(seconds)

39.65

55.75

0.2

2.0



TABLE 16. .

OVERALL PERFORMANCE SUMMARY

‘\\\\:ZSLURE SINGLETON INCREASED INCREASED NULL HARNOVER ~ MULTIPLE RAMP s?ﬁgﬁggou
TYPE BIAS NOISE SCALE FACTOR  FAILURE  FAILURE FAILURE FAILURE BIAS
SENSOR (SEC) (Sec) (SEC) (SEC) (SEC) (SEC) (SEC) (SEC)
A 4.65
Ay 14.75
As N.D. 42,5 1.0 1.5 6.6
P 13,32 55.75 0.79 n.ns 4.5
0 8.12 0.5 n.7
R 6.1
Azm 0.9 n.637 2.3 n,42
E1 n.15 1.5 n.2 n.18
Rng n.08 n.1§ n.n9
IAS 1.57 n.05 n.4
Q 0.57 0.15
) n.43 3.3 n.n8 1.9
¥ n.8
RA n.3 0.15
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for bias type failures with the exception of A, The numbers in Table 16 depict the
average time to detect over the available runs. Singleton bias failures were averaged
over 30,50,80,100, and 120 bias levels. Referring to Table 16, input sensor
(accelerometer and rate gyro) bias failures were detected and isolated much slower
than the other sensors. That is, for the same level bias type failure, the detection
speed for input sensors were about 10 times slower than that of the measurement
(MLS,IMU,IAS,RA) sensors. This is because the input sensor failures have to propagate
through the no-fail filter dynamics in order to get detected. In our study, the
redundancyl for the input sensors were utilized only for backup. Hence, the
comparison of like input sensors may improve the detection speed for these

instruments.

The second column in Table 16 shows the average time-—to—detect for 100
increased noise type failures. For these failures, the detection speed for input sensor
failures was about 20 times slower than that of measurement sensor failures. On the
other -hand, the average time—to—detect for the 106 level increased noise input sensor
failures is about 10 times slower than that for 3-5¢ bias type failures. Similarly, for
measurement sensors, the average time—to—detect in the increased noise failure case
is about twice as slow as that in the bias type failure case. This is to be expected
since the bias type failure model used by the detectors is a poor model for increased
noise type failures. As before, if dual or more redundancy is available for the input
sensors then the comparison monitoring of like sensors may improve the detection

performance.

The third column in Table 16 shows the average time-—to-detect for increased
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scale factor failures with a 100 level. Increased scale factor failures were easier to
detect than increased noise type failures since the bias—type failure model is
adequate in emulating the sensor output behavior under a scale factor failure.
Columns four and five show the average time—to-detect for null and hardover failures.
Since hardover and null (if there is a sizable signal level in the measurement) failures
look like a large increased bias jump to detectors, they were identified within
approximately to 2 sampling intervals. The relatively longer time-to-detect for null
failure in the rate gyros indicates the need for a vehicle maneuver to detect this type

of failure.

Multiple sensor failure detection performance levels are given in the next
column. As discussed in Section 2.4.2 simultaneous failures were considered only for
the MLS sensors since these failures represent MLS antenna failures. The detection
speed for multiple failures is comparable to that for the singleton bias failures. It is
worth noting that a simultaneous MLS sensor failure never introduced a false alarm
arising from the selection of a singleton failure in the associated instrument. The
detection performance for ramp failures is given in the last column. The failures
correspond to a ramp failure level equal to 3 times the normal operating bias in one
second. The detection speed for ramp failures was slightly slower than that for the

corresponding bias—type failures.

The final column summarizes bias failure performance using the RSDIMU sensor
configuration. In this case note that detection times are comparable to those
obtained with the standard configuration. In addition, no false alarms or missed

detections were observed with the RSDIMU configuration.
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Based on our analysis of all the simulation runs made for this study, the
following summary of the operation and performance of the current fault tolerant

system is outlined.

o The no-—fail filter's state estimates were "fault tolerant” — Filter divergence,
caused by failures, occurred infrequently and the absolute level of filter
errors was within tolerable bounds for the automatic landing system to
function properly.

o The reconfiguration logic worked very well for bias failures - providing
selective, moderate resets. For non-—-bias failures, resets were generally too
hard. Suggestions have been offered for resolving these problems.

o Healer mechanisims worked well for bias, hardover, and ramp failures, but
were inadequate — in its present form for other types of failure modes.

o As documented in this chapter, detection speeds were quite good for bias
failures (with failure levels between 3 and 100), with detection times between
4.65 and 14.65 seconds for input sensors, and 0.08 to 1.57 seconds for
measurement sensors.

o Detection speeds for non-bias failures were in general adequate. For
increased noise failures the time—to—detect was random.

o The FTS was generally able to distinguish between failures in dynamically
coupled sensors, (for example, ¢ and P). However, the uncompensated
normal operating errors in the sensors at times exacerbated this problem.

o False alarms were usually due to either:

uncompensated normal operating errors

filter resets which were too "hard”

occasional indistinguishability of dynamically coupled sensors
secondary effect of a missed detection.

o Missed detections were usually due to either:

the normal operating bias filter estimating out its effects

a simulated failure level that was too low relative to the signal, noise,
and bias levels for that sensor

in the case of hardover and null failures, if the failure was not
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detected very quickly the filter would diverge.
The method was observed to be surprisingly robust with regards to non-bias

type failures. However, explicit tests for non-—bias failure, (either model
based or heuristic in nature) would be required for reliable detection.

Use of the RSDIMU configuration provided:

slightly better estimation performance
no false alarms or missed detections were observed

detection times were comparable to the standard configuration.
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4. CONCLUSIONS AND RECOMMENDATIONS

In this study, we have developed a fault telerant system design methodology for
general nonlinear stochastic dynamic systems. In particular, we have applied the
developed methodology to the design of a sensor fault tolerant system in aircraft
navigation, guidance, and control systems in a Microwave Landing System environment.
The fault tolerant system provides aircraft position, velocity, attitude, and sensor
normal operating bias estimates tolerant of faults in the ground-based navigation
aids, and on-board flight control and navigation sensors. We have analyzed the
estimation and failure detection performance of the software implementation of our
design (called FINDS) on the six—degree—of-freedom nonlinear digital simulation of the

ATOPS aircraft.

The state and normal operating sensor bias estimation performance of the
separated EKF algorithm in FINDS compared favorably with that of other navigation
filters employed within the same environment. Although sensor failures are modelled
as bias jumps in FINDS, we have investigated the failure detection performance on
other types of sensor failures as well. The failure detection and isolation performance
of FINDS was excellent for bias failures with the detection speed considerably better
for measurement sensors such as MLS than for input sensors such as accelerometers.
The failure detection performance for non-bias type failures was surprisingly good,
although healing tests designed for bias type failures caused problems, especially for
increased noise type failures. The detection speed for catastrophic failures such as

hardover was extremely fast.
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The following is a list of our recommendations for future study:

Although the simulation employed was fairly realistic, it did not account for
structural modes and lever arm effects. We believe that the sensitivity of
the FTS to these modelling errors can be uncovered by testing FINDS using
flight recorded data.

In this study, computational efficiency was not a major concern. Hence, the
developed algorithm does not currently run in real-time. Analysis of the
simulation data suggests that there are quite a number of simplifying
assumptions which can be introduced into the filter/detector structure for
significantly improving computational efficiency.

There are a number of places in FINDS which can be modified for improved
failure detection performance. For instance, a better internal model for
wind dynamics, the use of standby input sensors for failure detection, and a
better integration routine for the kinematic equations are such examples.

Although the developed sensor failure detection algorithm, which is designed
for bias type failures, proved to be capable of identifying other types of
non—bias sensor failures, it is desirable to be able to classify these non-
bias failures as well. Such a classification would be useful in employing
different types of healing tests for different types of sensor failures.

Although FINDS was tested within an MLS environment, the developed
methodology is quite general and applicable to other types of sensor
environments as well. For instance, FINDS can be applied to navigation
under VORTAC, and satellite position fixing systems with appropriate
modifications.
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APPENDIX A
DEFINITIONS OF USEFUL QUANTITIES

This appendix basically defines the quantities used in the no-fail filter and

detector derivations. Specifically, the following quantities are defined herein:
o uwg

o Tor T Tos

°© Ty Tgp
o T

W

A set of abreviations, used to condense the descriptions, are given below:

o s& = sine(e)
0 c8 = cosine(®)
o té = tangent(e)
o sec® = secant(e)
o )‘G = Latitude to origin of G frame
Descriptions:
0 wy = [ékc, 0, —shg ]wE
o T, = I, assuming a locally flat earth.
o Tg = Tep
cOco sg80co-cgs0 cgs0co+sgso
- cOso sgs6s0+chco cfs0s0-sgco
~s6 sgco cgcod
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where o = "J)—-‘lIJR

c)\G o] -s)\G
0 Tio = s(wt)s)\G —c{wt) s(wt)cXG
—c(wt)s)\c -s(wt) -c(wt)c)\G

°©Tgr = TgeTer = TésTic

1 sgto cpgto
ol' =10 cg —sg

0 sgsecO cfseco
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