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Featured Application: The macro–element formulated in the study can be implemented in any
FE–based software for the static (quasi–) and dynamic analysis of masonry structures. It assures
an attractive computational cost and accuracy level with respect to standard continuous FE models.

Abstract: A Finite Element (FE) based macro–element is described for the mechanical response of
masonry structures within different ranges of analysis. The macro–element is composed of discrete
rigid quadrilateral FE plates whose adjoining interfaces are connected through FE trusses. It allows
representing both elasticity and strength orthotropy, full material nonlinearity and damage through a
scalar–based model. The possibility of coupling with a so–called FE2 (multi–scale) strategy is also
addressed. Validation of the macro–element is conducted within linear static, vibration, and cyclic
(nonlinear) problems, in which both static and dynamic ranges are explored. Results are compared
with those retrieved from traditional FE continuous models. Advantages are highlighted, as well as
its robustness to cope with convergence issues and suitability to be applied within more general and
larger–scale scenarios, such as the analysis of anisotropic materials subjected to static and dynamic
loading. Formal details are given for its reproducibility by academics and practitioners—eventually
within other FE platforms—as the improved running times may be of utmost importance in dynamic
problems or highly nonlinear (material) quasi–static analysis.

Keywords: masonry; discrete model; macro–element; multi–scale; vibration; non–linear cyclic analyses

1. Introduction

Masonry is a phenomenological complex material due to the elastic and strength
anisotropies, its well–marked nonlinear response in tension, compression, and shear
regimes [1], and due to the potential damage–induced anisotropy. Experimentation reveals
the difficulty of predicting the mechanical response of masonry [2]. Such difficulties are
consistent with the substantial number of works developed during the last decades aiming
the assessment of masonry structures. These can be grouped within simplified or advanced
approaches [3–5].

In the scope of structural analysis for masonry buildings, the prevailing design rules or
analytical approaches are the most useful for practitioners, despite the possible unrealistic or
conservative outcomes [6]. Other simplified procedures, such as the story–mechanism [7]
and the equivalent frame–based models [8–10], can be found; in hand with the keen
development and improvement of macro–elements that constitute the geometric features
of masonry structures (such as walls, piers, and spandrels) [11–15]. The reduced degrees–
of–freedom make these suitable for the study of large–scale and regular structures. Yet,
these suffer from a macro–element discretisation bias, demand proper strength criteria for
each macro–element type, and hardly consider out–of–plane failure modes. More suitable
and yet conceptually simple procedures, such as the rigid–body approaches [16,17] or the
kinematic methods [18–22], are useful to supply closed–form solutions under dynamic
excitations, although are still overly complex for walls subjected to two–way bending.
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In this context, the need for more general methods encouraged the development of
advanced numerical strategies, such as the Discrete Element Method (DEM) and the Finite
Element Method (FEM) [23]. DEM presents several advantages since allows one to represent
masonry as a discontinuous media, in which masonry units are considered as the ensemble
of distinct bodies connected by contact surfaces (joints). Since the first DEM model proposed
by Cundall and Hart [24], and the discontinuous deformation analysis (DDA) introduced
by Shi and Goodman [25], several studies have been introduced with masonry as a specific
target [26]. DEM is widely applied to simple blocky structures [5]; for instance, in the
analysis of arches to assess the collapse load [27], the static and dynamic analysis of masonry
walls [2,28–33], and the rocking motion of stone blocks [34]. Software dedicated to this
formulation exists, see [35,36]. Although DEM unfolds inherent advantages, the modelling
of three–dimensional complex or large structures, with a high number of block elements,
can make the computational time unacceptable. Besides, simplifications concerning the
mesh discretisation may compromise the accuracy and, therefore, may be taken carefully. As
stated by Lemos [26], the accuracy for the out–of–plane study of masonry is quite dependent
on the number of contact points in the thickness direction. Regardless of the latter, DEM is
still rarely applied for three–dimensional structures within a dynamic analysis.

To what concerns FEM, its overall use deserves wide acceptance from the scientific
community [4]. FE–based models have a broad range of applications because they can
be employed either in simple or complex geometric structural configurations, and either
within static or dynamic problems. These are typically classified according to the followed
modelling strategy, namely: (i) direct numerical simulation or micro–modelling approach;
(ii) macro–modelling approach; and (iii) multi–scale computational approach. In the direct
numerical simulation, both masonry components (units and mortar joints) are explicitly
represented. Both in– and out–of–plane orthotropic nonlinear behaviour can be reproduced,
but long processing times are expected, hence being only recommended for limited size
structural problems [26,37–45]. Macro–modelling approaches tend to be adopted in the
study of large–scale structures [46,47]. Masonry is modelled as an equivalent homoge-
neous media and damage is smeared out over a mesh region (the so–called localisation
band), which goes against how it is generally found in masonries, i.e., concentrated or
distributed following clear failure patterns [5,19]. Multi–scale FE approaches (usually
two–scale or FE2) are in–between the latter modelling schemes. Different scales of analysis
are directly employed to describe the mechanical behaviour of the media, often provided
by a homogenisation–based procedure [45,48–52] at the foregoing scale. Although very
promising, the use of full–continuum FE strategies at both scales is computationally pro-
hibitive when material nonlinearity is accounted [53]. In–depth (formulation) assumptions
that allow decreasing such cost with acceptable accuracy are certainly of interest, as recently
proposed in [54–56].

The strong literature background makes FE models a popular built–in method for
structural analysis. Furthermore, the increase of computational processing power—noticing
the upcoming quantum computing—may allow its scalability to larger and larger scales.
Nonetheless, the computational cost in the dynamic range is still prohibitive and both
numerical instabilities and convergence issues are contentious in the quasi–static range, as
when modelling laminar structures composed of materials with highly nonlinear behaviour.
Similarly, assumptions that offer the possibility of using simplified (still accurate) FE
models are important as they allow lessening the required complexity of problems. From
a logical extent, the inherent advantages will be fully explored if the coarser scale of
analysis is adopted, i.e., the so–called macro–modelling. The study of structures with
larger dimensions may allow the representation of the material using a broader domain
that, in some cases, can be enough to catch the phenomenological features of interest. The
underlying assumption is that the interaction between brick units and mortar joints can be
neglected for the global structural behaviour, hence valid if the difference between macro–
and meso–scales is sufficiently large. It is usually referred that a ratio (characteristic lengths)
between 10 to 100 is questionable for periodic masonry [57]. The heterogenous masonry
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media is then replaced by an equivalent homogeneous material, in which the constitutive
relation is taken as an average one. This requires complex phenomenological formulations
to reproduce material orthotropy and to follow the damage onset and propagation. In
this endeavour, continuous FE–based macroscopic strategies are the most spread in the
literature, in which two frameworks have arisen to catch failure: using discontinuities
for the explicit modelling of cracks through the so–called cohesive zones [58–60], or in
a continuous way using classical or enriched (with crack–tracking algorithms) smeared–
cracking models [61–65]. Although damage representation may lack detail at the crack
level, it is known that these numerical models are still adequate for the study of concrete,
concrete–like, and masonry materials at a structural level. In such a scope, the riddle lies
in the definition of the most suitable modelling approach, by considering its dimensions,
study purpose, and that a trade–off between accuracy and practicability is evaluated (also
in terms of computational time). If the latter is respected, i.e., the characteristic length at
the macro–level holds, then macro–models are suitable. Therefore, simplified FE macro–
modelling approaches can be followed, such as those based on limit analysis [66–70] or on
discontinuous or discrete FE–models [70–77].

In this regard, the study tries to give a formal description of an improved macro–
element that originally stems from [78]. It allows retrieving the mechanical response of
masonry structures adopting a macro–modelling approach and within attractive computa-
tional costs. The main goal is to foster its reproducibility, aiming at the use by academics
and practitioners when performing seismic assessment (or related) studies. First, the
kinematics of the macro–element is presented for both in–plane and out–of–plane modes,
together with essential steps to scale and regularise the material constitutive relationships.
Then, formal validation of the macro–element is performed within linear static, vibration,
and cyclic (uni– and bi–directional) problems. At last, computational features that are
considered relevant are stated.

2. Macroscopic Unit–Cell
2.1. Theoretical Scope

The macro–element has a theoretical background on the works of Kawai [79–81]
and was implemented in the ABAQUS software. The strategy is especially suited for
the study of planar elements, i.e., for a three–dimensional body, ΩM ⊆ <3, with one
dimension much smaller than the other two. Such an assumption is also postulated when
studying a given structure with a plate or flat shell FE’s. Therefore, the modelling using
the macro–element tries to describe the structure using the mid–surface of the body, ΩM.
Given the cartesian space and for the undeformed configuration, it is assumed that the
thickness t of the structure develops in the z–direction (z = [−t/2,+t/2]) and that the two
planar coordinates are defined through global x and y coordinates (see Figure 1). Such an
assumption is important to recall bearing the integration with a multi–scale framework,
as it should be linked with the Cartesian system adopted at a meso/micro–scale. A
uniformisation between the allowable macro–deformation modes and the respective meso–
scale ones is convenient when material orthotropy exists.

The macroscopic unit–cell is composed of the assemblage of discrete quadrilateral rigid
plate elements connected through a set of rigid and deformable FE trusses in its interfaces.
Rigid plates are modelled as four linear quadrilateral elements within a finite–membrane
strain formulation (S4 element in ABAQUS). Full integration is adopted to prevent hour-
glass modes. The rigid linear elements are defined as three–dimensional Timoshenko
FE beams (B31 in ABAQUS). In this scope, the deformation and damage of the structure
are restricted to three–dimensional two–node FE trusses (T3D2 in ABAQUS). These are
comparable with spring elements since they have just one DOF and are directly integrated.
Their stiffness matrix is defined only by axial stiffness terms, given by diag

(
EA
L , EA

L

)
, in

which E is the Young’s modulus, A is its cross–section area and L is its axial length. The
macro–deformation is thus governed by the trusses, in which in– and out–of–plane failure
modes are considered within a decoupled approach.
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Figure 1. Macro–unit cell and kinematics of the macro–element. (a) Out–of–plane. (b) In–plane.

The FE trusses incorporate the material information, in which both orthotropy and full
softening behaviour can be provided by defining the properties of the different interface
sides. Regarding the out–of–plane (OOP) behaviour, the macroscopic cell is composed of a
set of four flexural and torsional trusses. The flexural trusses are placed at the mid–centre
of each interface and the torsional trusses are placed at each node of the squared rigid plate.
Mid–span hinges on interfaces allow the fixing of the axis of rotation for torsion movements
without compromising the deformed shape. Regarding the in–plane (IP) modes, trusses
have been assumed for axial and shear behaviours. For the former, a total of three axial
trusses are placed per–interface (two in the edges and one in the centre), and for the latter,
a total of two shear trusses (defining the shear for each half–length of the interface) have
been placed per interface.

Inertial forces can be either modelled via a direct lumped or consistent mass matrix
strategy. The former requires the computation of the representative mass for each rigid
plate and its introduction through nodal mass elements on each rigid plate node. The
latter allows it to be more straightforward, as the mass of the system is embodied by
the quadrilateral rigid plates using an equivalent material density. By following a linear
displacement interpolation assumption, one achieves a consistent mass matrix. Still, a
comparison between both strategies will be given in Section 3.1.2. The computation of
the system density ρsystem is given as ρreal .t/teq, t being the real thickness of the structural
element, ρreal the real density of the material, and teq the thickness attributed to the rigid
plates (defined as 10 mm).

At last, it may be noticed that since the macro–element has been implemented using an
FE software, a stiffness matrix [K] ∈ <n×n (n is the number of DOFs) has to be assembled
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for a given structure to compute the displacements vector [u] ∈ <n, with respect to the
action of a vector of external forces [ f ] ∈ <n through the weak–form [K][u] = [ f ]. In this
scope, the plates are enforced to be rigid (for both the axial and bending cases) by defining
a high Young’s modulus given by 1010 MPa (and a thickness of 10 mm). Likewise, the rigid
linear elements are defined to have a high Young’s modulus given by 1012 MPa (and a
section area of 0.1 mm2). The definition of the latter values may be questionable, as flexible
elements of the system become connected with disproportionately stiffer ones and can turn
[K] ill–conditioned [82]. Nonetheless, authors report that such values have been properly
defined as having in mind such issues and that, for the stiffness values typically associated
with concrete–like materials, these can be used with no further concern.

2.2. In–Plane Kinematics

The variational principle of energy conservation and the principle of virtual displace-
ment were followed to achieve the discrete macro–element elastic stiffnesses. Figure 2
presents the two directions of the in–plane system, i.e., the x– and y–directions, with both
the tributary areas of each in–plane FE truss and the associated deformation modes (kinematics).

Figure 2. In–plane unit cell: a tributary area for each truss and kinematics of each allowable (admissi-
ble) deformation mode.

Let us consider that Eii is the elastic modulus of the equivalent homogeneous material
− is the average operator as it is generally defined to represent a composite or intrinsically
homogeneous material), i is the corresponding axis x or y, Gxy the shear modulus of the
media, V the volume of the region under study, and ∆ a displacement increment under the
studied direction. For the in–plane case, the total strain energy density is generically given
by Equation (1):

U =
1
2

∫
V
{Σ}T{E} · dV (1)
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where {Σ}T =
{

Σxx Σyy Σxy
}

and {E} =
{

Exx Eyy Exy
}

are the stress and
strain quantities of the media constitutive relationship, respectively, ideally obtained experi-
mentally or via a homogenisation procedure. For the mode–I, the calibrated elastic stiffness
of each in–plane truss is derived by imposing that the stored strain energy in volume V of
both the discrete Umode−I

discrete and the continuum homogenised media Umode−I
continuum are equal.

Umode−I
continuum =

σε

2
V =

Eiiε
2

2
V =

H.t.Eii
2

∆2

2L + e
(2)

UUmode−I
discrete = V

σε

2
=

H.t.Ein−plane axial truss
ii

2
2∆2

e
(3)

If both energies are equated, the Young’s modulus of the in–plane axial trusses of
a macro–unit cell for each plane direction (if orthotropy is considered) are derived and
reads as:

Ein−plane axial truss
xx =

Exxe
4L + 2e

(4)

Ein−plane axial truss
yy =

Eyye
2(H + e)

(5)

The same methodology is followed for the mode–II trusses, namely the in–plane shear
trusses. The stored strain energies of the continuum and discrete model are:

Umode−I
continuum =

H.t.Gxy

4
∆2

2L + e
(6)

Umode−I I
discrete =

e.t.Ein−plane shear truss
xy ∆2

H
(7)

Consequently, the Young’s modulus of the in–plane shear trusses are given by:

Ein−plane shear truss
xy =

GxyH2

4e(2L + e)
(8)

For more details regarding the IP formulation, the reader is referred to [83,84].

2.3. Out–of–Plane Kinematics

The variational principles of energy conservation and virtual displacements were
followed to compute the elastic stiffnesses of the out–of–plane FE trusses; as provided
for the in–plane case. Figure 3 depicts the out–of–plane basic cell of the macro–element.
The geometrical parameters and the respective tributary areas for flexural and torsional
FE trusses are given. Additionally, the kinematics of each allowable deformation mode
is associated with a moment quantity defined in the input, or by integrating the in–plane
stress–strain curves in the thickness direction.

Equivalence between the bending energies of the discrete
(

Ubending
discrete

)
macro–element

and a continuum (Ubending
continuum) plate media is postulated to retrieve the latter expressions.

In such regard, the Ubending
continuum of a continuous FE plate subjected to bending is derived from

Equation (9):

U =
1
2

∫
l

M2

EI
dl (9)

and given by:

Ubending
continuum =

1
2
(
Eii I

)
χ2(H + e) =

Eii Ht3

24(1− ν2)
(H + e) (10)
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Figure 3. Out–of–plane unit cell: the tributary area for each truss and kinematics of each allowable
deformation mode.

The stored strain bending energy of the discrete system is derived through an ad–hoc
formulation. Bearing that the strain of the axial out–of–plane truss–beams is ε = θe/t and
θ = χ(H + e), Ubending

discrete is given as:

Ubending
discrete =

1
2

Mθ =
1
2

Ebending truss
ii Ate

t
θ2 (11)

By equating Ubending
continuum = Ubending

discrete the correct Young’s modulus of the OOP flexural
trusses is calculated according to Equation (12):

Ebending truss
ii =

Eiit4H
24e(1− ν2)(H + e)eAt

(12)

For torsion, the same procedure is followed. Briefly, the stored strain torsional moment en-
ergies of the discrete and continuum homogeneous media are given by Equations (13) and (14),
as follows:

Utorsional
continuum =

GHt3θ2

24(2L + e)
(13)

Utorsional
discrete =

Etorsional trusseH3θ2

16t
(14)

in which G is the homogenised shear modulus given directly by the slope of the in–plane
shear constitutive law. Thus, by respecting the energy equivalence between the systems,
the correct Young’s modulus of the torsional trusses is defined through Equation (15).

Etorsional truss =
2Gt4

3H2e(2L + e)
(15)
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2.4. Material Constitutive Law and Damage Model

A proper macro–constitutive law must be assigned to the elements that govern both
the deformation and inelastic response of the interfaces, i.e., the FE trusses. The constitutive
model tries to mimic the material information provided—potentially via at a foregoing
scale through a homogenisation procedure—and, therefore, should be capable to allocate
the mechanical information and effectively represent the elastic and inelastic behaviours.

Although several plasticity models can be adopted in ABAQUS, the concrete damage
plasticity (hereafter, CDP) model has been selected given the better representation of the
inelastic laws. The model combines stress–based plasticity with strain–based scalar damage.
It can reproduce several macroscopic properties for tension and compression regimes, such
as (i) different yield strengths; (ii) different stiffness degradation values; (iii) different
recovery effect terms; and (iv) rate sensitivity, which can increase the peak strength value
depending on the response strain rate. Moreover, it does consider the latter in the presence
of interfaces that are dynamic and/or cyclic loading, and is integrated using the backward
Euler method (see Figure 4). A general overview of the main features of CDP for the
rate–independent model is presented next, being the reader referred to, e.g., [85,86] for
further details.

Figure 4. Hysteretic curve adopted for the out–of–plane trusses (note: for the in–plane truss beams, the
tensile and compressive behaviours can have different shapes that stem from material characterisation).

Effective stresses govern the plastic part of these models [87] and the stress–strain
relationship is ruled, as referred, by an isotropic damage scalar affecting the elastic stiffness
of the material. According to Equation (16) the nominal stress tensor σ reads:

σ = (1− d)Eel
0

(
ε− εpl

)
= E :

(
ε− εpl

)
(16)

where E el
0 is the initial elastic stiffness of the material; d is the damage parameter, which

defines the stiffness degradation (0 for an undamaged and 1 for a fully damaged material),
and is designated as dt and dc for tension and compression regimes, respectively; ε is the
total strain tensor; εpl is the plastic strain tensor; and E is the initial elastic stiffness of
the material affected by the damage parameters (the degraded initial stiffness given by
E = (1− d)Eel

0 ).
Regarding the softening variables, Equation (17) describes the law h that expresses

their evolution, in which
.
ε

pl is the plastic multiplier (assuming a non–associated poten-
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tial flow), and ε̃pl and σ are the equivalent plastic strain tensor and the effective stress
tensor, respectively.

.
ε̃

pl
= h

(
σ, ε̃pl

) .
ε

pl (17)

The CDP model uses a yield function based on the works in which a hardening variable
Kc controls the meridian shape of the yield function. A Kc =2/3 is assumed, leading to
an approximation of the Mohr–Coulomb criterion. Three other dimensionless parameters
need to be defined, i.e., the dilation angle, Ψ, the eccentricity, e, and the viscosity parameter.
The dilation angle Ψ is measured in the p–q plane and gives the inclination angle of the
failure surface in respect to the hydrostatic axis; from a physical standpoint, it represents
the internal friction angle of the material. Here, a value of 30 degrees has been defined. The
eccentricity parameter e modifies the flow potential rule, being a straight line if e = 0 and
a hyperbola if e = 0.1. The default value, i.e., e = 0.1, has been assumed. The viscosity
parameter is introduced to enhance the results convergence in the presence of material
and/or geometrical nonlinearities, through a viscoplastic regularisation by Duvaut and
Lions [88]. This parameter should be treated with care as it can misrepresent the obtained
results. For the present macro–element, the default value of 0 (zero) has been adopted,
even though it has been noticed that within a quasi–static pushover analysis a value of
1× 10−4 can decrease the computational cost without apparently affecting the results.

Since truss beams define the material behaviour of the interfaces, the system will
undergo only uniaxial loading conditions and, therefore, the plastic strain rates in tension,
.
ε

pl
t , and compression,

.
ε

pl
c , are a function of the uniaxial plastic strain rate,

.
ε

pl
11, and read as:

.
ε

pl
t =

.
ε

pl
11 and

.
ε

pl
c = − .

ε
pl
11 (18)

Likewise, even if the CDP has been extended for the general multiaxial conditions,
the uniaxial character of the system may also be adopted for the cyclic loading analysis,
which simplifies, to a great extent, its follow–up validation. In such cases, the recovery of
the elastic stiffness when the sign of the imposed load changes is an important aspect to
consider. The so–called ‘unilateral effect’ holds both in tensile and compressive sides of the
cycle, in which, for uniaxial conditions, the damage parameter variable d is given as:

(1− d) = (1− stdc)(1− scdt), st ≥ 0, sc ≤ 1 (19)

Here, st and sc are functions of the stress state which represents the referred stiffness
recovery with the related stress reversals and are defined as:

st = 1−ωtr∗(σ11)

sc = 1−ωc(1− r∗(σ11))
(20)

Here, ωt and ωc are weight factors and assumed as input material parameters for the
CDP model and limited by 0 ≤ ωt ≤ 1 and 0 ≤ ωc ≤ 1, and r∗(σ11) = 1 if σ11 > 0 or
r∗(σ11) = 0 if σ11 < 0. In concrete–like materials, the effect is more marked when the
material is in a compression regime (σ11 < 0), because tensile cracks tend to close [86].
Nevertheless, the aim here is to fully reproduce the homogenised behaviour in both regimes
and so the Bauschinger effect is not reproduced. Therefore, the tensile and compressive
elastic stiffnesses have a full recovery effect, which is the same as defining ωt = 1 and
ωc = 1.

To fulfil the input requirements of the CDP model in ABAQUS, information regarding
the post–failure behaviour may be introduced for each element that features material
nonlinearity, i.e., the truss beams, in terms of stress and inelastic strain ε̃ck values. The latter
must be obtained for each point of the post–peak homogenised curve by Equation (21):

ε̃ck = ε− εel
o (21)
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in which εel
o is the elastic strain corresponding to the undamaged material and ε is the total

axial strain of the multi–linear stress envelope. If the damage parameters, d, are introduced,
the plasticity model is thus coupled with a damage description and is suitable for the cyclic
behaviour description of the material. The plastic strain values, εpl , are calculated, for each
point of the curve, as:

εpl = εcr − d
(1− d)

σP

Eel
0

(22)

Since the permanent plastic strain can be just positive or null, the latter can constitute a
good checkpoint to foresee if the damage parameters have been properly computed. Lastly,
it is important to recall that to increase the robustness of the problem, and as given in
Figure 4, multi–linear curves (e.g., with 5–nodes) are defined. Furthermore, a small plateau
near the peak strength of the curve is recommended, to circumvent an abrupt stiffness loss,
avoid potential convergence, and run–time problems. The adequacy of such approximation
will be discussed in Section 3.

2.5. Material Information and Required Processing Steps

The material input for the macro–element interfaces (FE trusses) needs to be given in
terms of stress–strain (Σ − E) and, through thickness integration, converted to moment–
curvature (M− χ) curves when out–of–plane behaviour is of interest. This information
is employed at the macro–element after two processing steps, aiming to achieve a correct
material characterisation, i.e., the so–called scaling and regularisation steps. These appear
to be critical to assure that the macro–input is independent of the refinement (size) adopted
for the macro–element.

Such transition steps are conducted after the preparation of the computational model,
because it is dependent on the size of the used discrete mesh, particularly, on the values of
H, e, L, and t. Furthermore, squared rigid elements are assumed, hence only two different
are possible for the interfaces: 0 and 90 degrees. The material orthotropy is reproduced at
a structural level because the approach offers the possibility to reproduce different input
stress–strain relationships according to the trusses plane. For the in–plane behaviour, the
stress quantities are directly derived from the input curves. For the out–of–plane system,
the macroscopic homogenised moment values are adapted to follow representative stress
values for the bending and torsional trusses through Equations (23) and (24):

σbending truss =
M

(e.ABTruss)
(23)

σtosional truss =
M

(H.ATTruss)
(24)

Here, M is the bending moment per unit of interface length; H is the size of each
square rigid element or plate; t is the thickness of the wall; ABTruss is the bending truss area;
ATTruss is the torque truss area; and e is the gap between the rigid plates, which ideally
should be zero but in practice is assumed small enough to be able to place trusses between
the elements.

After the earlier stage, the stress–strain curves are regularised by defining the elastic
stiffness and fracture energy terms. The regularisation step is necessary to properly find
the elastic stiffness of each truss beam and to guarantee the input independence from the
macro–mesh and, thus, its objectivity in the nonlinear range. One raises the similarities
with the regularisation concept firstly addressed by Bažant and Oh [89] in which the
fracture energy terms are regularised by a crack bandwidth parameter, lcrack; albeit, more
sophisticated approaches exist, such as those who convey on non–local methods [90,91].

By assuring the elastic energy equivalence between the discrete model and a contin-
uum homogeneous plate, it is possible to derive the so–called regularisation factor, fr—this
scaling operator affects the strain values of the curves that serve as an input. Within a
decoupled behaviour, the latter is performed separately for the in–plane, axial (mode–I and
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mode–IV) and shear (mode–II) deformations, and out–of–plane modes, i.e., both flexural
and twisting movements. In this way four different fr operators are found, which allow the
holding of the energy equivalence assumption.

Briefly, let us consider, for instance, that Ẽ =
[

ε1 ε2 · · · εn−1 εn
]

and
Σ̃ =

[
σ1 σ2 · · · σn−1 σn

]
are the n–dimensional sets which define, respectively,

the stress–strain input curves being regularised (n is the number of points of the curve). The
correct elastic stiffness value, obtained through the energy equivalence demonstration, is
computed for the point of the curve which has one–third of the peak stress value, designated
as point p. The regularisation factor is given as fr = σp/(εpEcorrected), in which Ecorrected is
the corrected Young’s modulus obtained for each truss type (see Sections 2.2 and 2.3). This
procedure is followed, and four regularisation factors are computed. By correcting the strain
values of the curves, both the elastic stiffness and fracture energy terms are regularised.

3. Macro–Element Application

The mechanical validation of the macro–element is addressed next, with a clear focus
on the study of the out–of–plane behaviour of masonry. Since the seminal works by
Irons et al. [92–94], conducting patch tests has become a regular step when presenting
finite elements, see [95–99] for a review. Zienkiewicz and Taylor [100] stated that, in plate
problems, the ‘importance of the patch test in both the design and testing of the elements is
paramount and this should never be omitted’.

Patch tests may be a trivial formality for standard finite elements because of the
shape function’s continuity requirements, but its usefulness as a debugging step for code
implementation is accepted. In this sense, some tests of comprehensiveness are employed
over the macroscopic unit–cell element aiming to assess the reliability and convergence of
the solution in elastic and inelastic problems for static and dynamic ranges.

3.1. Linear Range

Performance tests were conducted to evaluate the ability of the model in (i) elas-
ticity problems, and (ii) in vibration analysis through the eigenmodes frequencies and
deformed shapes.

3.1.1. Elasticity Problems

The conducted test addresses a squared plate subjected to different loading cases and
with two possible boundary conditions. The squared plate benchmark has a side length,
L, and belongs to the set of patch tests proposed by Rao and Shrinivasa [99]. Aiming to
especially serve as a reference test for plate bending elements, a thickness equal to L/100
is assumed, that approximates well thin–plate solutions. Two squared plates, one with
pinned (SSSS) and the other with clamped supports (CCCC) at its edges, are subjected to a
point and a surface (normal) load.

The convergence of the discrete macro–model has been assessed by comparing the
maximum elastic displacement, w, obtained with the exact solution, wexact, for different
mesh refinement levels, N. The maximum deflection obtained at the centre of the plate is
normalised with the exact theoretical solution and presented in Figure 5. Although the
discrete element behaves better in the presence of simply supported edges, which is to
be expected given the lower gradients of curvature, the load type seems to have a further
extent on the solution accuracy. The model can better reproduce the point load behaviour
due to its localised effect, which goes in favour with the data from the Rigid–Body–Spring
model (RBSM) developed by Kawai [79]. Globally, a refinement of N = 15 (H = L/15) is a
proper choice allowing estimations within 10% of a maximum deflection error. Hence, a
higher refinement is recommended for clamped edges (N = L/16) than simply supported
edges (N = L/12).
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Figure 5. Convergence study conducted for a squared plate test.

The plate benchmark test is inexpensive to carry out and a time–cost analysis has
been disregarded. The value of the errors found are admissible and in agreement with
typical simplified mixed–FE strategies, as the RBSM by Kawai [79] and the Hermann–
Hellan constant–stress–triangular elements [101]. Besides the simplification adopted for
the decoupled flexural–torsional behaviour, it may be emphasised that the deviations
found, especially when clamped supported edges exist, stem from the macro–element
assumptions. Quadrilateral elements are adopted which restrains the model adaptability
and deformability near cornered regions. Therefore, a mesh bias occurs near the supports
that explains the stiffer responses found for the clamped edges cases, i.e., no deformation
exists within a distance from the border given by the mesh size H. This also supports the
fact that the response is different than classical continuous FE–based models since it gives
lower bound estimations of the displacement (for different mesh refinements).

3.1.2. Vibration Analysis

Free vibration analysis is conducted in a simply supported squared plate. The plate is
isotropic and shows uniform thickness, t, and mass density values, ρ. The free harmonic
vibration of a thin plate is governed by the following differential equation:

D∇4w(x, y)−ω2ρtw(x, y) = 0 (25)

Here, w(x, y) is a given mode in the cartesian space, ∇4 is the biharmonic differential
operator in Cartesian coordinates, i.e., ∂2/∂x2 + ∂2/∂y2, and D is the bending stiffness
given as Et3/12/

(
1− υ2). For the present example, a squared plate simply supported at its

four edges, the solution of the vibration mode shapes has been formulated by Navier [102]:

w(x, y) = Amn sin
(mπx

a

)
sin
(nπy

a

)
, (m, n = 1, 2, . . .) (26)

in which, Amn is the amplitude of vibration (which are the unknown coefficients), m is the
number of half–waves in the x–direction, n is the number of half–waves in the y–direction,
and a is equal to the length, L, of the squared plate side. By replacing Equation (26) in the
differential equation, one obtains the exact solution for the vibration of frequencies in terms
of the parameters m and n:

ω =

√
D
ρt

[(mπ

L

)2
+
(nπ

L

)2
]

(27)
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By adopting different values for the integer parameters m and n, the theoretical and
exact frequencies of the first eight modes have been found. For the discrete model, since
it relies on an FE–based strategy, the natural frequencies and mode shapes are obtained
through the following matrix form equation:(

[K]−ω2[M]
)
{w} = 0 (28)

Here, [K] and [M] are the global stiffness and mass matrices. The mass of the dis-
crete system is carried by the rigid plate elements by providing a representative density
value, ρsystem. Uniform mass distribution is assumed to assemble the mass matrix either
through a lumped or consistent strategy. The former admits that the mass of the rigid
plate is lumped in its nodes, this allowing to obtain a diagonal mass matrix. In the con-
sistent strategy, mass is distributed in the rigid plates following a linear interpolation
rule, as when computing the local stiffness matrix, and both translational and rotational
inertias are accounted. Towards a convergence study, four mesh refinements have been
considered: N = 4, N = 8, N = 16 and N = 30. A thickness value of L/10 and a gap
spacing between the discrete cells of e = 20 mm have been admitted. Furthermore, the
analysis is complemented with the results from a standard continuum FE model (with
a mapped mesh, element size of L/30 and with a consistent mass matrix) designated as
FEA. Results gathered in Table 1 are given as normalised angular frequencies (with the
exact solution).

Table 1. Convergence study: normalised natural frequencies (ω/ωexact) found for the proposed
macro–model and a standard continuous Finite Element Analysis (FEA).

M
od

e Macro–Element
(Lumped Mass Approach)

Macro–Element
(Consistent Mass Approach) FEA

N = 30
Exact
(rad/s)

m n

N = 4 N = 8 N = 16 N = 30 N = 4 N = 8 N = 16 N = 30

1 1.276 1.094 1.026 1.025 1.244 1.088 1.064 1.024 1.000 19.739 1 1
2 1.382 1.085 1.037 1.037 1.302 1.069 1.064 1.034 1.000 49.348 1 2
3 1.382 1.085 1.037 1.037 1.294 1.069 1.064 1.034 1.000 49.348 2 1
4 1.499 1.129 1.036 1.028 1.371 1.103 1.073 1.031 1.001 78.957 2 2
5 1.405 1.088 1.047 1.045 1.276 1.053 1.063 1.039 1.000 98.696 1 3
6 1.475 1.084 1.046 1.045 1.218 1.049 1.061 1.039 1.000 98.696 3 1
7 1.569 1.143 1.045 1.038 1.356 1.099 1.075 1.036 1.001 128.30 3 2
8 1.569 1.143 1.045 1.038 1.355 1.099 1.075 1.036 1.001 128.30 2 3

According to the h–refinement dependency verified in the elasticity problems con-
sidered before, a higher mesh refinement lead to lower errors. Yet, a mesh size of L/16
provides solutions with an error lower than 5% (lumped approach), which seems to consti-
tute a sufficient refinement choice for larger case studies. A consistent mass matrix strategy
yields more accurate eigenfrequency contents than the lumped one; that is especially clear
for coarser meshes in which significant differences have been found (higher than 20%).
On the other hand, the modal deformed shapes depicted in Figure 6 indicate that all the
discretisation fit the FEA results up to the first four modes.

After that, coarser meshes are unable to catch higher modal responses, due to the
implicit mechanical arrangement of the quadrilateral rigid elements. Nonetheless, the
higher refinement (L/30) reproduces well all the modal displacements. At last, it may be
pointed out that the choice between the best approach to distribute the mass matrix is
arguable because the accuracy depends on the mesh refinement. Still, a consistent strategy
is adopted hereafter.
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Figure 6. Deformed shape of the first eight eigenmodes obtained with the macro–element (discrete)
model and through a classical FEA.

3.2. Non–Linear Range

The main purpose of this section is to briefly assess if the nonlinear homogenised
curve that serves as input for the constitutive material model (CDP) is properly attributed.
This is accomplished by attesting if the CDP adopted for the macro–interfaces leads to the
expected static and hysteretic responses. An ad–hoc simple case study is used for both
purposes, namely a vertical masonry wall simply supported in its bottom and top edges
and subjected to a centrally prescribed displacement, as depicted in Figure 7.

3.2.1. Quasi–Static (Monotonic) Nonlinear Curve

The first conceptual verification is performed through a quasi–static analysis. An
out–of–plane displacement is applied at the centre of the masonry wall. The assumed
stress–strain in–plane curves (Σyy − Eyy curves) are given in Figure 8. Specifically, a
linear behaviour was assumed in compression, and a strength value of 0.80 MPa followed
by exponential softening was assumed in tension. The corresponding vertical bending
moment M22 (designated as the principal stress couple, equivalent to Myy) is obtained
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through–the–thickness integration of the wall using a Kirchhoff–plate theory, as given
in Figure 8.

Figure 7. Nonlinear validation of the macro–constitutive model for an out–of–plane loaded wall.
(a) Vertical masonry wall. (b) Uni– and bi–directional cyclic loading.

Figure 8. Procedure for integrating the homogenised vertical stress–strain curves on the masonry
thickness aiming to obtain the homogenised vertical bending moment curve for the benchmark test.

Following the required transitions steps addressed in Section 2.5, the calibrated and
regularised σ − ε curves required for the vertical flexural truss beams have been iden-
tified and given in Table 2. The quasi–static analysis allowed us to reach the wall’s
structural response, whose capacity curve, in terms of bending moment–curvature, is
represented in Figure 9 and compared with the expected one (M22 homogenised curved for
an L = 400 mm). Results show that the strategy is well implemented and that adopting a
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simplified 6–node curve is adequate since the stored bending energy difference is, between
the obtained and the theoretical curves, lower than 1%.

Table 2. Input stress–strain (σ − ε ) curves for the FE trusses in the FE software (CDP model
in ABAQUS).

Cracking Strain (–) Stress (MPa) Damage Scalar D (–)

0.00 9.61 0.00
5.06 × 10−5 9.41 0.20
2.11 × 10−4 5.57 0.42
3.49 × 10−4 4.03 0.58
6.09 × 10−4 3.36 0.65

Figure 9. Quasi–static test: expected vs. obtained bending moment capacity curve.

3.2.2. Uni–Directional Cyclic Loading

In classical plasticity theory, three key features are of utmost importance: the yield
criterion, the flow rule, and the hardening/softening rule [85]. As referred, a Mohr–
Coulomb yield failure envelope and a non–associated flow rule have been assumed. For
the hardening rule, the model depends on the definition of cracking strains associated
with given effective stresses. It is the purpose of the uni–directional cyclic test to verify
if the latter is well reproduced for a cyclic type of loading. Towards the latter, the same
case study of Figure 7 has been used. The process of strength deterioration is itself the
pure representation of the softening rule evolution [85]. Figure 10 shows that the obtained
skeleton curve using the CDP model fits the expected quasi–static curve.

Furthermore, a damage model is coupled with the plasticity one. The softening rule is
interpreted through an isotropic damage variable, d, which is, by itself, a function of the
equivalent plastic strains and, therefore, its value never decreases. Stiffness degradation of
the material after cracking should be accounted. Figure 10 shows a comparison between the
present CDP model and a pure plasticity model with an absence of stiffness degradation.
On one hand, both phenomenological representations allow to achieve permanent material
plastic deformations, but these are higher if a total plasticity model with initial unloading
stiffness is adopted (known to be too conservative). On the other hand, the appearance of
plastic strains is a manifestation of inelastic behaviour and, as Figure 10 proves, its evolution
follows the expected path (see Table 2) reaching a constant value after the ultimate strain
threshold limit, correspondent to a cracking strain of 6.09 × 10−4, in which the residual
strength is defined and thus damage remains constant.
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Figure 10. Uni–directional cyclic behaviour (Note: only the positive moments are plotted, i.e., the
part of the unloading branch for negative bending moments has been disregarded for the sake
of readiness).

3.2.3. Bi–Directional Cyclic Loading

The last test covers the bi–directional cyclic loading response of the outlined case study
in Figure 7. The goal is to see if the expected hysteretic behaviour of the flexural trusses is
well reproduced. Both positive and negative vertical bending capacities are similar, hence
both the flexural trusses, ft1 and ft2, need to trace the same behaviour. This was sustained
by Figure 4 wherein the axial Cauchy stress σ11 faced in both flexural trusses are similar in
magnitude and, owing to the binary of the bending force, have an opposite signal.

Regarding the hysteretic behaviour, after completion of the first cycle (A→F, t = 2.25s),
as depicted in Figure 11c, the tensile peak is reached at A and the first tensile unloading
branch initiates at B with a stiffness given by EB =

(
1− dB

t
)
E0 until C. The first compressive

re–loading branch starts at C with a stiffness E0, since a value of 1 has been defined for the
recovery parameter ωc and so, predictably, the maximum compressive stress at D reaches
the same magnitude as A, i.e., the maximum quasi–static envelope. In the same manner,
the unloading branch (E→F) has a stiffness given by

(
1− dE

c
)
E0, and the first re–loading

tensile branch (F→G) has the same stiffness as the last unloading tensile branch (B→C).
This is equivalent for the first reloading compressive regime I→J, which follows the same
path as the last unloading phase E→F. It is also noticeable that H and L have the same
(in magnitude) axial stress σ11 as the last point of the quasi–static envelope. The material
constitutive behaviour formulation defines minimum stress, or the designated residual
strength, to be the last effective stress given as input, see Figure 11. Thus, after reaching
point H, the damage parameter remains stationary (Figure 11b).

It has been demonstrated that the cyclic behaviour is reproduced as it was expected.
Both positive and negative vertical bending moments are represented (truss ft1 and ft2). It
may be highlighted, again, that the latter holds true because total recovery effects have been
defined for tensile and compressive regimes (ωt = 1 and ωc = 1). Furthermore, the model
exhibits the capacity of allocating in memory the damage variables, for both the preceding
tensile and compressive cycle of each flexural trusses, allowing thus the calculation of the
onward un(re)–loading cycle.
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Figure 11. Bi–directional cyclic loading. (a) Cauchy stress σ11 for flexural trusses. (b) Evolution of the
damage parameter, d, for the flexural trusses. (c) Vertical bending moment–curvature (first cycle).
(d) Vertical bending moment–curvature (second cycle).

4. Computational Features and CPU Parallelisation

The implementation of the discrete model can be achieved using any FE–based plat-
form. Nonetheless, the authors raise the importance of several modelling assumptions in
the ease of such a process and for the optimisation of the associated computational costs.
For instance, the importance of considering a node renumbering algorithm is presented
next, together with the use of an implicit solver rather than an explicit one. At last, a
comparison over the CPU time is performed between a traditional continuous FE model
(smeared crack model) and the macro–element (discrete) model.

4.1. Node Renumbering Algorithm

A remark on the importance of adequate node renumbering is briefly stated here-
after. Its importance is evaluated in terms of time costs and required RAM to com-
plete a linear elastic analysis. Such costs are influenced by the bandwidth dimension
of the global stiffness matrix [K]. The minimisation of the latter through sparse matri-
ces is well–documented [103,104] and several algorithms have been developed [105–108].
A brief test is performed on a masonry wall subjected to an out–of–plane surface load.
Results are found for linear elastic analysis and through a direct sparse solver. A refined
mesh of 35× 65 rigid quadrilateral elements represent the masonry wall. Two algorithms
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have been employed: (i) a geometric–based algorithm, in which mesh nodes are numbered
according to a defined direction vector (length with higher dimension); and (ii) the so–
called Approximate Minimum Degree (AMD) sparsity algorithm, in which the number of
non–zero entries in the global stiffness matrix is reduced through a heuristic approach [109].
Results gathered in Table 3 were found through a 64–bit Windows 10 computer with 16 Gb
RAM and Intel i7 CPU running at 3.4 GHz.

Table 3. Performance test on an out–of–plane loaded masonry wall (35× 65 elements) for two–node
renumbering algorithms and within a direct sparse solver.

Node Renumbering Algorithm None (Reference) Geometric Algorithm AMD Algorithm

CPU total time (s) 14.95 5.523 (−63.1%) 6.006 (−59.8%)
Optimum physical memory RAM (Mbytes) 137.1 69.93 (−49.0%) 76.23 (−44.4%)

Although the absolute computational time difference may be negligible for the present
benchmark, the use of an algorithm may reduce the relative CPU time by around 60% and
around 44–49% of the required optimum physical memory. Such differences could be more
relevant within a nonlinear quasi–static analysis since several steps (and iterations) need to
be solved. Exploring the issue of the most efficient algorithm available in the literature is
especially convenient for very large–scale structures, in which powerful pre–processors
software as ANSA [110] can be used. Here, even if the performed test is simple, it aims to
raise the awareness (or the discrete–model FE user) over the importance of a renumbering
strategy. To cope with the concern of improving computational efficiency, ABAQUS offers
a renumbering algorithm based on a geometrical method. This seems suitable for the
dimension of the structural problems involved in the present study and in cases where a
dominant length direction exists.

4.2. Implicit vs. Explicit FE Analysis

For dynamic analysis, the macro–system equilibrium can be solved using an implicit
or explicit scheme. Still, two main reasons support the selection of an implicit procedure.
The first concerns the modelling of the inertial mass system that is achieved by assigning
a representative density value for the rigid plates only. In opposition, an explicit solver
demands the insertion of density values for all the elements, which compromise the stability
and representativeness of eigenvalues problems due to the local modal effects (associated
with FE trusses). The second reason is linked to the intrinsic nature of each procedure. The
explicit solver suffers from a time–step solution bias since considerable small–time incre-
ments are required to avoid a system misrepresentation. Although its use is recommended
for many problems due to its stability—as fast–dynamic problems or when interface contact
exists [111–114]—, an explicit solver may lead to long and prohibitive processing times
and to larger disk storage space when conducting a seismic assessment study of a masonry
structure. In converse, an implicit procedure allows larger time increments with the setback
that a converged solution must be found for each iteration; however, this is well handled
by the macro–element due to its robustness, as is demonstrated next in Section 4.3.

4.3. Comment on the Computational Attractiveness of the (Discrete) Macro–Element

It has been seen that the macro–scale behaviour arises from the deformation of in–
and out–of–plane FE trusses that carry the material information (from experimentation
or numerical homogenisation). Restricting the macro–deformation to linear elements
brings direct advantages due to its simplicity and one–dimensionality of the constitutive
equations, cyclic behaviour, strength domain, inelastic strain evolution laws, and damage
evolution and tracking (closure–opening crack states). The use of advanced structural
analysis software, such as ABAQUS, is of utmost importance. In cases where a given
instability renders a not purely positive definite stiffness matrix, the traditional equation
solvers (as the Newton–Raphson, the modified Newton–Raphson, or secant methods) are
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unable to give an adequate solution. In such situations, the software is robust because
a modified Riks method ([115–118]) is at its disposal to overcome snap–back and snap–
through issues. This is especially important when conducting quasi–static analysis in which
material (and of other kinds) non–linearities are active. A quasi–static type of analysis is
performed on the so–called LNEC brick house benchmark to demonstrate the efficiency
of the macro–element. Figure 12a depicts the brick structure, which is composed of three
walls in a U–shaped plan arrangement. The main façade presents a gable wall (dimensions
3.50 × 2.75 m2) and is linked with two transversal walls (dimensions 2.50 × 2.25 m2). Walls
are constructed with clay brickwork in an English–bond arrangement and have 235 mm
of thickness.

Figure 12. Capacity (pushover) curve and required CPU time for the LNEC house benchmark:
comparison between the macro–element (discrete) model and smeared crack model. (a) Geometry of
the LNEC brick house. (b) Capacity curves and required CPU time.

A mass proportional pushover analysis has been performed following the load di-
rection indicated in Figure 12a. Results from the macro–element (discrete) are compared
against a smeared (fixed) crack FE model. The assumed material properties (see Table 4)
are based on experimental and literature evidence [75,119], specifically the tension (ft),
compression (fc), and shear (fshear) strength values, and corresponding fracture energy
terms. A mesh size equal to 200mm has been assumed for both models to guarantee the
objectivity of the comparison. Likewise, the following have been considered (see [4]): (i) an
exponential softening in tension [4] governed by the tensile fracture energy, Gftension; and
(ii) a parabolic softening in compression [4] governed by the compressive fracture energy,
Gfcompression. An exponential softening has been also assumed for the shear regime within
the macro–element model, albeit it is disregarded for the smeared crack model.

Analyses have been computed on a 64–bit Windows 7 computer with 16 GB RAM
and Intel i7 CPU running at 3.4 GHz. The obtained capacity curves and the required
computational times are given in Figure 12b. Differences in the peak (around 12%) and
post–peak response were expected due to the differences that both formulations contain.
Nonetheless, the aim of this comparison resorts especially on the computational time rather
than on the capacity curves. Herein, the macro–element allows reducing the computational
cost by 41%. This is especially relevant if one states that the FE smeared crack models are
typically the option for large–scale structures due to computational attractiveness [2,4,5].
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The improvement in the CPU time is mainly associated with the lower number of iterations
required by the macro–element model to compute the non–linear solution.

Table 4. Material properties adopted for the LNEC brick house benchmark performance test.

Material Properties

Exx
(MPa)

Eyy
(MPa)

υ
(–)

ft
(MPa)

Gftension
(N/mm)

fc
(MPa)

Gfcompression
(N/mm)

fshear
(MPa)

Gfshear
(N/mm)

Macro–element (discrete) model 6400 3600
0.200 0.105 0.012 2.480 3.970

0.20 0.50
Smeared crack model 5170 5170 – –

At last, the CPU time can be optimised if parallel computing is considered. In the
present study, the authors do not claim any inherent advantages due to the small–scale
of the structure. Nevertheless, parallelisation may have a special interest to speed up
the processing times for dynamic or large–scale problems [120,121]. Likewise, the use of
graphical processing units (GPU) can be an important booster, yet no investigation has
been conducted in this regard. Still, the use of CPU parallelisation and GPU are always
dependent on the machine at disposal

5. Final Remarks

A formal description and validation of a macro–element has been presented for the
three–dimensional analysis of masonry structures. The macro–element is based on the
FE method, but several simplifications have been developed to supply faster results than
conventional continuous FE models, such as those retrieved from smeared crack approaches.
It is aimed for the macro–scale analysis of structures, and based on a discrete approach;
specifically, quadrilateral rigid plates are connected at its interfaces by a set of FE trusses.
These one–dimensional elements govern the in–plane and out–of–plane deformations. The
constitutive response can be based on any plasticity model; however, the so–called concrete
damage plasticity model was assumed as it can reproduce well homogenised material data
provided from experimentation or numerical homogenisation of concrete-like materials. A
regularisation step corrects the fracture energy of the stress–strain input curves according to
the defined macro–mesh dimensions, thus guaranteeing the well–posedness of the solution.

Validation and convergence tests have been performed to evaluate if the macro–
element fulfils the requirements for (i) elastic problems; (ii) eigenvalue problems; and
(iii) nonlinear problems for monotonic and cyclic loading cases. The tests have shown that
the discrete model provides good results in both static and dynamic ranges. Likewise, it
has been concluded that a refinement level given by L/15 (L is the length of the wall side
being meshed) seems a reasonable choice for the mesh size when performing a structural
analysis; at least in the case that a mesh sensitivity test is disregarded. Computational
recommendations have been also briefly addressed, as the use of an implicit solver scheme,
the use of the arc–length method for nonlinear quasi–static tests, and the use of a FE node
renumbering algorithm.

Although the application of discrete systems may be questionable in cases where mul-
tiphase couplings can occur, as when thermal or hydro–mechanical effects exist, the latter
macro–element proved to be suitable for structural–oriented problems such as the broader
range of quasi–static and the seismic assessment of masonry structures. A decoupled
characterisation for the admissible in– and out–of–plane deformations—that is certainly an
approximation—proved to be reliable (at least for levels of pre–compression lower than
the masonry compressive strength). Nonetheless, the macro–element is robust and can
be implemented in any FE software, to any structural application, and perhaps more im-
portantly, to be used by both professionals and academics. As future research streamlines,
one can state that the reduced computational cost of the macro–element can be explored:
(a) within larger–scale structures [122,123]; (b) within a structural health monitoring sys-
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tem [124,125] following the so–called digital twin framework; and (c) it can be accounted
within a probabilistic–based features for reliability and robustness–based analysis.
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