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A feasibility study for predicting 
optimal radiation therapy dose 
distributions of prostate cancer 
patients from patient anatomy 
using deep learning
Dan Nguyen  , Troy Long, Xun Jia, Weiguo Lu, Xuejun Gu  , Zohaib Iqbal & Steve Jiang

With the advancement of treatment modalities in radiation therapy for cancer patients, outcomes 

have improved, but at the cost of increased treatment plan complexity and planning time. The accurate 

prediction of dose distributions would alleviate this issue by guiding clinical plan optimization to save 

time and maintain high quality plans. We have modified a convolutional deep network model, U-net 
(originally designed for segmentation purposes), for predicting dose from patient image contours of 

the planning target volume (PTV) and organs at risk (OAR). We show that, as an example, we are able 
to accurately predict the dose of intensity-modulated radiation therapy (IMRT) for prostate cancer 
patients, where the average Dice similarity coefficient is 0.91 when comparing the predicted vs. true 
isodose volumes between 0% and 100% of the prescription dose. The average value of the absolute 
differences in [max, mean] dose is found to be under 5% of the prescription dose, specifically for each 
structure is [1.80%, 1.03%](PTV), [1.94%, 4.22%](Bladder), [1.80%, 0.48%](Body), [3.87%, 1.79%](L 
Femoral Head), [5.07%, 2.55%](R Femoral Head), and [1.26%, 1.62%](Rectum) of the prescription dose. 
We thus managed to map a desired radiation dose distribution from a patient’s PTV and OAR contours. 

As an additional advantage, relatively little data was used in the techniques and models described in 

this paper.

Radiation therapy has been one of the leading treatment methods for cancer patients, and with the advent and 
advancements of innovative modalities, such as intensity modulated radiation therapy (IMRT)1–7 and volume 
modulated arc therapy (VMAT)8–14, plan quality has drastically improved over the last few decades. However, 
such a development comes at the cost of treatment planning complexity. While this complexity has given rise 
to better plan quality, it can be a double-edged sword that increases the planning time and obscures the tighter 
standards that these new treatment modalities are capable of meeting. �is has resulted in greatly increased clin-
ical treatment planning time, where the dosimetrist goes through many iterations to adjust and tune treatment 
planning parameters, as well as receiving feedback from the physician many times before the plan is approved. 
Many further developments in treatment planning algorithms have aided in reducing the treatment complexity, 
such as including dose-volume constraints in a feasibility seeking algorithm15, creation of many Pareto surface 
plans for the planner to navigate through16–18, and many others for performance improvements and usage sim-
pli�cation19–25. However, using any of these algorithms still requires intelligent inputs or tweaks from the human 
planner, such as weight tuning, deciding appropriate DVH constraints or determining appropriate tradeo�s. To 
reduce the planning complexity even further, the prediction of dose distributions and constraints has become 
an active �eld of research, with the goal of creating consistent plans that are informed by the ever-growing body 
of treatment planning knowledge, as well as guiding clinical plan optimization to save time and to maintain 
high quality treatment plans across planners of di�erent experiences and skill levels. Figure 1A shows the typical 
treatment planning work�ow with many iterations for the dosimetrist and physician, and Figure 1B shows the 
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work�ow with a dose prediction model in place. Overall work�ow does not change, but we expect the number of 
iterations to considerably decrease.

Much of the work for dose prediction in radiotherapy has been revolving around a paradigm known as 
knowledge-based planning (KBP)26–38, which has been focused on the prediction of a patient’s dose volume his-
togram (DVH) and dose constraints, using historical patient plans and information. While KBP has seen large 
successes and advancements that have improved the reliability of its predictions, these methods require the enu-
meration of parameters/features in order to feed into a model for dose and DVH prediction. Although much time 
and e�ort has been spent in selecting handcra�ed features—such spatial information of organs at risk (OAR) and 
planning target volumes (PTV), distance-to-target histograms (DTH), overlapping volume histograms (OVH), 
structure shapes, number of delivery �elds, etc.31–39—it is still deliberated as to which features have the great-
est impact and what other features would considerably improve the dose prediction. Arti�cial neural networks 
have been applied to learn more complex relationships between the handcra�ed data31, but it is still limited by 
the inherent information present in that data. Another known KBP approach by Good et al.40, approached the 
problem by creating a “knowledge database” of 132 prostate treatment plans. A new patient is then matched to 
one of the knowledge database patient using mutual information as a similarity metric, the database patient’s plan 
parameters are adapted and optimized to the new patient. �e success of such a method relies on the size and 
diversity of its patients, and may possibly be limited when faced with more complex treatment sites, such as head 
and neck cancer patient.

In the last few years, deep learning has made a quantum leap in the advancement of many areas. One par-
ticular area was the progression of convolutional neural network (CNN)41 architectures for imaging and vision 
purposes42–44. In 2015, fully convolutional networks (FCN)45 were proposed, and outperformed state-of-the-art 
techniques of its time at semantic segmentation. Shortly a�er, more complex models were built around the FCN 
concept in order to solve some of its shortcomings. One particular architecture that was proposed is a model 
called U-net46, which focused on the semantic segmentation on biomedical images. �ere were three central 
ideas in the U-net’s architecture design: 1) a large number of max pooling operations to allow for the convolution 
�lters to �nd global, non-local features, 2) transposed convolution operations—also known as deconvolution47 
or up-convolution46—to return the image to its original size, and 3) copying the maps from the �rst half of the 
U-net in order to preserve the lower-level, local features. While inserting some domain knowledge into the prob-
lem may be helpful due to a limited amount of data, we look towards deep learning to reduce our dependence on 
handcra�ed features, and allow the deep network to learn its own features for prediction. Even though the U-net 
and other FCN architectures were designed for the task of image segmentation, we hypothesize that, with some 
innovative modi�cations, the U-net architecture will be able to accurately predict a voxel-level dose distribution 
simply from patient contours, by learning to abstract its own high-level local and broad features. Our motivation 
is two-fold: 1) (short term motivation) to provide guidance for the dosimetrist during clinical plan optimization 
in order to improve the plan quality and uniformity and, to reduce the total planning time by decreasing the 
number of iterations the dosimetrist has to go through with the physician and treatment planning optimization, 
and 2) (long term motivation) to eventually develop an arti�cial intelligent treatment planning tool, capable of 
creating entire clinically acceptable plans.

Figure 1. (A) Current treatment planning work�ow. (B) Proposed work�ow with AI-based dose prediction. 
Less iterations denoted as dotted-blue lines. TPS = treatment planning system.
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Methods
U-net architecture for dose prediction. As shown in Figure 2, we constructed a seven-level hierarchy 
U-net, with some innovative modi�cations made on the original design achieve the goal of contour-to-dose map-
ping. �e input starts with 6 channels of 256 × 256 pixel images. Speci�cs of the input data is outlined in Section 
2.2. �e choice for 7 levels with 6 max pooling operations was made to reduce the feature size from 256 × 256 
pixels down to 4 × 4 pixels, allowing for the 3 × 3 convolution operation to connect the center of the tumor to the 
edge of the body for all of the patient cases. Zero padding was added to the convolution process so that the feature 
size is maintained. Seven CNN layers, denoted with the purple arrows in Figure 2, were added a�er the U-net 
in order to smoothly reduce the number of �lters to one, allowing for high precision prediction. Batch normal-
ization48 (BN) was added a�er the convolution and recti�ed linear unit (ReLU) operations in the U-net, which 
allows for a more equal updating of the weights throughout the U-net, leading to faster convergence. It should be 
noted that the original BN publication suggests performing the normalization process before the non-linearity 
operation, but we had found better performance using normalization a�er the ReLU operation—the validation’s 
mean squared error a�er 10 epochs was 0.3528 for using BN before ReLU and 0.0141 for using BN a�er ReLU.

To prevent the model from over-�tting, dropout49 regularization was implemented according to the scheme 

shown in Figure 3, which is represented by the equation: ( )dropout raterate max
current number of filters

max number of filters

n1/

= × . For our 

setup, we chose ratemax = 0.25 and the max number of �lters = 1536. We chose n = 4 for the U-net layers, and n = 2 
for the added CNN layers. �e choice for the dropout parameters was determined empirically, until the gap 
between the validation loss and training loss did not tend to increase during training.

�e Adam algorithm50 was chosen as the optimizer to minimize the loss function. We used a learning rate of 
1 × 10−4, and the default Adam parameters β1 = 0.9, β2 = 0.999, and decay = 0. In total, the network consisted of 
46 layers. �e deep network architecture was implemented in Keras51 with Tensor�ow52 as the backend.

Figure 2. Schematic of an example U-net architecture with additional CNN layers used for dose prediction. 
�e numbers above the boxes represent the number of features for each map, while the numbers to the le� of 
each hierarchy in the U-net represents the size of each 2D feature.

Figure 3. Dropout scheme implemented for the U-net and CNN layers.
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Training and Evaluation. To test the feasibility of this model, treatment plans of 88 clinical coplanar IMRT 
prostate patients, each planned with 7 IMRT �elds at 15 megavolts (MV), were used. �e 7 IMRT beam angles 
were similar across the 88 patients. Each patient had 6 contours: planning target volume (PTV), bladder, body, 
le� femoral head, right femoral head, and rectum. �e volume dimensions were reduced to 256 × 256 × 64 vox-
els, with resolutions of 2 × 2 × 2.5 mm3. For training, all patient doses were normalized such that the mean dose 
delivered to the PTV was equal to 1.

�e U-net model was trained on single slices of the patient. As input, the 6 contours were each treated as their 
own channel in the image (analogous to how RGB images are treated as 3 separate channels in an image). �e 
output is the U-net’s prediction of the dose for that patient slice. �e loss function was chosen to be the mean 
squared error between the predicted dose and the true dose delivered to the patient.

Since the central slices containing the PTV were far more important than the edge slices for dose prediction, 
we implemented a Gaussian sampling scheme—the center slice would more likely be chosen when the training 
function queried for another batch of random samples. �e distance from the center slice to the edge slice was 
chosen to equal 3 standard deviations for the Gaussian sampling.

To assess the overall performance of the model, 8 patients were selected as a test set, and then 10-fold 
cross-validation procedure was performed on the remaining 80 patients, as shown in Figure 4. Each of the 10 
folds divides the remaining 80 patients into 72 training patients and 8 validation patients. Ten separate U-net 
models are initialized, trained, and validated on a unique training and validation combination. Each fold pro-
duces a model that can predict a dose distribution from contours. From these 10 trained models, we then take the 
best performance model, based on its validation loss, and evaluate this model on the test set.

For the remainder of the manuscript, some common notation will be used. D# is the dose that #% of the vol-
ume of a structure of interest is at least receiving. VROI is the volume of the region of interest. For example, D95 is 
the dose that 95% of the volume of the structure of interest is at least receiving. VPTV is the volume of the PTV and 
V#%Iso is the volume of the #% isodose region. Isodose volumes are binary masks de�ned as 1 if the voxel contains 
a dose value above some threshold and 0 otherwise. �e #% is the threshold for the isodose volume calculation 
and represents a percent of the prescription dose.

To equally compare across the patients, all plans were normalized such that 95% of the PTV volume was 
receiving the prescription dose (D95). �is normalization is applied to both the dose in the test set and to the dose 
prediction of the network, and was done by multiplying the dose with ratio prescription dose

current dose delivered to of PTV95 %
. It should 

be noted that this is normalized di�erently than for training the model, which had normalized the plans by PTV 
mean dose. Normalizing by PTV mean dose creates a uniform dataset which is more likely to be stable for train-
ing, but plans normalized by D95 have more clinical relevance and value for assessment. All dose statistics will 
also be reported relative to the prescription dose (i.e. the prescription dose is set to 1). As evaluation criteria, Dice 
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were evaluated.
Five NVIDIA Tesla K80 dual-GPU graphics cards (10 GPU chips total) were used in this study. One GPU 

was used for training each fold of the 10-fold cross-validation. Training batch size was chosen to be 24 slices. �e 
datasets generated during and/or analyzed during the current study are not publicly available due to sensitive 
medical information but are available from the corresponding author on reasonable request. Usage of the patient 
data has been approved by the UT Southwestern Protocol Review and Monitoring Committee (PRMC) and the 
Institutional Review Board (IRB). All patient data has been fully anonymized, and all methods were performed 
in accordance with the relevant guidelines and regulations outlined by the institution. Since gathered patient data 
was retrospective and did not directly involve the human participants during the study, informed consent is not 
applicable to this study.

Figure 4. Schematic for 10-fold cross-validation. A test set is held out from the cross validation procedure, and 
is used to test the best performance model.
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Results
In total, models from all folds trained for 1000 epochs each, which took approximately 6 days on the 10 GPUs. 
A plot of training and validation loss from one of the folds is shown in Figure 5 as an example. �e �nal aver-
age loss ± standard deviation between all the folds is (1.02 ± 0.05) × 10−4 (training loss) and (6.26 ± 1.34) × 10−4 
(validation loss). Of the 10 folds, the model from the 5th fold performed the best with the lowest validation loss of 
4.47 × 10−4. �is model was used to evaluate the dosimetric performance on the test set of patients.

A box plot of max and mean dose di�erences (True – Prediction) for the PTV and OARs for the test patient 
cases are shown in Figure 6. On average, the U-net model is biased to slightly over-predict the mean and max 
doses. A full list of average absolute di�erences for both the cross validation and test data can be found in Table 1. 
Overall, the cross validation error is slightly less than the test error. For the test data, the PTV, body and rectum 
maintain a prediction accuracy of within 3% error. �e bladder has a low max dose error of 1.9% but a larger error 
in the mean dose of 4.2%. �e femoral heads have higher max dose errors but reduced mean dose errors of under 
3%. Overall, the model is capable of accurately predicting Dmax and Dmean within 5.1% of the prescription dose. In 
addition all of the PTV related dosimetric statistics, dose conformity, and the dose spillage, R50, are very well 
predicted by the network as shown in Table 2. �e PTV coverage, PTV Dmax, conformation number, and R50 have 

less than 1% error (calculated as ∗
−

100
True Predicted

True
).

As a typical prediction example from the U-net model, Figure 7 shows the input contours, true and predicted 
dose washes, and a di�erence map of the two doses for one patient. On average, the dose di�erence inside the 
body was less than 1% of the prescription dose, shown in Table 1. Figure 8 shows the DVH of one of the example 
test patients. Visually on the DVH, one can see that the U-net tends to predict a similar PTV dose coverage with 
minimal errors in the dose prediction to the OARs.

Figure 5. Plot of train vs. validation loss as a function of epochs from one of the folds.

Figure 6. Box plots showing the dose di�erence statistics for the 8 test patients.
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Average Absolute Dose Di�erence
 ×

−
100

DTrue DPrediction
DPrescription

mean value ± standard deviation

Cross-Validation Results Test Results

Dmax Dmean Dmax Dmean

PTV 1.41 ± 1.13 0.77 ± 0.58 1.80 ± 1.09 1.03 ± 0.62

Bladder 1.38 ± 1.17 2.38 ± 2.26 1.94 ± 1.31 4.22 ± 3.63

Body 1.45 ± 1.21 0.86 ± 0.42 1.80 ± 1.09 0.48 ± 0.35

L Fem Head 2.46 ± 2.56 1.16 ± 0.74 3.87 ± 3.26 1.79 ± 1.58

R Fem Head 2.42 ± 2.45 1.17 ± 0.88 5.07 ± 4.99 2.55 ± 2.38

Rectum 1.34 ± 1.02 1.39 ± 1.03 1.26 ± 0.62 1.62 ± 1.07

Table 1. Average di�erences in mean and max dose with standard deviations.

PTV Statistics, van’t Riet Conformation Number, and Dose Spillage

mean value ± standard deviation

Cross-Validation Results Test Results

True Values Pred Values True - Pred True Values Pred Values True - Pred

PTV D98 0.98 ± 0.01 0.98 ± 0.01 −0.00 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.00 ± 0.00

PTV D99 0.97 ± 0.01 0.97 ± 0.04 0.00 ± 0.04 0.96 ± 0.01 0.97 ± 0.01 0.00 ± 0.01

PTV Dmax 1.08 ± 0.02 1.08 ± 0.02 0.01 ± 0.02 1.08 ± 0.01 1.07 ± 0.02 0.01 ± 0.02

PTV Homogeneity 0.09 ± 0.02 0.08 ± 0.03 0.01 ± 0.02 0.09 ± 0.01 0.07 ± 0.02 0.01 ± 0.02

van’t Riet Conformation Number 0.88 ± 0.08 0.92 ± 0.04 −0.04 ± 0.05 0.91 ± 0.02 0.90 ± 0.03 0.00 ± 0.02

R50 4.45 ± 1.23 4.10 ± 1.14 0.35 ± 0.23 4.00 ± 0.37 3.98 ± 0.32 0.02 ± 0.21

Table 2. True and predicted values for PTV statistics, homogeneity, van’t Riet conformation number, and the 
high dose spillage, R50.

Figure 7. Contours of the planning target volume (PTV) and organs at risk (OAR), true dose wash, predicted 
dose wash, and di�erence map of an example patient.
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�e plot of Dice similarity coe�cients of isodoses is shown in Figure 9. Dice similarity coe�cients range from 
0 to 1, where 1 is considered a perfect match. �e average Dice similarity coe�cient for the test data is 0.91 and for 
the cross-validation data is 0.95, a 4% di�erence. �e isodose volume similarity expresses slight decreases in the 
Dice coe�cient near the 40% isodose volume. �e loss in predictability at 40% is associated to the complicated 
details in the dose distribution along the beam paths in the normal tissue, which is generated during the �uence 
map optimization process.

Figure 10 shows some examples of dose prediction from the U-net on patients that have very diverse geom-
etries. It can be visually seen that the U-net has learned to shape the dose based on the PTV and OARs sizes, 
locations, and shapes. �e �ner details of the dose distributions further away from the PTV have been predicted 
by the deep network model with relative high accuracy.

Discussion
To our knowledge, this is the �rst fully 3D dose distribution prediction for prostate IMRT plans, thus making 
direct comparison to existing models di�cult. �e latest study by Shiraishi and Moore31 on knowledge based 
planning did investigate 3D dose prediction, but for prostate patients treated with VMAT. In addition, another 
cutting edge study by McIntosh and Purdie54 investigated 3D dose prediction using atlas regression forests. 
Because of the di�ering patient data base and treatment modalities/protocols, the results cannot be directly com-
pared. It should be noted that Shiraishi and Moore’s average prediction error was less than 8% using their method 
on their patients, and McIntosh and Purdie’s study found the average Dice coe�cient to be 0.88 (range is from 
0.82 to 0.93). �erefore, our impression is that our predictive model is at least within the same ballpark as the 
cutting edge methods by these authors.

�e 88 clinical prostate patients acquired in this study used a similar set of 7 beam angles and criteria for 
treatment, giving rise to some uniformity to the data that made it ideal as a test bed to investigate the feasibility for 
dose prediction using a deep learning model. However, the current model architecture and data leave the U-net 
with several limitations. First, the model has currently learned to only predict the dose coming from approxi-
mately the same orientations, and may not be able to account for more intricate beam geometries. Secondly, the 
current model is unable to account for any physician preferences for predicting the dose, limiting the level of 

Figure 8. Example of typical dose volume histogram (DVH) comparing true dose and predicted dose for one 
patient.

Figure 9. Dice similarity coe�cients, ∩
+

A B

A B

2( ) , comparing isodose volumes between the true dose and 

predicted dose, ranging from the 0% isodose volume to the 100% isodose volume. �e error in the graph 
represents 1 standard deviation.
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treatment personalization for the patient. For example, the model is unable to create a rectum-sparing plan or 
a bladder-sparing plan, at the will of the physician, for the same patient geometry. Furthermore, while training 
slice-by-slice had proven successful for coplanar cases, this method may not perform satisfactorily when per-
forming dose prediction for non-coplanar plans. �e deep network may have to understand the patient geometry 
in 3D if it were to start accounting for non-coplanar beam dose. Nevertheless, because the clinical prostate IMRT 
protocol is standardized, the current dose prediction model from this study can still be employed as a clinical 
guidance tool, where �nal tradeo� decisions will still be made by the physician and dosimetrist. By utilizing this 
model, the physician can immediately view the dose prediction and then convey how they desire for the plan to 
be changed to the dosimetrist. By already having a tangible plan to view, the dosimetrist can more readily apply 
the changes to make an acceptable plan earlier and ultimately reduce the total planning time.

We plan to extend this study by building a deep learning model for learning dose predictions that is capable of 
handling a more diverse selection of non-coplanar beam orientations. We will investigate the extension of U-nets 
into the volumetric domain using V-nets55, in order to tackle dose prediction for non-coplanar radiotherapy 
plans, and add in dose constraint parameters into the model input to allow the prediction of dose based on the 
physician’s prescription, not only patient’s geometry. Furthermore, we will examine the addition of CT data and 
its e�ect on prediction accuracy. We expect the addition of such information to the model will greatly improve the 
prediction accuracy, and will investigate the impact of adding these types of information.

Conclusion
We have developed a novel application of the fully convolutional deep network model, U-net, for dose prediction. 
�e model is able to take a prostate patient’s contours and then predict a dose distribution by abstracting the con-
tours into local and global features. Using our implementation of U-net we are able to accurately predict the dose 
of a patient, with average mean and max dose di�erences of all structures within 5.1% of the prescription dose. 
Isodose similarity evaluation reveals that the predicted dose isodose volumes match the true isodose volumes 
with the average Dice coe�cient of 0.91. We plan to continue improving the model, by adding in dose prediction 
for non-coplanar beam arrangements and accounting for physician preference. �e immediate application of the 
dose prediction model is to guide clinical plan optimization to reduce treatment planning time and to maintain 
high quality plans. �e long-term objective is to incorporate the learning dose prediction model into an arti�-
cially intelligent radiation therapy treatment planner.

Figure 10. Example dose predictions from the U-net model on several patients with vastly di�erent geometries.
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